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Figure 1: The layout of dimensions and categories significantly influences the appearance of Parallel Sets. We show five different arrange-
ments of the Titanic dataset [Daw95], ordered according to the Overlap metric, showing decreased clutter and improved readability from
left to right. The lines represent the values for five metrics for each of the Parallel Sets visualizations, measuring different visual properties.

Abstract
While there are many visualization techniques for exploring numeric data, only a few work with categorical data. One promi-
nent example is Parallel Sets, showing data frequencies instead of data points - analogous to parallel coordinates for numerical
data. As nominal data does not have an intrinsic order, the design of Parallel Sets is sensitive to visual clutter due to overlaps,
crossings, and subdivision of ribbons hindering readability and pattern detection. In this paper, we propose a set of quality
metrics, called ParSetgnostics (Parallel Sets diagnostics), which aim to improve Parallel Sets by reducing clutter. These quality
metrics quantify important properties of Parallel Sets such as overlap, orthogonality, ribbon width variance, and mutual infor-
mation to optimize the category and dimension ordering. By conducting a systematic correlation analysis between the individual
metrics, we ensure their distinctiveness. Further, we evaluate the clutter reduction effect of ParSetgnostics by reconstructing six
datasets from previous publications using Parallel Sets measuring and comparing their respective properties. Our results show
that ParSetgostics facilitates multi-dimensional analysis of categorical data by automatically providing optimized Parallel Set
designs with a clutter reduction of up to 81% compared to the originally proposed Parallel Sets visualizations.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods;

1. Introduction

Nominal data is an inherent data type in many real-world datasets.
Examples include business intelligence, when assigning personnel
to tasks and resources, or inventory data, when describing product
qualities like color. However, most multi-dimensional visualization
techniques, such as scatterplot matrices [Har75,Cle86], parallel co-
ordinates [Ins85], and projections [CD18], are designed for numer-
ical data, where data values come with a meaningful scale or order-
ing. In contrast, nominal data does not have an intrinsic ordering

or distance between the values. Instead, it describes properties in
name only, requiring context for analysis. Frequency-based visual-
izations [Hof00, WLHS01, SB03] are a possible solution mapping
categorical variables to their corresponding frequencies. Yet, for
most techniques, the frequency information is often not visible or
imposes a hierarchical structure. On the other hand, solutions that
treat dimensions independently [RRBW03, TM03, JS98], mapping
categories to numbers, follow a continuous design model which
deviates from the discrete mental user model of the data [KBH06].
Parallel Sets visualization (ParSets) is a hybrid solution combin-
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ing the strengths of frequency-based designs with the independent
treatment of dimensions, which is essential for multi-dimensional
analysis of categorical data [BKH05, Kos10].

To support multi-dimensional analysis of categorical data, Paral-
lel Sets appropriate the layout of parallel coordinates [Ins85]. They
replace the polylines representing numerical data points with paral-
lelograms, called ribbons, representing the size and the frequency
of the categories. Parallel Sets serve as an interaction framework
used in various fields that require user-driven analysis of heteroge-
neous and multi-dimensional categorical data. Compared to other
visualization types, Parallel Sets offer fewer degrees of freedom
with respect to design considerations, making them a compelling
solution for the challenging representation of categorical data. In
contrast, Sankey diagrams [KS98] exhibit more degrees of free-
dom, such as placing dimension axes or sections of them freely
on the chart, while stacked bars can show the same data without
the explicit links between the individual values of each dimension.
However, as nominal data does not have an intrinsic order, the read-
ability of Parallel Sets depends on the chosen ordering of dimen-
sions, as well as the ordering of categories within each dimension.
Certain dimension and category orderings are more challenging to
read than others. Figure 2 shows two Parallel Sets of the same data.
The left Parallel Sets appears harder to read due to the high degree
of clutter. On the right, an alternative reordering with minimized
ribbon overlap has reduced clutter and is thus easier to read.

Figure 2: Two Parallel Sets of the Titanic dataset [Daw95]. The
right version has less ribbon overlap than the one on the left. It is
also easier to read because of the reduced amount clutter.

Identifying the optimal data representation of Parallel Sets can
be challenging. Parallel coordinates can apply to categorical data.
However, the frequency information is lost. For exploratory scenar-
ios, choosing an adequate Parallel Sets configuration for the dataset
is key to the understanding and knowledge gained in the process.
Manual reordering of dimensions is not always feasible due to the
large set of possible dimensions and category orderings. We note
that the number of possible configurations exceeds those of paral-
lel coordinates because the order of categories can be chosen freely.
There are |Cd |! possible orderings of a dimension axis, where Cd
are the dimension values of dimension d ∈ D. The dimension axis
themselves can be reordered and allow for |D|! orderings. Thus,
there are a total of |D|! ·Πd∈D|Cd |! possible Parallel Sets visualiza-
tions. Existing approaches focus on interaction [ZCYY19], which
requires user interaction and suffers from summarization that loses
information and imposes a biased first view [HD12] by reducing
the dimensionality and number of categories. Automatic solutions
to designing Parallel Sets do not sufficiently support data analysis
in fully exploratory scenarios because they limit the dimensionality

of the displayed subsets [AHZ∗14]. Thus, these approaches often
exclude possibly relevant information beforehand.

