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Abstract

In topological data analysis and visualization, topological descriptors such as persistence diagrams, merge trees, contour
trees, Reeb graphs, and Morse—Smale complexes play an essential role in capturing the shape of scalar field data. We present a
state-of-the-art report on scalar field comparison using topological descriptors. We provide a taxonomy of existing approaches
based on visualization tasks associated with three categories of data: single fields, time-varying fields, and ensembles. These
tasks include symmetry detection, periodicity detection, key event/feature detection, feature tracking, clustering, and structure
statistics. Our main contributions include the formulation of a set of desirable mathematical and computational properties of
comparative measures, and the classification of visualization tasks and applications that are enabled by these measures.

1. Introduction

Topological data analysis (TDA) provides fundamental tools for
scientific visualization in terms of abstraction and summarization.
These tools have great potential for data comparison, feature track-
ing, and ensemble analysis. For these purposes, a large variety of
comparative measures have been proposed targeting different topo-
logical descriptors and employed in a variety of visualization ap-
plications, which are the focus of this survey. This state-of-the-
art report aims to categorize, summarize, and analyze existing ap-
proaches that utilize comparative measures and identify open prob-
lems and opportunities for future work. We thus are interested in
both the mathematical foundations and properties of comparative
measures and their use in real-world visualization applications.

Popular topological descriptors for scalar field data, consid-
ered in this survey, can be classified into three categories: set-
based such as persistence diagrams [ELZ02] and barcodes [Ghr08,
CZCG04]; graph-based such as merge trees [BYM™14], contour
trees [CSAO3], and Reeb graphs [Ree46]; and complex-based such
as Morse and Morse-Smale complexes [GP12, EHZ01, EHNPO3],
respectively. Our work is especially motivated by the following
questions:

e Which role do topological methods in comparative analysis and
visualization play and what are the typical applications?

e What comparative measures have been proposed and where are
they applied?

e What are the desirable properties of a comparative measure for
topological descriptors?
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Our contributions include:

e We provide a classification of approaches in TDA and visualiza-
tion relevant to the comparative study of scalar fields.

e We collect a set of desirable properties of a comparative mea-
sure concerning metricity, stability, discriminativity, and compu-
tational complexity;

e We analyze existing approaches with respect to these properties.

e We derive a list of opportunities and challenges for future work.

We provide three navigation aids that help the reader. Two tables
provide an overview of different visualization tasks that are sup-
ported by comparative measures over topological descriptors (Ta-
ble 1) and desirable properties for the various published compara-
tive measures (Table 2). Further, we complement our survey with
a visual literature browser (https://git.io/Jt2Hqg) devel-
oped with the SurVis [BKW15] framework for an interactive navi-
gation of the state of the art.

Existing surveys. An organized classification of the literature re-
lated to scalar field comparison is a valuable addition that comple-
ments existing state of the art on topology-based tool sets. The sur-
vey by Heine ef al. [HLH* 16] provides an overview of topology-
based visualization, including a classification of such models for
scalar fields, vector fields, tensor fields, and multi-fields. Specifi-
cally for scalar fields, the survey discusses topological descriptors,
including their computation, simplification, visualization, and ap-
plication. Our paper is different from the above survey because
it focuses on comparative measures of topological descriptors for
scalar fields, a topic not covered by previous surveys.
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Review methodology. To complete the survey, we first gathered
papers from a number of visualization, computational topology,
and TDA venues whose title and/or abstract contain keywords rel-
evant to topological descriptors and their comparative measures,
such as “persistent homology”, “merge trees”, “scalar field com-
parison”, etc. The list of venues includes but is not limited to:
journals such as IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), Computer Graphics Forum (CGF), Jour-
nal of Applied and Computational Topology, Journal of Compu-
tational Geometry (JoCG), as well as conferences/workshops such
as IEEE Visualization Conference (VIS) and its associated events
(e.g. IEEE Large Scale Data Analysis and Visualization or LDAV),
EG/VGTC Conference on Visualization (EuroVis), IEEE Pacific
Visualization Symposium (PacificVis), International Symposium
on Computational Geometry (SoCG), etc. Since our primary fo-
cus is on topological descriptors and their applications in visualiza-
tion, we did not survey papers from machine learning venues. We
created a virtual index card summarizing each paper under topics
such as “summary”, “contributions”, “topological descriptions pro-
posed/used”, “comparative measures proposed/used/parameters”,
“applications”, “properties”, “future directions mentioned in the
paper”, and additional “tags” and “notes”. These index cards were
then used during the categorization process and each card was
checked by two authors. In total, this process resulted in approxi-
mately 200 papers that passed the initial screening, ~100 of which
were deemed most relevant and included in this survey.

Overview. This report is organized as follows: after introducing the
basic classification categories and the desired properties in Sect. 2,
some technical background on scalar field topology is summarized
in Sect. 3. Comparative measures developed for topological de-
scriptors with mathematical definition (if applicable) are summa-
rized in Sect. 4. Sect. 5 serves as a reminder of the structure of the
survey and provides navigation for the following sections, which
focus on visualization application structured by visualization tasks
for single fields (Sect. 6), time-dependent fields (Sect. 7), and en-
sembles (Sect. 8), respectively. A detailed discussion of desirable
mathematical and computational properties and a systematic anal-
ysis of the surveyed comparative measures can be found in Sect. 9.
The report ends with an outlook on future work and opportunities
in Sect. 10 and a conclusion in Sect. 11.

