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Appendix A: Supplemental material

Optimal calibration scalings and shifts

Let f denote the objective function in (9). Firstly, setting the partial
derivative of f with respect to βi equal to 0 we have:

∂ f
∂βi

= 2
N

∑
j=1

(
αipT

j vi +βi − x j,i
)
= 0.

Solving for βi yields (11):

βi = x̄i −
αi

N

N

∑
j=1

pT

j vi.

Secondly, setting the partial derivative of f with respect to αi
equal to 0 we have:

∂ f
∂αi

= 2
N

∑
j=1

(
αipT

j vi +βi − x j,i
)
pT

j vi = 0.

Simplifying and incorporating the expression for βi we have:

αi

N

∑
j=1

(pT

j vi)
2+

(

x̄i −
αi

N

N

∑
j=1

pT

j vi

)(
N

∑
j=1

pT

j vi

)

−
N

∑
j=1

x j,i(pT

j vi)= 0.

Finally, solving for αi yields (10):

αi =

N

∑
j=1

x j,i(pT

j vi)− x̄i

N

∑
j=1

pT

j vi

N

∑
j=1

(pT

j vi)
2 −

1
N

(
N

∑
j=1

pT

j vi

)2 .

Identical approximation accuracy for OSC and ARA when
applying CAL

Proposition 1 Consider applying CAL on an OSC plot with matrix
V⊥, and an ARA plot with matrix V. If V⊥ and V span the same
subspace (i.e., if R(V)=R(V⊥)), the estimates x̂ j,i =αi(pT

j vi)+βi
are identical in both plots, where vi denotes the i-th axis vector in
either method.

Proof The proposition holds since the dot products pT

j vi are the
same in both methods, which also implies that CAL will find iden-
tical values of αi and βi for a given data set X. The values pT

j vi are
the entries of the vector of dot products Vp, which is the orthogonal
projection of the data sample x j onto R(V), and therefore identical
in both methods.
For example, in ARA we have:

Vp = V(VTV)−1VTx,

while in OSC:

V⊥p = V⊥VT

⊥ x = V⊥(VT

⊥ V⊥)
−1VT

⊥ x.

Recall that A(ATA)−1ATx is the orthogonal projection of x onto
R(A). Since we have assumed that R(V) = R(V⊥) it follows that
Vp = V⊥p.

Solutions for optimal axes

In this section we show that the solutions to (13) are given by (14)
and (15).

Firstly, the objective function in (13) can be rewritten as:

fi(vi,γi) =
N

∑
j=1

(
pT

j vi + γi − x j,i
)2

= ‖Pvi + γi1−xi‖
2

= (Pvi + γi1−xi)
T(Pvi + γi1−xi)

= vT

i PTPvi −2vT

i PTxi +2γivT

i PT1

+Nγ2
i −2γixT

i 1+xT

i xi,

where P is the N ×2 matrix of plotted points (not necessarily cen-
tered), 1 is a vector of N ones, and xi is the N-dimensional vector
of attribute values for the i-th data variable.

The partial derivatives with respect to γi and vi are:

∂ fi
∂γi

=−2vT

i PT1+2Nγi +2xT

i 1, (23)

and

∂ fi
∂vi

= 2PTPvi −2PTxi −2γiPT1. (24)

Setting (23) to 0 yields:

γi =
1
N
(xT

i −vT

i PT)1 =
1
N

1T(xi −Pvi)

=
1
N

N

∑
j=1

(
x j,i −pT

j vi
)
= x̄i −

1
N

N

∑
j=1

pT

j vi. (25)

Substituting the expression for γi in (24) and setting the partial
derivative to 0 yields:

PTPvi −PTxi −
1
N

1T(Pvi −xi)PT1 = 0.

Since 1TPvi and 1Txi are scalars we can write the equation as:

PTPvi −PTxi −
1
N

PT11TPvi +
1
N

PT11Txi = 0,

PT(I−
1
N

11T)Pvi = PT(I−
1
N

11T)xi,

where I is the N ×N identity matrix. Additionally, I− (1/N)11T is
the well-known “centering” matrix, which is symmetric and idem-
potent. Thus, we can rewrite the previous equation as:

PT

c Pcvi = PT

c xi,

where Pc = (I− (1/N)11T)P is the centered version of P (i.e., its
column sums are 0). Also, note that the data samples can also be
centered, in which case the embedded points of any linear transfor-
mation will also be centered. Finally, assuming Pc has rank 2 we
have:

vi = (PT

c Pc)
−1PT

c xi = P†
cxi.
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Identical approximation accuracy for SC, OSC, and ARA
when applying OPT