This paper contributes eight quality metrics. The metrics Over-
lap, Slope, Orthogonality, Number of Crossings, and Crossing An-
gle focus on the ordering of categories, while the metrics Number
of Ribbons, Ribbon Width Variance, and Mutual Information focus
on the ordering of dimensions. All metrics allow for the compari-
son and ranking of Parallel Sets to reduce clutter and improve their
readability. To develop these metrics, we formalized the geometric
properties of Parallel Sets. Additionally, we discuss the parame-
ters of Parallel Sets in the context of readability. We evaluate our
approach by applying our technique to six datasets from previous
publications, showing that ParSetgnostics improve their readability.
To make the acquired knowledge accessible while supporting the
creation of optimized Parallel Sets, we provide the ParSetgnostics
Explorer (dennig.dbvis.de/parsetgnostics). For reproducibility, we
make all our statistical analysis, results, and source code available
at osf.io/rwhf5. With this work, we hope to improve categorical
data visualization, especially for exploratory tasks.

2. Related Work

2.1. Improvements of Parallel Sets

Parallel Sets can be improved through visual approaches. These
techniques change the representation of ribbons to make them eas-
ier to follow. A common visual method for improving the readabil-
ity of Parallel Sets in this way is to curve the ribbons of Parallel
Sets [RWH∗16]. Another technique is to draw ribbons with a fixed
angle, called Common Angle Plots [HV13], yielding better read-
ability. This technique addresses the effects of a class of perceptual
illusions, called Müller-Lyer illusion [DS91, Gol14], where lines
appear to have a different distance or length. Our approach differs
from these techniques in that we propose a different layout of coor-
dinate axes and categories. Techniques changing the representation
of ribbons can be applied after our quality metrics have been used
to determine a useful dimension- and category ordering, further im-
proving the readability. There also exist a set of dimension order-
ing strategies for parallel coordinates [BZP∗20], which can apply
to Parallel Sets if modified. Parallel Sets can also be improved in
a semi-automatic way, using machine learning or statistical meth-
ods. The interactive approach by Zhang et al. [ZCYY19] uses as-
sociation rule mining to reduce the number of dimensions and cat-
egories, requiring user interaction. The approach by Alsakran et
al. [AHZ∗14] changes the layout and ordering of dimension axes
but restricts the dimensionality of the subgroups, i.e., ribbons, to
two dimensions. This approach simultaneously uses mutual infor-
mation [Sha48] to measure the dependence of two variables. Both
techniques remove dimension information or data from the visual-
ization. Our approach differs in that it does not remove any data
and does not restrict the dimensionality of the displayed ribbons
but tries to optimize a set of target properties.

2.2. Quality Metrics for Visualization Techniques

Screen-space quality metrics describe a set of metrics specifically
designed metrics or features that measure the quality of visualiza-
tion and can be used to optimize them for readability or quantify
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the appearance of specific patterns [BBK∗18]. They do not remove
any information from the visualization. They rather measure prop-
erties of the visualization, which can be used to compare and rank
them. Examples of those approaches are: Magnostics for matrix
visualizations [BBH∗17], Scagnostics for scatterplots [WAG05],
Pargnostics for parallel coordinate plots [DK10], Visualgnostics
projections of high-dimensional data [LKZ∗15], and Pixgnostics
for pixel-based visualizations [SSK06]. We contribute to this area
of information visualization by providing a set of eight metrics for
the quantification of visual properties of Parallel Sets. In this way,
we improve the quality of Parallel Sets without performing any
sampling or dimensionality reduction of the underlying data.

3. Parameters of Parallel Sets

In this section, we provide the necessary definitions to describe the
properties of Parallel Sets formally. We also discuss the parame-
ters of Parallel Sets in light of semi-automatic and fully automatic
reordering of dimensions and categories.

Figure 3: A Parallel Sets visualization showing a generic example
with four dimensions (A-D) and their respective categories (of car-
dinality two for dimensions A-C and four for dimension D).