2. Literature Research Procedure and Classification

We review representative papers in the field of computational topol-
ogy, TDA, and visualization that develop or utilize topological de-
scriptors for the comparative analysis and visualization of scalar
fields. The annotation of each paper is guided primarily by a set of
visualization tasks that are associated with three categories of data,
and secondarily by a set of desirable mathematical and computa-
tional properties. Our primary categories are loosely inspired by an
existing survey [HLH*16] that classifies papers based on the com-
plexity of data types; and our secondary categorization is untreated
in previous works.

2.1. Primary Categories Based on Visualization Tasks

During our literature review, we observed that comparative mea-
sures were developed with a focus either on a specific topological

descriptor or a specific visualization task and application. We there-
fore identified three categories of data where topological compari-
son was applied: single fields, time-varying fields, and ensembles.

A single field f is a scalar-valued field defined on a 2D, 3D, or
higher-dimensional domain X, f : X — R. A time-varying field F
is a dynamically changing field, and is defined over the Cartesian
product of a spatial domain X and a time axis R, F : X xR —
R. Time-dependent data is typically available as a discrete set of
temporal snapshots. An ensemble refers to a collection F of fields
that are indexed by a collection of parameters, F = {f; : i € I}
(where [ is an index set).

Single fields. Comparative measures help extract, visualize, and
highlight similar structures within a single field — broadly referred
to as the symmetry detection problem in scalar fields. These mea-
sures also enable the comparison of two or more single fields for
shape matching and retrieval (e.g., [TN11,TN13,SSW14]).

Time-varying fields. For time-varying fields, comparative mea-
sures between successive time steps have been used to detect pe-
riodic behavior, key events, or outliers [NTN15, SW17,LWM*17,
SMKN20]. Comparative measures also drive explicit feature track-
ing in time-varying data.

Ensembles. For ensembles, comparative measures help identify
similar or dissimilar behavior between members. They help iden-
tify clusters of members, outliers, or unique members of the en-
semble. More recently, they have been used to compute structure
statistics that describe the distribution of the ensemble members in
the parameter space [SPCT18, YWM*20, AMY *20].

2.2. Secondary Categories Based on Desirable Properties

We discuss desirable properties of a comparative measure d =
d(Aj,Ay) between a pair of topological descriptors (of the same
type), A, and A;. We focus on four types of properties surrounding
metricity, stability, discriminativity, and computational complexity.
These properties have been studied across scattered literature in
TDA and visualization. We systematically investigate these prop-
erties and their relations to existing approaches in Sect. 9.

Metricity and Pseudometricity. Requiring d to be a metric is de-
sirable. That is, d satisfies the following metric properties:

1. Non-negativity: d(Ay,.42) > 0;

2. Identity: d(A;,Ap) = 0iff A; = Ap;

3. Symmetry: d( A, Ay) =d(A, Ay);

4. Triangle inequality: d(A;j, Ay) < d(Aj, A3)+d(Az, A3).

If the triangle inequality (item 4) above is not required, d becomes
a dissimilarity measure instead. If the identity is not required, d
becomes a pseudometric, replacing item 2 above by:

e d(Ay,A;) =0 (but possibly d(A;,.A;) = 0 for some distinct
Ay # A2).

Stability. Many definitions of stability for a distance metric d with
respect to the underlying scalar field have been proposed. Stability
can refer to whether d is stable with respect to simplification or
perturbation of the underlying function. For example, given two
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scalar fields f; and f> : X — R that give rise to a pair of topological
descriptors A; and A,, d is L°-stable if for some constant C > 0,

d(A1, Ay) <C-[|fi = folloo-

Discriminativity. Discriminativity also has various definitions. For
instance, using a comparative measure dy as a baseline, d is consid-
ered to be more discriminative than d if for some constant ¢ > 0,

do(Ar, Az) <c-d( Ay, Ay)

and there exists no constant ¢’ > 0 such that dy = ¢’ - d (that is, d is
not a scaled version of dj).

Computational complexity. We investigate the computational
complexity of d in terms of the time and space complexity, scal-
ability, and parallel computing. We investigate whether d is eas-
ily implementable, referring to whether an algorithmic solution has
been proposed which affects its practicality.

The above properties are particularly desirable for analysis and
visualization tasks that are supported by a comparative measure.
They lead to theoretically sound, interpretable, robust, reliable, and
practical methods for comparative visualization.

3. Technical Foundations on Scalar Field Topology

In this section, we review the technical foundations for scalar field
topology, including the definitions of Morse functions and topolog-
ical descriptors; see [Zom05, EH10] for computation-oriented and
[Tiel7] for visualization-oriented introduction to scalar field topol-
ogy. We review set-based (persistence diagrams, barcodes), graph-
based (merge trees, contour trees, Reeb graphs), and complex-
based (Morse and Morse-Smale complexes) topological descriptors
and their variants. The graph-based descriptors are largely based on
contours of a function, whereas complex-based ones are primarily
based on its gradient. We also briefly mention relevant topologi-
cal descriptors for multivariate functions (Jacobi sets, Reeb spaces,
joint contour nets), as they are natural extensions of their univariate
counterparts.

3.1. Morse Functions and Morse Theory

Most of the topological descriptors described in this section are
rooted in Morse theory [Mil63]. We give a high-level review here;
see [Mat02] for a friendly introduction and [Mil63] for the original
treatment.