Proposition 2 Let X represent an N × n data matrix, V an n× 2
matrix of full column rank, and M a 2 × 2 invertible matrix. In
addition, let P denote the N×2 matrix that is the result of mapping
the N data samples of X linearly onto a plane through the matrix
VM. In other words:

P = XVM. (26)

Furthermore, let V∗ = P†X denote a matrix of enhanced axis vec-
tors as defined in (16). Finally, let PVT

∗ represent approximations
of data samples in X by projecting the N embedded points in P
orthogonally onto the enhanced axes, as defined in biplots or ARA
plots (i.e., the approximations are the dot products between the em-
bedded points and the enhanced axis vectors). In that case, the ap-
proximations PVT

∗ do not depend on M.

Proof Firstly, V∗ = P†X = [XVM]†X. Thus, we can express the
approximations as:

PVT

∗ = XVM(MTVTXTXVM)−1MTVTXTX.

Since (AB)−1 = B−1A−1 for m×m invertible square matrices A
and B, we can rewrite the approximations as:

PVT

∗ = XVMM−1(VTXTXV)−1(MT)−1MTVTXTX
= XV(VTXTXV)−1VTXT = (XV)(XV)†X.

Thus, they do not depend on matrix M.

Corollary 1 Let X represent an N×n data matrix, V an n×2 matrix
of full column rank, and V⊥ and orthogonal matrix with the same
range as V. In addition, consider mapping the data samples in X
onto a plane with SC, ARA and OSC, through (2), (7), and (3),
respectively. The approximations of X resulting from projecting the
embedded points orthogonally onto enhanced labeled axes, as they
are defined in biplots or ARA plots, and which are obtained through
(16), are identical for the three methods.

Proof The mappings for SC, ARA and OSC all have the form in
(26). In particular, for SC M = I, for ARA M = (VTV)−1, and
for OSC M = B, where V⊥ = VB. Therefore, due to Prop. 2, the
approximations when using the enhanced axes are identical for the
three methods.

Solution for θ ∗

We now show that the solution to (17) is given by (18). Firstly,
recall that P = XV is the set of embedded points prior to perform-
ing the scaling by θ , and Pc = CXV contains the corresponding
centered points, where C = I − (1/N)11T is the symmetric and
idempotent centering matrix. Similarly, we denote the set of em-
bedded points after performing the scaling as Pθ = θXV, while
Pθ

c = θCXV is its centered version.

The objective function of the optimization problem can be writ-

ten as:

f (θ) = ‖θV−Vθ
∗ ‖

2
F = ‖θVT− (Pθ

c )
†X‖2

F

= ‖θVT− (θCXV)†X‖2
F

= ‖θVT− (θ 2VTXTC2XV)−1θVTXTCX‖2
F

= ‖θVT−
1
θ

P†
cX‖2

F = ‖θVT−
1
θ

VT

∗ ‖
2
F

= tr

[(

θVT−
1
θ

VT

∗

)
T
(

θVT−
1
θ

VT

∗

)]

= θ 2tr(VTV)−2tr(VT

∗V)+
1

θ 2 tr
(
VT

∗V∗
)

= θ 2‖V‖2
F −2tr(VT

∗V)+
1

θ 2 ‖V∗‖
2
F,

where tr denotes the trace of a matrix. Setting its derivative equal
to zero yields:

f ′(θ) = 2θ‖V‖2
F −

2
θ 3 ‖V∗‖

2
F = 0.

Finally, solving for θ we have:

θ∗ = 4

√

‖V∗‖2
F

‖V‖2
F

=

√

‖V∗‖F

‖V‖F
.

Relationship between accuracy and axis vector length in ARA

There is a direct relationship between approximation accuracy and
axis vector length in ARA plots. Since integers on the i-th line axis
are located at multiples of 1/‖vi‖, they appear closer to each other
for larger axis vectors. This implies that a variation in p in the direc-
tion of a large axis vector will cause a larger approximation error
for the variable. Thus, the method will primarily focus on mini-
mizing the approximation errors for variables with larger axis vec-
tors. In Fig. 9 we illustrate this effect by comparing an initial ARA
plot to another in which we have enlarged one axis vector. The ex-
ample is based on the standardized Breakfast cereal data set used
in [YMSJ05], but have labeled the axes with original data values. In
this case, when an axis vector associated with Calories is stretched
the plotted points appear more compacted in the direction of the
axis (in SC the effect would be the opposite). Furthermore, the
corresponding approximations are more accurate. Thus, the plotted
points appear better ordered in the direction of the axis, as can be
seen through the color coding of the dots, which represents caloric
content.
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Figure 9: Direct relationship between accuracy and axis vector
length in ARA plots. In this example the only difference between the
ARA plots in (a) and (b) is that the axis vector associated with the
variable Calories is longer in the latter. This compresses the plotted
points along the direction of the axis in (b), and improves the ap-
proximation accuracy for Calories. In particular, observe (through
the color coding) that the points appear better ordered with respect
to caloric content along the direction of the axis.