3.1. Background

Parallel Sets are a visualization type for categorical data. An ex-
ample of a Parallel Sets visualization is shown in Figure 3. Par-
allel Sets show flow-paths that divide the flow into smaller and
smaller subsets at each dimension if a dimension splits the sub-
set into multiple categories. This introduces a direction or flow, in
the case of Figure 3 from top to bottom, while also increasing gran-
ularity with each dimension axis splitting the dataset into smaller
subsets. Every dimension is represented by an axis and a set of
ribbons. Each ribbon represents a subset defined by the categories
above and the one category connected to the following dimension
axis. Compared to parallel coordinates, the individual categories on
the dimension axis are not discrete points. Instead, the axis and the
width of the ribbon are proportional in size to their flow, i.e., the
number of data items with the corresponding categories they repre-
sent. They can be compared to stacked bars. However, stacked bars

only display dimensions that can show the same data without the
explicit links between. Sankey diagrams exhibit more degrees of
freedom, such as placing dimension axes or sections of them freely
on the chart.

3.2. Definitions

This work aims to optimize a Parallel Sets visualization by order-
ing the dimensions and categories to conform better to the design
considerations described in the following. We developed our met-
rics with the general idea of quality metrics for information visu-
alization described by Behrisch et al. [BBK∗18] in mind. With the
definition of a quality criterion (see Equation 1) provided in their
work, the problem is described formally:

arg min
max

φ∈Φ

q(φ|D,U,T ) (1)

D denotes the data, U the user, and T the task. φ denotes a specific
configuration of a visualization of the set of all possible configu-
rations of a given visualization type Φ. q describes a quality cri-
terion and argmax/minφ∈Φ optimization strategy. In this work, we
focus on defining quality criteria q for Parallel Sets visualizations,
i.e., a set of objective functions (see Section 4). We test our quality
metrics with six datasets, which in this definition corresponds to D
(see Subsection 5.1). The metrics can be task and user-dependent.
The user can choose which quality metrics he aims to minimize or
maximize or even how to weight them. It is also possible to limit
Φ by choosing a set of constraints, e.g., filtering or sampling. In
our work, we consider the task T to be an exploration task with
no prior knowledge of the specifics of the dataset. The result is φ,
in our case, the configuration of a Parallel Sets visualization, de-
fined by the order of dimensions D and the order of categories of
all dimensions CD for all dimensions D ∈ D.

The appearance of Parallel Sets depends on the ordering of the
dimensions. We define D as the ordered set of all dimensions of a
purely categorical dataset:

D := (D1,D2, . . . ,Di) (2)

Similarly, we define the ordering of the category values CDi of a
single dimension Di ∈ D as:

CDi := (C1
Di ,C

2
Di , . . . ,C

j
Di
) (3)

where C j
Di

is a single category in a specific dimension Di. This is
consistent with the tree-like structure of Parallel Sets [Kos10], sep-
arating the dataset into smaller subsets while descending the tree
levels, where each level represents a dimension axis Di. Ribbons
are representatives of edges between two levels, i.e., connections
between two adjacent dimension axes Dn and Dn+1. Thus, we can
define the possible ribbons R∗

n between two adjacent dimensions
for n ∈ [1, |D|−1] as:

R∗
n :=

n+1

×
i=1

CDi (4)

Since R∗
n denotes all possible ribbons between two dimensions, it

includes empty subsets. Parallel Sets do not visualize empty or non-
existent subsets. Thus, we remove such ribbons from the list by ver-
ifying that at least one entry exists that belongs to a subset defined
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by a ribbon r, i.e., |r|> 0. This yields the set of all existing ribbons
between two dimensions axes, which we define as:

Rn := {r | r ∈ R∗
n ∧|r|> 0} (5)

Finally, we can define the set of all existing ribbons R and analo-
gous the set of all possible ribbons R∗ as:

R :=
|D|−1⋃

i=1
Rn R∗ :=

|D|−1⋃
i=1

R∗
n (6)

3.3. Parameter Space

In the next section, we will discuss the specific parameters and
caveats of Parallel Sets related to the choice of the category and
dimension ordering, dataset-dependent properties, and ribbon pa-
rameters. We will use those parameters to explain our metrics de-
scribed in Section 4.

Selection of the first dimension: The analysis task is the deter-
mining factor for the axes ordering. The first dimension and its cat-
egories determine the ribbon color, and thus the main aspects the
analysis focuses on. In case there exists a formulated analysis ques-
tion or hypothesis, we suggest determining this dimension before-
hand or interactively. A partial ordering is possible. The user with
domain knowledge can decide best which dimensions are more im-
portant than others. In the case of an exploratory scenario, we sug-
gest a fully automatic approach, generating multiple clutter reduced
and readability improved versions with different axes orderings to
allow for an overview of the dataset. We suggest choosing the first
dimension based on the dimension with the highest entropy for a
fully automatic approach, thus focusing on the dimension with the
most significant amount of information. Thus, it is a dimension
with balanced category sizes. Dimensions with low entropy will
contain more categories of less size, making them hard to read.