Morse functions. Let M be a smooth manifold and f: M — R a
smooth function on M. A point x € M is a critical point of f if
and only if the partial derivatives at x are zero; otherwise, it is a
regular point. The image of a critical point is a critical value of
f. A critical point x is non-degenerate if the Hessian (the matrix
of second derivatives) at x is non-singular. f is a Morse function
if all its critical points are non-degenerate and have distinct func-
tion values. Fig. 1 gives two examples of Morse functions with a
1- and a 2-dimensional domain, respectively. Critical points are al-
ways displayed as red (for local maxima), blue (for local minima),
and white (for saddles) circles or spheres.

Morse theory. For a Morse function f: M — R, let M; :=

© 2021 The Author(s)
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Figure 1: Morse functions with (a) a 1-dimensional and (b) a 2-
dimensional domain, respectively.

f Y (—o00,1] = {x e M| f(x) <1} denote sublevel sets of . A ba-
sic result of Morse theory states that almost all functions are Morse
functions. Technically speaking, the set of Morse functions forms
an open dense subset of the space of smooth functions. In practice,
anon-Morse function can be made into a Morse function by resolv-
ing degenerate conditions via the simulation of simplicity [EM90].
We assume all functions discussed in this paper to be Morse.

The Morse lemma states that a function looks extremely simple
near a non-degenerate critical point. Two fundamental theorems of
Morse theory study how sublevel sets of a function changes topo-
logically w.rt. its critical points. A number of theoretical properties
relevant to topological descriptors described in this section can be
traced back to these two fundamental theorems. We refer interested
readers to [Mil63, Theorems 3.1 and 3.2] in their original forms.
In a nutshell, these theorems describe if and when the topology of
sublevel sets M; change as ¢ varies, in particular, when ¢ passes a
critical value. Topological descriptors such as persistent diagrams
and merge trees are related with one another via theorems of Morse
theory as both are defined over the sublevel sets of a function.

In practice, we rarely find smooth functions. Instead, we are
given samples of such functions, represented as a function on a
point cloud sample of M. Oftentimes, we impose a combinatorial
structure (i.e., a simplicial complex K) on the sample as an approx-
imation of M. Let K be a simplicial complex with real values spec-
ified on its vertices; |K| represents its underlying space. We obtain
a piecewise linear (PL) function f : |K| — R using linear exten-
sion over the simplices, where f(x) = Y; b;(x) f (u;) (u; are vertices
of K and b;(x) are the barycentric coordinates of x) [EHI0, page
135]. We can then apply Morse-theoretical ideas to this PL approx-
imation. This application is justifiable according to the Simplicial
Approximation Theorem [EH10, page 56], which states that every
continuous function on a triangulable topological space can be ap-
proximated by a PL function.

As described in subsequent sections, in some instances, features
that form parts of topological descriptors are used in the compara-
tive measures, in particular, critical points and their attributes, level
sets (contours, or isosurfaces) defined as f -1 (t) for some r € R.

3.2. Persistence Diagrams and Barcodes

Persistent homology is a widely used tool for TDA and visu-
alization. Algebraically, it takes the form of a persistence mod-
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ule [CDSGO16]. In this paper, we are mostly concerned with per-
sistence homology that arises from sublevel set filtrations of Morse
functions. We refer the reader to [EH10, CdS10, BEMP13] for dif-
ferent ways to study persistent homology.

Persistence diagrams. Let f : M — R be Morse and M; :=
! (00,1] its sublevel sets. Assuming M is also compact, then a
Morse function f on a compact manifold contains finitely many
critical points (as a consequence of the Morse lemma). Let n be
the (finite) number of critical values of f. Let ap < --- < an be a
sequence of regular values of f such that each interval (a;,a;11)
contains exactly one critical value of f. A sublevel set filtration of
f is a sequence of sublevel sets connected by inclusions,

Mgy = Mg — -+ = M,.

Persistent homology studies the topological changes of sublevel
sets by applying k-dimensional homology (k > 0) to this sequence,

Hy (Mg) — Hg (Mg, ) — -+ — Hg (Mg, ).

Given a topological space X, the 0-, 1-, and 2-dimensional ho-
mology groups, denoted as Ho(X), H;(X), and H,(X), respec-
tively, capture the connected components, tunnels, and voids of X.
We give an example of O-dimensional persistence homology based
on the sublevel set filtration of a 1-dimensional Morse function
in Fig. 2.
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Figure 2: (a) The graph of f : M — R, where each point p; =
(xi,¢i) for c; = f(xi); together with (b) the O-dimensional barcode
and (c) 0-dimensional persistence diagram of f based on its sub-
level set filtration.

Formally, a k-dimensional persistence diagram D is the disjoint
union of a multi-set of off-diagonal points {(b,d) | b # d,b,d €
R>o} on the Euclidean plane R? (where R = R U {—00,+00})
and the diagonal A = {(b,b) | b € R>¢} counted with infinite mul-
tiplicity. As illustrated in Fig. 2a, let ¢; denote the critical values of
a Morse function f restricted to an interval M C R, f: M — R,
where ¢y < ¢] < -+ < ¢g. Let x; denote the critical points of f.
Assume f is Morse, then ¢; = f(x;). For simplicity, we set ¢ = 0,
cy=1,and ¢; =i, etc. Letay < a; < --- < ay be a sequence of reg-
ular values of f such that each interval (a;,a;41) contains exactly
one critical value ¢;. The O-dimensional persistent homology cap-
tures how connected components in the sublevel sets M; changes
as t varies from ag to ay. Att =ag <0, M; = 0. Att =0, a sin-
gle (connected) component appears in the sublevel set M; contain-
ing the global minimum x(, we call this a birth event at M. At
t =1,2, and 3, a 2nd, 3rd, and 4th component appears in M; con-
taining local minima xp, xp, and x3, respectively. At ¢ = 4, the com-
ponent containing x3 merges with the component containing x, as

per the Elder Rule [EH10, Page. 150], referred to as a death event:
the component containing x3 disappears (dies) while the compo-
nent containing x; remains. Atz = 5, the component containing x;
merges with the component containing x; and dies. At ¢ = 6, the
component containing x; merges with the component containing
xo and dies. Persistent homology pairs the birth and death events
either as a set of intervals (called barcode), or a multi-set of points
in the plane (called persistence diagram).