Decomposition of the estimation errors εi

The objective function in (13), denoted here as εi can be rewritten
as follows:

εi =
N

∑
j=1

(
pT

j v∗i + γ∗i − x j,i
)2

= ‖Pv∗i +1γ∗i −xi‖
2

=

∥
∥
∥
∥

PP†
cxi +1

(
1
N

1Txi −
1
N

1TPP†
cxi

)

−xi

∥
∥
∥
∥

2

=

∥
∥
∥
∥
(I−

1
N

11T)PP†
cxi − (I−

1
N

11T)xi

∥
∥
∥
∥

2

= ‖(PcP†
c −C)xi‖

2

= xT

i (PcP†
c −C)T(PcP†

c −C)xi

= xT

i (C−PcP†
c)xi = xT

i Cxi −xT

i PcP†
cxi

= Nσ2
i −xT

i CPcP†
cCxi

= Nσ2
i −xT

c,iPcP†
cxc,i.
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Figure 10: In RadViz increasing the value of a data variable causes
the plotted points to move towards the anchor point v associated
with the variable. On average we assume that we should expect to
find greater values for the variable in the direction (d) from the
origin towards v.
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Figure 11: Histograms of Pearson correlations (r) between the
length of an optimal axis vector and the estimation error, and the
variance, of the associated variable, for the data used in the Rad-
Viz example in Sec. 3.2.4. The variables were first normalized to lie
in [0,1], and afterwards for each sample we divided each attribute
by the sum of all of the attributes. Since each variable has a differ-
ent variance, ‖vi‖ is usually positively correlated with σ 2

i , but not
necessarily with εi.

Effect of increasing an attribute in RadViz

Figure 10 shows the effect of increasing an attribute value in Rad-
Viz. The plotted point moves towards the anchor associated with
the corresponding variable. We assume that on average the data
values for a variable should increase in the direction (d) from the
origin to the anchor point v.

Correlations related to ‖vi‖ for the RadViz example

In the RadViz example (see Sec. 3.2.4) the length of the opti-
mal vectors predominantly reflects the variance of the variables. In
Fig. 11 we show distributions of correlations between ‖vi‖, and εi
and σ2

i , for the 7!/2 different orderings of the eight variables (dis-
carding rotations and reflections). The vector lengths usually have
a strong positive correlation with the variable variances. In this ex-
ample the variance for Palmitic is 0.0009, which is at least twice as
small as the rest of the variances, which explains the short length
of the Palmitic axis vector in Fig. 6.
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Discarding offset shifts in the objective functions

The objective functions of the optimization problems considered in
this paper have the following form:

f = ‖PVT−X+1δT‖2
F, (27)

where the variables related to the axis vectors appear in V and P.
Also, assume V, P, and δ are or contain optimal solutions. In that
case δ is (see the derivation of (25)):

δ = x̄−Vp̄ =−(VW− I)x̄,

where x̄ and p̄ are the mean of the data and plotted points, respec-
tively. Additionally, W = VT for SC, and W = V† for ARA. Sub-
stituting in (27) we can rewrite the objective function as:

f = ‖VPT−XT+δ1T‖2
F

= ‖VWXT−XT− (VW− I)x̄1T‖2
F

= ‖(VW− I)XT− (VW− I)x̄1T‖2
F

= ‖(VW− I)(XT− x̄1T)‖2
F.

If we apply a translation s to the data, the new data matrix would
become X+1sT, while the new mean would be x̄− s. In that case,
f would not change:

f = ‖(VW− I)(XT+ s1T− (x̄− s)1T)‖2
F

= ‖(VW− I)(XT− x̄1T)‖2
F.

Thus, we obtain the same value for the objective function using
centered data:

f = ‖WVT−Xc +1δT‖2
F.

However, for centered data δT = 0. Thus, the optimum value of the
objective function is:

f = ‖WVT−Xc‖
2
F,

which implies that we obtain the same optimum axis vectors (as in
(27)) solving the optimization problems on centered data but dis-
carding the term involving δ .

Optimal scaling of a single axis vector

Table. 2 shows the derivation of the solution to (20) for SC.