Ordering of remaining dimensions: The following axes split the
ribbons into increasingly fine-grained subsets, each split accord-
ing to a dimension’s categories. With the increasing amount of rib-
bons, clutter is likely to increase. The strength of this effect is ul-
timately dependent on the dataset. We identified two effects on the
ribbons linked to this parameter: the number of ribbons and the rib-
bon widths. Firstly, the number of ribbons should be kept as low as
possible to avoid premature splitting into subsets. Secondly, the rib-
bon widths should be kept as large as possible to keep them easy to
follow. This properties is also influenced by the slope of the ribbon,
dependent on the ordering of categories.

In a fully automatic approach, the order can be determined by
three strategies: (1) Order the dimensions by ascending number
of categories, minimizing the number of ribbons. (2) Minimizing
the ribbon width, lowering the number of thin ribbons, which are
hard to perceive. (3) Ordering the dimension based on information-
theoretic property, such as mutual information [Sha48].

Ordering of categories: While there is no natural order among
nominal values and the order of categories on each dimension can
be chosen freely [BKH05], not every category ordering is intuitive,
useful, or supportive for exploratory or confirmatory data analysis.

Some category orderings lead to a high degree of clutter by in-
creasing the slope and overlap of ribbons. Therefore, the category
ordering can be optimized such that the Parallel Sets visualization is
readable and shows patterns inside the data, even with an increasing
amount of ribbons caused by splits according to dimension axes.
Since this parameter offers the most potential for improvement, five
of the eight metrics we define are sensitive to category reordering
and are designed to help analysts in their choice of dimension and
category ordering. However, given that some categorical data is or-
dinal, e.g., time, the sequence is fixed by the inherent order and
should not be changed.

Impact of number and size of categories: Dimensions with
many categories split the data into many small ribbons that are hard
to follow. Additionally, since the number of ribbons monotonously
increases with every dimension axis, this leads to an increased num-
ber of ribbons in every following dimension. The data distribution
is the determining factor, i.e., dimensions having a few categories
of equal size, or the many small categories or a mixture thereof.
The issue can be addressed by delaying splits yielding thin ribbons
to later dimensions, i.e., prioritizing dimensions with large equal-
sized categories. Such a dimension should be placed at the begin-
ning of the dimension ordering.

Influence of the distance between dimension axes: A short dis-
tance increases the slope of diagonal ribbons, which increases the
overlap of ribbons and clutter. Since ribbons are parallelograms,
this reduces the perceived width [PDK∗19]. In contrast, an exces-
sively large distance makes ribbons, especially thin ones, hard to
follow since they are visually less prominent due to their small
surface area. Additionally, it decreases the crossing angle of rib-
bons, which makes them also harder to follow [HHE08,WPCM02].
This parameter is ultimately dependent on the available screen-
space and its aspect ratio. Four category ordering-dependent met-
rics, namely Overlap, Slope, Orthogonality, Crossing Angle are
sensitive to this parameter. We fixed the distance between the di-
mensions for all our measurements.

Impact of ribbon width and plot width: The width of the ribbons
is dependent on the available plot space. In the case of a vertical rib-
bon flow, it depends on the plot width. For a horizontal ribbon flow,
it will depend on the plot height. The width of all ribbons remains
relative, as with the number of ribbons, the ribbons width decreases.
The plot size should be chosen accordingly. All ribbons, especially
those representing small subsets, should have a large enough width
such that they can be visually compared and easy to follow. With
increasing plot size, the distance between the dimension axes also
increases. Four of our category ordering-dependent metrics are sen-
sitive to this parameter. Thus, we also choose a constant plot size
for all our measurements.

Selection of ribbon colors: The ribbon color is not considered
by our metrics. However, we suggest choosing colors according
to common criteria, i.e., easy to differentiate colors [MJSK15,
BHH03]. Since the number of colors is equal to the number of cat-
egories of the first dimension, it is beneficial to reduce the num-
ber of colors by selecting a dimension with a low number of cate-
gories that is still pertaining to the analysis question. In exploratory
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Figure 4: This figure shows the geometric variables required for
our metrics. It shows two ribbons r1 and r2 between two dimension
axes. overlap(r1,r2) defines as their shared area. The angle α de-
notes the slope of a ribbon. An orthogonal ribbon has a slope of
α = 0. δ describes the crossing angle of r1 and r2. The width of a
ribbon is the distance of the intersections with a dimension axis.

tasks, we suggest a dimension with a category count no larger than
nine based on Miller’s Law [Mil56]. Parallel Sets are intrinsically
"2.5D," meaning that the ribbons can have an ordering along the
depth direction. The typical solution to avoid occlusion is to use
transparency to show the path and area of overlapping ribbons. In
this case, the colors of ribbons need to be chosen such that the
mixtures of colors produce a distinguishable color that still im-
plies which ribbons are crossing. If no transparency is used, we
suggest ordering the ribbon, such that the thinner ribbon is on top
of a thicker one to minimize occlusion.