Barcodes. A barcode is shown in Fig. 2b. The component contain-
ing xo never dies, giving rise to a bar [0,00) in the barcode that
begins at 0 and goes to co. The component containing x| is born at
t = 1 and dies at t = 6, which corresponds to a bar [1,6). Similarly,
the birth and death events of components containing x; and x3 give
rise to two additional bars [2,5) and [3,4), respectively. The per-
sistence of a bar [b,d) in a barcode is defined to be |d — b|, which
captures the life span of a component in the filtration. A persistence
diagram is shown in Fig. 2c, where each bar [b,d) is mapped to a
point (b,d) on the plane.

Other variants exist, mostly derived from persistence diagrams or
barcodes. The persistence landscape [Bub15] is a function-based
representation of a persistence diagram. It maps a persistence dia-
gram into a function space, which allows it to be easily integrated
with tools from statistics and machine learning [BD17, Bub20].
Formally, for a birth-death pair (b,d) in a persistence diagram, as-
suming b and d are finite, we define a piecewise-linear function
fiba) : R —[0,00] as

0, ifx ¢ (b,d)
foay=4x—b, ifxe(b4].
—x+d, ifxe[4.d)

The persistence landscape of the birth-death pairs {(b;,d;)}7_ in
a persistence diagram is the sequence of functions A : R — [0, oc],
where i (x) is the k-th largest value of {f{;, 4)(x)}i; (for k =
0,1,2,...). A (x) = 0 if the k-th largest value does not exist. In other
words, the persistence landscape is a function A : N x R — [0, o],
where A(k,t) = A (¢) [BD17]. Intuitively, consider the points with
finite birth and death times in a persistence diagram (Fig. 3a). We
construct a persistence landscape in Fig. 3b by rotating the points
by 45° and building three linear functions, A; (blue), A, (red), and
A3 (green), with these points.

@ (®)

g

Figure 3: Rotating a persistence diagram in (a) to create a func-
tional representation — a persistence landscape in (b).

Another descriptor widely used in machine learning is the per-
sistence image [AEK*17]. It is a vector-based representation of a

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



Lin Yan et al. / Scalar Field Comparison with Topological Descriptors 603

persistence diagram. It can be informally considered as a heat map,
which is generated from a weighted sum of Gaussian centered at
each point (b, p), where b is the birth and p = d — b is the persis-
tence of a point in the persistence diagram.

Betti curves also summarize the information of persistent ho-
mology (e.g., [Rob02, GMKO04, RSL20b, CL20]). Recall the k-th
Betti number is informally the number of k-dimensional holes (ho-
mology) of a topological space. For a filtration parameter #, the
Betti curves at ¢ are the Betti numbers of the associated com-
plex. Betti curves are arguably the simplest function-based repre-
sentation of a persistence diagram (cf., the persistence landscape).
Turner et al. [TMB14] introduced a summary statistic from per-
sistence diagram, called the persistent homology transform (PHT),
to model surfaces in R> and shapes in R2. Li et al. [LWA*17]
proposed another persistence-based feature vectorization of a per-
sistence diagram using a 1-dimensional density function to com-
pare neuronal trees; their feature vectorizations can be considered
as a l-dimensional version of the persistent images [AEK*17].
Rieck er al. [RSL17] developed an inter-level set persistence hi-
erarchy (ISPH) to capture the spatial relationship between features
in persistence diagram.

3.3. Merge Trees, Contour Trees, and Reeb Graphs

Topological descriptors such as merge trees, contour trees, and
Reeb graphs capture topological changes of (sub)level sets of scalar
fields, which are real-valued smooth functions.

Merge trees. Given a Morse function f : Ml — R defined on a con-
nected domain M, a merge tree records the connectivity of its sub-
level sets. Two points x,y € M are equivalent (w.r.t. f), x ~y, if they
have the same function value, that is, f(x) = f(y) =, and if they
belong to the same connected component of the sublevel set M, for
some ¢ € R. A merge tree is the quotient space M/~ obtained by
gluing together points in M that are equivalent under the relation
~. It keeps track of the evolution of connected components in M
as ¢ increases; see Fig. 4 for an example. In the abstract view of a
merge tree in Fig. 4b, each leaf corresponds to a local minimum of
f that represents the birth of a connected component; each internal
node corresponds to the merging of components; and the root repre-
sents the entire space as a single component. Fig. 4b also visualizes

Figure 4: (a) The graph of a I-dimensional Morse function f re-
stricted to an interval, f: M — R; (b) the merge tree of f shown
abstractly, where branches are colored based on its branch decom-
position; (c) the graph of f is colored based on the branch decom-
position in (b).