Gradient of the objective function in (22) for SC

Table. 3 shows the derivation of the gradient of the objective func-
tion ( f ) in (22) for SC.
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The objective function in (20) for SC can be rewritten as follows:

P(λ ) =
N

∑
j=1

∥
∥
∥
∥

[
Ṽ

λvn

]

p j −x j

∥
∥
∥
∥

2
=

N

∑
j=1

∥
∥
∥
∥
∥

[
Ṽ

λvn

][
Ṽ

λvn

]
T

x j −x j

∥
∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
ṼṼT λ Ṽvn

λvT

n ṼT λ 2vT

n vn

]

x j −x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

([
ṼṼT λ Ṽvn

λvT

n ṼT λ 2vT

n vn

]

− I
)

x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
ṼṼT− I λ Ṽvn
λvT

n ṼT λ 2vT

n vn −1

]

x j

∥
∥
∥
∥

2

=
N

∑
j=1

xT

j

[
ṼṼT− I λ Ṽvn
λvT

n ṼT λ 2vT

n vn −1

]2

x j

=
N

∑
j=1

[
x̃T

j x j,n
]
[

(ṼṼT− I)(ṼṼT− I)+λ 2ṼvnvT

n ṼT λ (ṼṼT− I)Ṽvn +λ 3ṼvnvT

n vn −λ Ṽvn
λvT

n ṼT(ṼṼT− I)+λ 3vT

n vnvT

n ṼT−λvT

n ṼT λ 2vT

n ṼTṼvn +λ 4(vT

n vn)
2 −2λ 2vT

n vn +1

][
x̃ j

x j,n

]

=
N

∑
j=1

(

x̃T

j (ṼṼT− I)(ṼṼT− I)x̃ j +λ 2x̃T

j ṼvnvT

n ṼTx̃ j +λ x̃T

j (ṼṼT− I)Ṽvnx j,n +λ 3x̃T

j ṼvnvT

n vnx j,n −λ x̃T

j Ṽvn

+λx j,nvT

n ṼT(ṼṼT− I)x̃ j +λ 3x j,nvT

n vnvT

n ṼTx̃ j −λx j,nvT

n ṼTx̃ j +λ 2x j,nvT

n ṼTṼvnx j,n +λ 4(vT

n vnx j,n)
2 −2λ 2x j,nvT

n vnx j,n + x2
j,n

)

=
N

∑
j=1

(

λ 4(vT

n vnx j,n)
2 + 2λ 3x̃T

j ṼvnvT

n vnx j,n + λ 2(x̃T

j ṼvnvT

n ṼTx̃ j +(vT

n ṼTṼvn −2vT

n vn)x2
j,n
)

+2λ x̃T

j (ṼṼT−2I)Ṽvnx j,n + x̃T

j (ṼṼT− I)(ṼṼT− I)x̃ j + x2
j,n

)

.

Differentiating the polynomial yields:

P′(λ ) = 4λ 3
N

∑
j=1

(vT

n vnx j,n)
2 + 6λ 2

N

∑
j=1

x̃T

j ṼvnvT

n vnx j,n + 2λ
N

∑
j=1

(
x̃T

j ṼvnvT

n ṼTx̃ j +(vT

n ṼTṼvn −2vT

n vn)x2
j,n
)
+ 2

N

∑
j=1

x̃T

j (ṼṼT−2I)Ṽvnx j,n.

Table 2: Derivation of the solution to (20) for SC.
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Firstly, the objective function in (22) for SC can be rewritten as follows:

fSC(vn) =
N

∑
j=1

∥
∥
∥
∥

[
Ṽ
vT

n

]

p j −x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
Ṽ
vT

n

]
[
ṼTvn

]
x j −x j

∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
Ṽ
vT

n

]
[
ṼTvn

]
XT−XT

∥
∥
∥
∥

2

F
=

∥
∥
∥
∥

([
Ṽ
vT

n

]
[
ṼTvn

]
− I
)

XT

∥
∥
∥
∥

2

F
,

where I is the n×n identity matrix. Furthermore, we can express [ṼTvn] as follows:

[ṼTvn] = VT∆+vnζT, (28)

where ∆ is an n×n diagonal matrix whose entries are all 1, except its n-th component, which is 0. Also, ζ is a n×1 vector whose components
are all 0, except its n-th entry, which is 1. We will use (28) to rewrite fSC(vn) as follows:

fSC(vn) =
∥
∥
[
(∆V+ζ vT

n )(V
T∆+vnζT)− I

]
XT
∥
∥2

F =
∥
∥
[
(∆VVT∆+∆VvnζT+ζ vT

n VT∆+ζ vT

n vnζT

︸ ︷︷ ︸

E

)− I
]
XT
∥
∥2

F.