4. Metrics for Parallel Sets

This section describes and discusses a set of eight quality metrics
that measure different properties of Parallel Sets. These properties
are dependent on the dimension and category ordering. These prop-
erties are either desirable or undesirable, and thus, our metrics can
be used to compare Parallel Sets and help adjust them to be more
readable and interpretable. For explanation and comparability, we
use the Titanic dataset [Daw95] to show-case their effects.

4.1. Category Ordering-dependent Metrics

We present five category ordering-dependent metrics, which means
that they are sensitive to the reordering of dimensions and individ-
ual categories of a dimension. Small changes in the order of cate-
gories can already have a large impact on the appearance of a Par-
allel Sets visualization. Three category ordering-dependent metrics
consider the relationships of pairs of ribbons between two dimen-
sion axes. We describe this set as follows:

Pi := {(r1,r2)|(r1,r2) ∈ Ri ×Ri ∧ r1 ̸= r2} (7)

The set Pi describes all possible pairs of ribbons between the di-
mensions Di and Di+1 and is required for the Overlap and Number
of Crossings and Crossing Angle metrics.

Overlap measures the overlapping area of all ribbons. A high
overlap is indicative of clutter since overlapping areas are harder
to interpret, since crossing ribbons are harder to follow [HHE08,

Overlap

0.07 0.12 0.18
Slope

28.99 41.60 51.77
Orthogonality

0.83 0.87 0.93
Number of Crossings

30 38 43
Crossing Angle

4.01 6.49 11.11
Lowest Median Highest

Figure 5: We show three Parallel Sets visualizations for each of the
five category ordering-dependent metrics: Overlap, Slope, Number
of Crossings, and Crossing Angle. We show the Parallel Sets cor-
responding to the lowest, median, and highest metric value. Lower
values signify less clutter and thus improved readability, presenting
a good starting point for exploratory data analysis.

WPCM02]. Furthermore, there is a connection to the slope of a rib-
bon as only sloped ribbons contribute to overlap. The overlap is
especially high if large subsets overlap in their ribbon representa-
tion. We formally describe this metric in Equation 8.

OVERLAP :=
1
A

|D|−1

∑
i=1

∑
(r1,r2)∈Pi

overlap(r1,r2) (8)

The set of tuples Pi defines all possible pairs ribbon between two
neighboring dimension axes the Parallel Sets. A denotes the area of
the Parallel Sets visualization. The factor 1

A allows for the compa-
rability of different Parallel Sets visualizations on different resolu-
tions. overlap(r1,r2) with r1,r2 ∈R defines the overlapping area of
two ribbons as described in Figure 4. The examples shown in Fig-
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ure 5 show the effects of reducing the overlap of ribbons yielding a
Parallel Sets visualization with a low degree of clutter.

Slope measures the average slope of all ribbons. A low aver-
age slope is preferable since ribbons that have a high angle to the
dimension axes are easier to follow [HHE08, WPCM02]. This is
grounded in the area preserving geometrical properties of parallel-
ograms. Highly sloped ribbons get thinner and longer [PDK∗19].
Only sloped ribbons contribute to overlap. The Slope metric dif-
fers from the Overlap metric in that it is not affected by the ribbon
width, meaning that the Slope metric is not weighting the slope by
the size of the subset that the ribbon represents. We formally de-
scribe this metric in Equation 9.

SLOPE :=
1
|R| ∑

r∈R
α(r) (9)

In this equation, the slope of a ribbon is denoted by angle α, which
is geometrically defined as depicted in Figure 4. The effects of min-
imizing the Slope metric can be observed in Figure 5. A low aver-
age slope reduces clutter, while high Slope introduces a noticeable
zigzag pattern which is hard to interpret.

Orthogonality leverages the concept to the Slope metric but
explicitly focuses on the orthogonality of ribbons. This focus re-
stricts the layout of ribbons to enforce a close to a perpendic-
ular angle to the dimension axis. This property increases read-
abilty [HHE08, WPCM02]. It measures the average number of rib-
bons with a slope α smaller than a threshold value τ. We formally
describe this metric in Equation 10.

ORTHOGONALITY :=
1
|R| ∑

r∈R

{
1 if α(r)> τ

0 otherwise
(10)

A group of ribbons that is perpendicular to the dimension axes
shows a categorical correlation. Therefore, we choose τ = 0. How-
ever, τ can be chosen with respect to the target orthogonality, such
that slightly sloped ribbons are also considered. In Figure 5, we can
see that enforcement of perpendicular ribbons, forming rectangles,
reduces clutter. In the example of the Titanic dataset [Daw95] it
improves the Parallel Sets visualization even more than the Slope
metric, significantly differing from it.