© 2021 The Author(s)
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the branches of the merge tree based on its branch decomposition.
The connection between a merge tree and the barcode is apparent,
c¢f. Fig. 2(b) and Fig. 4(b-c), where a merge tree decomposes into
a barcode following a branch decomposition process; and bars in a
barcode can be used to assemble a (non-unique) merge tree follow-
ing a gluing process. See [CCF*20, Curl8, KGH20] for references
for the relation between a merge tree and a barcode. Note that the
notions of join and split trees [CSA03] are the two forms of merge
trees; a join tree is the merge tree of f and a split tree is the merge
tree of —f.

Reeb graphs and contour trees. A Reeb graph, on the other hand,
relies on equivalence relations among points in the level sets of a
Morse function f : M — R. Two points x,y € M are equivalent,
x ~y,if f(x) = f(y) =t, and if they belong to the same connected
component of the level set f -1 (¢), for some ¢ € R. The Reeb graph
Gy := M/~ is the quotient space obtained by identifying equiva-
lent points; see Fig. 5. Nodes in the Reeb graph have a one-to-one
correspondence with the critical points of f, while arcs connect the
nodes. A point on an arc represents a connected component of a
level set (i.e., a contour) in M. Intuitively, as ¢ increases within the
range of f, a Reeb graph captures the topological changes in the
level sets of f, in particular, the appearances, disappearances, split-
ting, and merging among the connected components (contours) of
! (t); see [EH10, section VI.4] for a formal treatment. Bauer et
al. [BFL16] worked with the notion of a labeled Reeb graph, where
the vertices of G are labeled by the function [y : V(Gs) — R in-
duced by restricting f : M — R to its critical points. Then, (G,1y)
is the labeled Reeb graph of the data (M, f), see Fig. 5c.

@ - lfh
A

Figure 5: (a) A height function f : M — R defined on a double
torus, (b) its Reeb graph embedded in the domain M, and (c) its
Reeb graph shown in an abstract view. If the Reeb graph in (c) is
Jurther equipped with a function ly defined on its vertices, where l¢
is the restriction of f to'V, then we obtain a labeled Reeb graph.

A contour tree is a special type of Reeb graph when the domain
M is simply connected. Then, M/~ gives rise to a tree; see Fig. 6
for an example involving a “deformed” spherical domain. The main
difference between a contour tree and a merge tree is that the former
captures the connectivity among level sets, while the latter encodes
the connectivity among sublevel sets of a Morse function.

Mapper constructions and mapper graphs. Given a point cloud
X c RY, we construct the nerve of a covering. Let I be an index set.
A cover of X is defined as a set of open sets in R U = {Ui}ier
such that X C U;¢;U;. The nerve complex of U is a simplicial com-
plex, N(U) :={J CI|Nje;Uj # 0}. The 1-dimensional nerve of
U, denoted as N (U), is a graph. Each node i € I in N (U) rep-
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Figure 6: (a) A height function f : M — R defined on the surface
of two (solid) balls glued together; (b) its contour tree embedded in
the domain M; and (c) its contour tree shown in an abstract view.

resents a cover element U;, and there is an edge between i, j € I if
Uunu; # 0.

Given a real-valued function f : X — R, we start with a finite
cover of f(X) C R using intervals, that is, a cover V = {V;} such
that f(X) C U;Vy. We obtain a cover U of X by considering the
clusters induced by points in f *I(Vk) for each V. as cover ele-
ments. The nerve of U/ is a simplicial complex, and is referred to
as the mapper (or mapper construction) of f. The 1-dimensional
nerve of U, N1(U), is the mapper graph of (X, f).

A 1 oY
o e
P m Ty
_i. V3 N ,
® Vi /‘ \‘ /
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Figure 7: (a) A height function f : X — R defined on a point cloud
sampled from a double annulus together with a cover, (b) the cover
of f(X) with intervals, and (c) its mapper graph.

Take as an example a 2-dimensional point cloud X sampled from
a double annulus that is equipped with a height function in Fig. 7a.
Six intervals form a cover V = {V1,V5,--+,Vg} of the image of f,
that is, f(X) C Uy Vi (1 < k < 6) in Fig. 7b. For each k, f~1(V;)
induces some clusters of points that are subsets of X; each cluster
forms cover elements of X. For instance, £~ ! (V1) induces two clus-
ters of points that are enclosed by the orange cover elements Uy and
U,, and f -1 (V») induces two clusters enclosed by the blue cover
elements, one of which is Us. The mapper graph shows that there
is an edge between node 1 and node 2 in Fig. 7¢ since U; NU3 # 0.

Other contour-based topological descriptors have been studied
inrecent years. Zhang et al. introduced the dual contour tree, which
is constructed from the contour tree of a volume by dividing its
functional range into segments such that the connected contour tree
edges within a segment become a node in the dual tree [ZBB04].
The dual contour tree shares many resemblances with the mapper
graph; see Sect. 6 and Sect. 8 for its applications in visualization.

A branch decomposition tree (BDT) is derived from a con-

tour tree [PCMS04] or a merge tree [SSW14]. A BDT represents
the branch decomposition of a tree, with the nodes representing
the branches and the edges representing their hierarchy. Saikia et
al. [SSW14] further introduced an extended branch decomposition
graph (eBDG), which represents a forest of BDTs, where each of
the BDTs is computed from a subtree of the merge tree.