Expressing the Frobenius norm as a trace yields (note that matrix the n×n matrix E is symmetric):

fSC(vn) = tr
[
X(E− I)2XT

]
= tr

[
X(E2 −2E+ I)XT

]
= tr

[
XE2XT

]
−2tr

[
XEXT

]
+ tr
[
XXT

]
. (29)

The last term in (29) does not depend on vn and is therefore irrelevant for the gradient. Thus, we will proceed by expanding the first two
terms, using the following identities:

∆2 = ∆, ζTζ = 1, ∆ ·ζ = 0, VT∆V = ṼTṼ, X∆V = X̃Ṽ, and Xζ = xn,

where X̃ is the matrix composed of the first n−1 columns of X, and xn is the n-th column of X.
Firstly,

−2tr[XEXT] =−2tr[X∆VVT∆XT]−4tr[Xζ vT

n VT∆XT]−2tr[Xζ vnvT

n ζTXT] =−2tr[X̃ṼṼTX̃T]−4tr[xnvT

n ṼTX̃T]−2tr[xnvnvT

n xT

n ]

=−2tr[X̃ṼṼTX̃T]−4tr[vT

n ṼTX̃Txn]−2tr[xT

n xnvnvT

n ] =−2tr[X̃ṼṼTX̃T]−4vT

n a−2xT

n xnvT

n vn, (30)

where a = ṼTX̃Txn. Also, note that the first term does not depend on vn and is therefore irrelevant for the gradient.
Secondly, we proceed by expanding tr[XE2XT]. Since E has four terms, E2 has 16, but eight of them cancel due to ∆ · ζ = 0. Also, some
terms appear twice. In particular, we have:

tr[XE2XT] = tr[X∆VVT∆2VVT∆XT]+2tr[Xζ vT

n VT∆2VVT∆XT]+ tr[X∆VvnζTζ vT

n VT∆XT]

+ tr[ζ vT

n VT∆2VvnζT]+2tr[Xζ vT

n vnζTζ vT

n VT∆XT]+ tr[Xζ vT

n vnζTζ vT

n vnζTXT]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[xnvT

n ṼTṼṼTX̃T]+ tr[X̃ṼvnvT

n ṼTX̃T]+ tr[xnvT

n ṼṼTvnxT

n ]+2tr[xnvT

n vnvT

n ṼTX̃T]+ tr[xnvT

n vnvT

n vnxT

n ]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[vT

n ṼTṼṼTX̃Txn]+ tr[vT

n ṼTX̃TX̃Ṽvn]+xT

n xntr[vT

n ṼṼTvn]+2tr[vT

n vnvT

n ṼTX̃Txn]+xT

n xntr[vT

n vnvT

n vn]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[vT

n Da]+ tr[vT

n Cvn]+xT

n xntr[vT

n Dvn]+2tr[vT

n vnvT

n a]+xT

n xntr[vT

n vnvT

n vn]

= tr[X̃ṼṼTṼṼTX̃T]+2(vT

n Da)+vT

n Cvn +xT

n xn(vT

n Dvn)+2(vT

n vnvT

n a)+xT

n xn(vT

n vn)(vT

n vn), (31)

where D = ṼTṼ, and C = ṼTX̃TX̃Ṽ, which are both symmetric.
Substituting (30) and (31) in (29) we have:

fSC(vn) =−4vT

n a−2xT

n xnvT

n vn +2vT

n Da+vT

n Cvn +xT

n xnvT

n Dvn +2vT

n vnvT

n a+xT

n xnvT

n vnvT

n vn

+ tr[XXT]−2tr[X̃ṼṼTX̃T]+ tr[X̃ṼṼTṼṼTX̃T],

where the terms involving traces do not depend on vn and are therefore irrelevant for computing the gradient of the function.
Finally, taking the derivative with respect to vn yields:

∇ fSC(vn) =−4a−4xT

n xnvn +2Da+2Cvn +2xT

n xnDvn +4vnvT

n a+2vT

n vna+4xT

n xnvnvT

n vn

= 2Cvn +2vT

n vna+
(
2D−4I+4vnvT

n
)(

a+xT

n xnvn
)
,

where we have used the following rules:

∂xTb
∂x

= b,
∂xTAx

∂x
= (A+AT)x,

∂xTxxTb
∂x

= 4xxTb+2xTxb, and
∂xTxxTx

∂x
= 4xxTx,

where x,b ∈ R
n, and A ∈ R

n×n.

Table 3: Derivation of the gradient of the objective function in (22) for SC.
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