Number of Crossings measures the number of ribbon cross-
ings. This metric is analogous to the Number of Line Crossings
metric of the Pargnostics [DK10] metric set for parallel coordi-
nates. A high number of crossing produces similar patterns like dis-
similarity orderings for parallel coordinates, which can be used to
detect patterns [BZP∗20]. In Parallel Sets visualizations a high de-
gree of ribbon crossings can lead to visual clutter, making ribbons
hard to follow. This effect has been observed for parallel coordi-
nates [ED06]. Thus, a very high and very low value for Number of
Crossings can indicate an interesting Parallel Sets for exploratory
analysis. The value C in Equation 11 describes the absolute number
of crossings.

C :=
|D|−1

∑
i=1

∑
(r1,r2)∈Pi

{
1 if overlap(r1,r2)> 0
0 otherwise

(11)

We formally describe this metric in Equation 12, which provides a
relative number of crossing proportional to the number of ribbons
contained in a Parallel Sets visualization.

CROSSINGS :=
C
|R| (12)

The examples depicted in Figure 5 show that a minimization of the
number of crossings progressively reduces the amount of clutter. A
Parallel Sets visualization with a maximum number of is likely to
exhibit zigzag patterns.

Crossing Angle quantifies the average crossing angle of cross-
ing ribbons of a Parallel Sets visualization. This metric is motivated
by the Angels of Crossing metric of the Pargnostics [DK10] met-
ric set for parallel coordinates. A very high or very low angle of
crossing benefits the readability of the Parallel Sets visualization.
Ribbons crossing at a flat angle are hard to follow compered to rib-
bons crossing at close to right angles. This effect has already been
observed for lines [HHE08, WPCM02]. We formally describe this
metric in Equation 13.

CROSSINGANGLE :=
1
C

|D|−1

∑
i=1

∑
(r1,r2)∈Pi

δ(r1,r2) (13)

In this equation, the crossing angle of two ribbons is denoted by
angle δ. The factor 1

C based on Equation 12 provides a value rel-
ative to the total number of crossings. The concept of a crossing
angle and how it is described by δ is depicted in Figure 4. In the
examples shown in in Figure 5 this metric offers Parallel Sets vi-
sualizations with a low amount of clutter for a high and low value,
while the median exhibits a zigzag pattern and clutter. In general, a
high crossing angle is preferred since it supports readability.

4.2. Dimension Ordering-dependent Metrics

This section describes three dimension ordering-dependent metrics,
which means that they are only sensitive to the reordering of dimen-
sions and are not affected by changes in the order of categories of
any dimension axes. These metrics can be used to limit the search
space by fixing the order of dimension axes.

Number of Ribbons measures the number of ribbons. The
number of ribbons determine the number of ribbon splits accord-
ing to the categories of dimension axes. In general, a low number
of splits is preferable since a high number of ribbons increase the
likelihood of sloped and overlapping ribbons. Furthermore, splits
reduce the ribbon width, creating thin ribbons, which are hard to
follow. Thus, splits into subcategories should be avoided and only
occur where the analysis question requires it. The only exception is
when the analyst wants to determine the number of subsets created
by a specific category or dimension.

RIBBONS :=
|R|
|R∗| (14)

The equation measures the ratio of all exiting ribbons to all pos-
sible ribbons, allowing for comparability between different dimen-
sion orderings. The effects of minimizing the number of ribbons is
shown in Figure 6. A low amount of ribbons reduces clutter.
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Number of Ribbons

0.77 0.82 0.86
Ribbon Width Variance

1.16 1.52 1.81
Mutual Information

0.02 0.07 0.11
Lowest Median Highest

Figure 6: We show three Parallel Sets visualizations for each of the
three dimension ordering-dependent metrics: Number of Ribbons,
Ribbon Width Variance, and Mutual Information. The results shows
a reduction of clutter for a reordering of the dimensions, which can
serve as a basis for further improvements.

Ribbon Width Variance measures the variance of ribbon
widths. A low ribbon width variance is preferable, splits that create
very small categories should be delayed. Very broad ribbons hide
smaller ones. We calculate the standard deviation σ of the ribbons
widths, allowing for comparability of different Parallel Sets. To
avoid absolute widths, we define maxWidth = max({width(r) | r ∈
R}), which we use to normalize the ribbons widths. We formally
describe this metric in Equation 15.

WIDTHVARIANCE := σ({width(r)/maxWidth | r ∈ R}) (15)

The effect is shown in Figure 6. We found that a ribbon with vari-
ance can reduce clutter of Parallel Sets, showing that a uniform
ribbon width improves readability.