In addition to mapper graphs, Reeb graphs have several variants,
many of which have not been utilized in scientific visualization.
The o-Reeb graph [CHS15] defines the equivalence relation be-
tween points using open intervals of length at most o.. The extended
Reeb graph [BB14] uses cover elements from a partition of the do-
main without overlaps. The enhanced mapper graph [BBMW21]
considers inverse images of intersections among the cover elements
and encodes function values on its vertices and edges. Several vari-
ants of mapper constructions exist, as discussed in Sect. 3.5.

3.4. Morse and Morse-Smale Complexes

Let f : M — R be a Morse function, V f its gradient. At a regular
point x, an integral line is a maximal path whose tangent vectors
agree with the gradient [EHZO01]. An integral line begins and ends
at critical points. The stable manifold surrounding a critical point
p includes p itself and all regular points whose integral lines end
at p. This is also referred to as the descending manifold of p since
f(p) > f(x) for all points x in the stable manifold of p [EH10, Page
131]. For instance, the stable manifold of the local maximum p
in Fig. 8a corresponds to the red “bump”. The unstable manifold
(ascending manifold) of a critical point p is the point itself together
with all regular points whose integral lines originate at p [EH10,
Chap. VI, page 131], see Fig. 8b. Symmetrically, an unstable man-
ifold (ascending manifold) of p in f is a stable manifold of p in
—f. A Morse function f is a Morse-Smale function if the stable
and unstable manifolds intersect transversally.

@ ® ©

Figure 8: Given the 2-dimensional function f from Fig. 1, (a)
shows the Morse complex of f (with stable manifolds), (b) shows
the Morse complex of —f (with unstable manifolds), and (c) is the
Morse-Smale complex of f.

Given a Morse-Smale function f defined on a 2-dimensional do-
main, its stable manifolds surrounding local maxima decompose
the domain into 2-cells (colored regions in Fig. 8a), whereas inte-
gral lines connecting the critical points are the 1-cells, and critical
points are the O-cells. These cells form a complex called a Morse
complex of f. Intersecting the stable and unstable manifolds of f
(equivalently, intersecting the Morse complex of f and —f) gives
rise to a refinement of the two complexes called the Morse-Smale
complex (MSC) of f, see Fig. 8c. Its O-cells are the critical points,
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and its 1- and 2-cells are the components of the unions of inte-
gral lines with a common origin and a common destination [EH10,
Chap. VI, page 134]. 3D Morse and Morse-Smale complexes of
f:MC R? — R are defined similarly based on the gradient be-
havior of points in its domain [EHNPO3]. These complexes can
be approximated in high dimensions for data analysis and regres-
sion [GBPW10, GP12]. Persistent homology can be used to sim-
plify a MSC [EHZO01]; see [GRSW14] for a discussion.

Subsets of Morse-Smale Complexes. An extremum graph, intro-
duced by Correa et al. [CLB11], is a sparse subset of the MSC. It
connects critical points along steepest ascending (or descending)
lines, which join adjacent extrema [CLB11]. It is designed to re-
tain (some) important structural information of a MSC without vi-
sual clutter from the entire complex. A maximum graph contains
maximum-saddle connections, whereas a minimum graph contains
minimum-saddle connections. Thomas and Natarajan [TN13] aug-
mented the extremum graph with topological and geometric infor-
mation to facilitate the efficient detection of geometric symmetry
in the electron microscopy data.

Feng et al. [FHIB13] introduced feature graphs to represent non-
rigidly deformed surfaces. A feature graph is derived from the MSC
of the Auto Diffusion Function (ADF), a solution to the heat equa-
tion. Nodes in a feature graph are critical points of a persistence-
simplified MSC, which are connected by integral lines. Thus, a fea-
ture graph is the 1-dimensional skeleton of a simplified MSC.

3.5. Topological Descriptors of Multivariate Functions

We briefly describe topological descriptors of multivariate func-
tions, although they are not the focus of this paper. We specifically
focus on these multivariate descriptors as many of them are the
direct extensions of their univariate counterparts. Given a multi-
variate function F = (f1, f2, -+, fx) : M — R¥ (k > 2), we have
three types of descriptors, those based on (a) the gradient behaviors
of components f; (Jacobi sets), (b) the contours of F' (Reeb spaces,
multivariate mapper constructions), and (c) multi-parameter persis-
tent homology.

Reeb spaces, multivariate mapper constructions, joint contour
nets. Reeb spaces [EHPOS] are high-dimensional analogs of Reeb
graphs. Given a multivariate function F : Ml — R¥, the Reeb space
is the quotient space obtained by identifying equivalent points, that
is, Ml/~, where x ~ y if F(x) = F(y) =t € R* and x and y belong
to the same connected component of the pre-image of ¢.

Following the mapper construction for a scalar field (Fig. 7), the
filter function f may be generalized to be a multivariate function,
that is, F : M — R* (k > 2). For instance, when k = 2, the cor-
responding cover elements of F (M) C R? become rectangles. We
call this the multivariate mapper construction in this paper to dif-
ferentiate it from its univariate (scalar field) version.

Since a mapper graph is considered as a discrete approxima-
tions of a Reeb graph, the mapper construction for multivariate data
F : X — RF s a discrete approximation of the Reeb space [MW16].
There are other variants of such approximations, noticeably the
joint contour nets (JCNs) [CD13]. The JCN applies quantizations
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to the cover elements by rounding the function values. The multi-
scale mapper [DMW16] is a sequence of mapper constructions
connected by linear maps by varying the granularity of the cover
elements. The multi-nerve mapper [CO18] computes the multi-
nerve [ECAVGGI12] of a cover. For comparing time-varying and
multi-fields (see Sect. 7), Agarwal et al. [ARC20] introduced a
multi-resolution Reeb Space (MRS), which is approximated as a
series of JCNs at various levels of discretization.

Jacobi sets. The relation between two Morse functions f,g: M —
R can be studied in terms of their Jacobi set [EH04], J(f,g). The
Jacobi set is the collection of points in M where the gradients of
the functions align, that is, for some A € R,

J(f,8) ={xeM|Vf(x)+AVg(x) =0o0r AVf(x) + Vg(x) =0}.

The Jacobi set has been used to derive local and global com-
parison measures of multiple scalar functions [EHNPO4]. Sev-
eral techniques have been developed for its topological simplifica-
tion [NN11,BWN*15]. A relevant concept is Pareto sets [HG15].

Multi-parameter persistence is an active area of research,
where previous results surrounding the indecomposables of multi-
parameter persistence modules have been largely theoretical
(see [CZ09, Les12] for relevant readings). Multi-parameter ver-
sions of barcodes and their variants are actively researched, see
recent results on multi-parameter persistence landscapes [Vip20]
and persistence images [CB20] respectively. Noticeably, the soft-
ware RIVET [The20] computes barcodes from “slices”" from 2-
dimensional persistence modules.

4. Comparative Measures for Topological Descriptors

Comparing scalar fields using their topological descriptors is an
important tool in the study of scientific data. Defining and comput-
ing these comparative measures give rise to interesting problems
both in theory and in practice. In this section, we review various
definitions of comparative measures for topological descriptors be-
fore discussing their applications in visualization in Sect. 6, Sect. 7,
and Sect. 8. We defer the discussion on their mathematical and
computational properties to Sect. 9. We give formal definitions in
the forms of equations for some of the well-known comparative
measures. We give informal descriptions for their variants. We de-
fer detailed discussions to later sections for comparative measures
designed specifically for visualization tasks, which oftentimes are
coupled with heuristics and/or data-dependent modifications.

Before diving into the technical descriptions of these compara-
tive measures, we would like to discuss the different origins and
motivations behind these developments. For instance, compara-
tive measures for persistence diagrams, such as the bottleneck
and Wasserstein distances, are related to optimal transport [Vil03].
Functional distortion distances for Reeb graphs are the continu-
ous version and a constant factor approximation of the extended
Gromov-Hausdorff distances, a classic tool from the study of met-
ric spaces; while interleaving distances originate from the algebraic
study of persistence modules. Kernels for persistence diagrams in-
terface with kernel methods for machine learning. The persistence
scale-space kernel takes inspirations from the scale-space theory in
signal processing, while persistence Fisher kernel is derived from
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information theory. Each comparative measure enjoys a set of de-
sirable properties (Sect. 9) and is suited for a specific collection
of analysis and visualization tasks (Sect. 6, Sect. 7, and Sect. 8),
which motivated its development in the first place.

In the following sections, D represents a persistence diagram and
its variants (persistence landscape and persistence image), 7 rep-
resents a tree-based descriptor, G represents a graph-based descrip-
tor, and M represent complex-based descriptors, including Morse
and Morse-Smale complexes. We emphasize the function as labels
when a comparative measure explicitly encodes information from
the function (e.g., T¢, Tg), and we use numeric labels (e.g., D1, D3)
otherwise.

4.1. Comparing Persistence Diagrams and Their Variants

We review classic distances between persistence diagrams, namely,
bottleneck and p-Wasserstein distances, as well as distances be-
tween their variants, such as p-landscape distances. We also include
kernels defined on persistence diagrams that interface with machine
learning.

Bottleneck and Wasserstein distances. To compare persistence
diagrams, the bottleneck distance [CSEH07,EH08] and the Wasser-
stein distance [CSEHM10] are well established and widely used,
for instance, in similarity estimation [HZLR20] and machine learn-
ing tasks [Bub15,ZW19].

Definition 1 [EHOS, Bottleneck distance] Given two persistence
diagrams D;, D, and a bijection 1 : D; — D;, the bottleneck dis-
tance between D) and D; is defined as

doo(D1, D)= inf  sup [x—n(llee. (D
N:D1—DyxeD)

Definition 2 [CSEHMI10, p-Wasserstein distance] The p-
Wasserstein distance is defined as
»
dp(D1,Dy)=| inf Y [x—n@)|% 2

N:D;—D,yxeD,

While Eq. 2 is a typical notion in the literature, Turner et
al. [TMMH14] discuss a more general formulation by introducing
a second parameter (i.e., g) to Eq. 2 that specifies the degree of the
point-wise norm; that is, by replacing L> norm in Eq. 2 with a LY
norm; where ¢ = 2 in [TMMH14].

Kernels for persistence diagrams. Since persistence diagrams do
not have the structure of an inner product space (i.e. Hilbert space),
various kernels have been introduced to interface persistence dia-
grams with kernel-based machine learning models such as kernel
support vector machines (SVMs). An intuitive way to think about
kernels for SVMs is that kernels are similarity functions for a pair
of objects. A number of kernels exist for persistence diagrams,
such as the persistence scale-space kernel [RHBK15], the persis-
tence weighted Gaussian kernel [KFH17], the sliced Wasserstein
kernel [CCO17], and the persistence Fisher kernel [LY 18], denoted
as Kg, Kg, Kw and KF, respectively.