Mutual Information measures the average mutual informa-
tion of neighboring dimension axes. It was first proposed by Shan-
non [Sha48]. Mutual information measures the dependence be-
tween two variables, in the case of Parallel Sets, two neighboring
dimensions. It measures the amount of information gained about
one variable by observing another variable. Mutual information is
formally defined as:

MUTUALINFO :=
1

|D|−1

|D|−1

∑
i=1

I(CDi ,CDi+1)

where I(X ,Y ) := ∑
x∈X

∑
y∈Y

p(xi,yi) log2
p(xi,yi)

p(xi)p(yi)

(16)

In this equation, p(x,y) is the probability of the values x ∈ X and
y ∈ Y occurring together. Since mutual information only measures

the distribution of categories between two dimensions without con-
sidering the category ordering, it does not change by reordering
categories. Thus, it can only be used to determine an ordering of
the dimensions axes. It is used by Dasgupta and Kosara [DK10]
in the reordering of parallel coordinate axes and by Alsakran et
al. [AHZ∗14] where it is combined with binning or dimensionality
reduction. In Figure 6, this metric shows an improvement of read-
ability for high and low values. In general, it should be maximized
to improve visualizations.

4.3. Combining Quality Metrics

Our metrics can be combined since they measure different as-
pects of Parallel Sets. Two or more metrics can be minimized or
maximized simultaneously, or they can be optimized successively.
This especially applies to the combination of a dimension ordering
dependent-metric and a category ordering-dependent metric.

The order of categories of an axis in Parallel Sets is the most
flexible parameter. Therefore, we are free to maximize or minimize
the category ordering for one or multiple of the category ordering-
dependent metrics, each reducing different artifacts. They can also
be combined in frameworks for the weighting of features [PST∗17].

The ordering of dimensions is not as flexible as the ordering of
categories. The reasons are: (1) The number of dimensions is usu-
ally lower than the number of categories. (2) The categories of the
first dimension axis determine the ribbon colors, and thus, the pri-
mary target of analysis. (3) All remaining axes split the ribbons into
finer and finer subcategories according to their ordering. We sug-
gest minimizing the number of ribbons to reduce the possibility of
crossings and overlap. However, this may lead to thin ribbons in the
visualization. Alternatively, we propose to reduce the ribbon width
variance to avoid excessively thin or broad ribbons, which does
not enforce the minimum amount of ribbons. The mutual informa-
tion metric tries to place related dimensions close to each other,
independent of ribbon sizes. We propose the use of those types of
metrics as a filtering step.

5. Evaluation

To show the effectiveness of our approach, we perform a quanti-
tative evaluation based on visualizations used in previous publica-
tions. We perform single-metric and multi-metric optimizations of
the Parallel Sets visualizations and conduct a correlation analysis
to validate the distinctiveness of our metrics.

5.1. Reconstruction of Datasets from Parallel Set
Visualizations

To evaluate our approach, we performed a literature search with the
terms “Parallel Sets” and “ParSets”. Additionally, we performed a
forward search on the foundational publication on Parallel Sets by
Bendix et al. [BKH05], and Kosara et al. [KBH06]. Both searches
were performed using the digital libraries of ACM, IEEE, and Eu-
rographics. This yields a set of five publications using Parallel Sets
listed in Table 1. The Titanic dataset is available online [Daw95].
We reconstructed the other remaining five datasets manually. To
this end, we measured the width of the ribbons in the lowest level
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Hassan et al.
Original

0.1 24.81

0.7 21

3.7 0.31

1.12 1.08

0.02 (80.7%) 10.03 (59.6%) 0.59 (15.7%) 16 (23.8%)

1.08 (70.8%) 0.09 (71.0%) 1.12 (0%) 1.22 (13.0%)

Rogers et al. (1)
Original

0.12 32.13

0.76 16

9.79 0.88

1.57 0.34

0.06 (51.5%) 21.43 (33.3%) 0.76 (0%) 16 (0%)

4.08 (58.3%) 0.88 (0%) 1.04 (33.8%) 0.34 (0%)

Figure 7: We show the optimization results for the visualizations provided by Hassan et al. [HP14] and Rogers et al. (1) [RWH∗16] with
curved ribbons. The original Parallel Sets visualizations are shown on the left with their metric values. All single-metric optimizations are
shown towards the right with the percent improvement compared to the original below. In both cases, all category ordering-dependent metrics
have lower clutter. All metrics are lower in comparison to the original Parallel Sets visualization. For the visualization by Hassan et al., the
Ribbon Width Variance metric yields the worst result. For Rogers et al. (1), it is the Number of Ribbons metric that performs worst.

to get the size of the subset and traced the ribbon from top to bot-
tom to determine the categories determining the subset. After a vi-
sual inspection, we estimate the reconstructions to be mostly accu-
rate. The most challenging to reconstruct was the dataset by Koh et
al. [KSDK11] since it contains many small ribbons only one to five
pixels wide and a high slope. We choose these datasets because they
have published Parallel Sets, implying that they are suitable targets
for comparison. To determine the optimized values of our metrics,
we calculated all metrics for all possible configurations.

Source Domain/Desc. Type Dim.
[HP14] Cyber-security Application 4
[KSDK11] Property sales Design-study 3
[KBH06] Titanic datas. [Daw95] Technique 4
[RWH∗16] HCI study; 2 datasets Application 3
[SDB∗19] Linguistics Application 2

Table 1: We found five papers from different domains using Parallel
Sets yielding six datasets for our evaluation of ParSetgnostics.