Let Dy and D, denote two k-dimensional persistence diagrams.

The persistence scale-space kernel [RHBK15] Ky is defined as

llp—all Ilp—3ll
— 87 e % —e¢ % , (3)
no PED1,9€D;

Ks(D1,D,,0)

where V ¢ = (b,d) € D,, we define g = (d,b), that is, G is a re-
flection of g along the diagonal A; ¢ is bandwidth of the Gaussian
kernel.

The persistence weighted Gaussian kernel (PWGK) [KFH17]
K¢ is defined as
_lp=ql?
KG(Dy,D,0) = wip)w(g)e =, (4
PED14€D,
where w(p) is the weight assigned to the point p. Kusano et
al. [KFH17] suggest w(p) = arctan(C(d — b)") as the weight for
p = (b,d), where C is a positive constant for practical purposes,
and 7 is assumed to be greater than the dimension of the underlying
space.

Given a unit vector 8 in R?, let L(8) = {A8 | A € R} denote the
line and (6, p) denote the orthogonal projection of point p on the
line L(0). To compute the sliced Wasserstein kernel [CCO17], we
first augment persistence diagram D; with the orthogonal projec-
tion of points in D, onto the diagonal (denoted as DIA) and vice
versa (denoted as D5) to obtain two new sets D} and Dj. That is,
D} =D, UD5 and Dj = D, UD?. The sliced Wasserstein distance
between these two sets is approximated as

| M
j=1
where M is the number of directions, 8; = jn/M — n/2 and
V(D7,8;) is the vector of dot products < p,8; > of all points
p € DY. The sliced Wasserstein kernel is then computed as

—SW(D{, D5 M)

Kw(D{,D3,M)=e¢ = | (6)

Given an k-dimensional persistence diagram D and a bandwidth
6 > 0, we can define a smooth, normalized measure

pp = {; ¥ Nsuol) ™

ueD

x€0

over a given set ®, where [ is the identity matrix, N is a Gaussian
function, and Z = [g Y,,ca N(x;u,0l)dx. Note that if © is the entire
Euclidean space R?, then pp is a probability distribution similar to
the case of persistence images [AEK* 17]. Given two k-dimensional
persistence diagrams D; and D,, we obtain two new sets D] and
D5 by augmenting D with the orthogonal projection of points of
D, on the diagonal and vice versa. For these two sets, the persis-
tence Fisher kernel [LY 18] is defined as

Kp (D1, Dy) = ¢ "r(P1P3) ®

where t > 0 is a scalar parameter and dF is the Fisher information
metric defined as follows:

ar (D7 23) =areeos ([ \fooy W) pos ) )
Comparing variants of persistence diagrams. Both persistence
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landscapes and persistence images (as well as the persistence-based
feature vectorizations [LWA*17]) can be used in machine learning
algorithms such as SVMs under a Euclidean metric (e.g., L*orL? ).

Definition 3 [Bubl5, p-landscape distance] If A; and A, are the
persistence landscapes corresponding to persistence diagrams D)
and D,, the p-landscape distance is

Ap(D1,D2) = [|M —22lp- (10)

Rieck et al. [RSL20b] defined a family of distances for Betti
curves (also called the persistence indicator functions), as well as
corresponding kernels in order to use Betti curve in machine learn-
ing algorithms. Zhao and Wang [ZW19] introduced a weighted-
kernel for persistence images (WKPI), its induced distance, and a
metric-learning framework to learn the weights (and kernel) from
labeled data. The persistent homology transform (PHT) introduced
by Turner et al. [TMB14] comes with a distance measure, re-
ferred to as the PHT distance, which captures similarity between
shapes in shape classification. The inter-level set persistence hier-
archies (ISPHs) [RSL17,RSL20b] are directed trees, whose simi-
larity can be measured by the edit distance (see Sect. 4.2).

4.2. Comparing Reeb Graphs and Their Variants

A number of metrics have been proposed for Reeb graphs and
their variants such as merge trees, including functional distor-
tion distance [BGW14, BMW15], edit distance [BFL16, BLM20,
SMKN20], interleaving distance [CCSG*09, MBW 13, DSMP16,
MS19], distances based on branch decompositions and match-
ing [BYM*14, SSW14], and metrics for phylogenetic trees
[CMR*13].

Functional distortion distances. Inspired by the Gromov-
Hausdorff (GH) distance for measuring metric distortions, Bauer et
al. [BGW14] introduced the function distortion distance for Reeb
graphs. Let f and g be two real-valued functions on topological
spaces X and Y (the technical requirements are tame functions), to-
gether with maps @ : X — Y and y: Y — X. Let G and G, be the
two Reeb graphs. Define

Clo,y) ={(x,0(x)) |[x€ Gt U{(W(»).y) [y€Ge}, (1D

1
D((Pv‘V) = sup §|df(x7x/)7dg(yvyl)|' (12)

(62),(x"y ) EC(9,W)
C(9,V) captures the set of correspondences between Gy and Gg
induced by maps ¢ and y.

Definition 4 [BGW 14, Functional distortion distance] The func-
tional distortion distance between two Reeb graphs, drp(Gy,Gy)
is defined to be

dFD(gf7gg) :(lpn\lt;max{D((P7W)a||f780(')”007 Hg*fo\VHoo}
(13)

Here, ¢ and  are all continuous maps between G and Gq.

Edit distances. We begin with edit distances for trees, since con-
tour trees and merge tree