5.2. Single-metric Optimization

To show the usefulness of each metric, we perform a single-metric
optimization on two visualizations using visualizations provided by
Hassan et al. [HP14] and Rogers et al. [RWH∗16].

Hassan et al. In Figure 7 (top), we perform an optimization using
all metrics individually on the Parallel Sets published by Hassan et
al. [HP14]. This visualization aims to analyze the security and cost
of data storage, determining the location where data storage should
be bought with a high security level. We can see that all category
ordering-dependent metrics produce visualizations with lower clut-
ter. The Overlap metric reduces the overlap of ribbons by 80.7%
compared to the original. If we assume the overlap as an objective
measure of clutter [ZBD∗18] the Slope and Crossing Angle
metric reduce overlap by 70.8%. These metrics improve by 59.6%
and 70.8%. The dimension ordering-dependent metrics reduce clut-
ter as well, with the exception of the Ribbon Width Variance
metric. All metrics are lower in comparison to the original Paral-
lel Sets, showing that the original visualization was not optimized
according to any property of the Parallel Sets. We note that Slope

and Crossing Angle create the same visualizations, as well
as Orthogonality and Number of Crossings .
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Rogers et al. (1) We perform an optimization using all met-
rics individually on the Parallel Sets published by Rogers et
al. [RWH∗16] showing the more complex dataset of this publica-
tion’s datasets with curved ribbons. We determine the angles of the
ribbons based on the underlying straight ribbons. The task for this
visualization is to present the result of a Human-Computer Inter-
action (HCI) study. The optimization results are shown in Figure 7
(bottom). Orthogonality , Number of Crossings , and Number
of Ribbons are already optimized in the original visualization.
Thus, there is no improvement by these metrics. We can see that the
Slope metric produces large contiguous ribbons and focuses the
smaller ribbons in the center. Considering the overlap as a measure
of the degree of clutter [ZBD∗18], the Slope , metric reduces
clutter by 50.9% and the Crossing Angle metric by 45.1%. The
dimension ordering-dependent metrics yield the same ordering for
Number of Ribbons and Mutual Information than the original
visualization and thus optimal in those aspects.

5.3. Multi-metric Optimization

We evaluate the multi-metric optimization capabilities by selecting
the dimension ordering that two out of three dimension ordering-
dependent metrics agree on. Based on this ordering, we choose a
Parallel Sets visualization according to the metric that improved
the most compared to the original visualization.

Koh et al.
Original

0.17 34.1

0.95 58

7.83 0.86

1.38 0.08

0.86 (0%) 1.21 (12.3%)

0.93 56 6.5 (15.0%)

Rogers et al. (2)
Original

0.08 20.78

0.67 8

5.16 0.75

1.19 0.18

0.67 (0%) 0.95 (20.2%)

0.04 (54.5%) 16.67 (19.8%)

Figure 8: At the top, we optimize the dataset supplied by Koh et
al. [KSDK11]. On the bottom, we apply our metrics to improve the
the second visualization of Rogers et al. [RWH∗16]. In both cases,
the optimization is based on the dimensions ordering derived from
the Number of Ribbons and Ribbon Width Variance metrics.

Koh et al. We perform this optimization using the visualization
in the publication by Koh et al. [KSDK11] dealing with property
sales analysis. Each step is shown in Figure 8 (top). First, we ana-
lyze the dimension ordering. The Number of Ribbons and Rib-
bon Width Variance yield the same dimension ordering, while
Ribbon Width Variance is reduced by 12.4%. For the category
ordering we fix the dimension ordering accordingly. We apply all
category ordering-dependent metrics to the visualization. We can
observe that the Orthogonality and Number of Crossings
yield the identical visualization. By assessing the Crossing Angle

, reducing its value by 15.0% and choosing the overlap as an
objective measure for clutter [ZBD∗18] we can see that clutter is
reduced by 0.8%. Observing the result, we can also see a cleared-
up top level compared to the original.

Rogers et al. (2) The visualization presented by Rogers et
al. [RWH∗16] describes the result of an HCI study with curved
ribbons. We determine the ribbon angles based on the underly-
ing straight ribbon. The steps are shown in Figure 8 (bottom). The
Number of Ribbons and Ribbon Width Variance provide the
same dimension ordering. Thus, we only consider layout with this
ordering. To determine the order of categories, which influences the
appearance of the ribbons. We find that optimum of Overlap and
Slope have the dimension ordering as suggests by the dimen-
sion ordering-dependent metrics. The visualization suggested by
the Slope metric reduces the clutter by 53.2% considering over-
lap as an objective measure [ZBD∗18]. This visualization focuses
all splits and crossings on one the left half of the visualization.

5.4. Correlation Analysis

In order to evaluate that our metrics measure different properties of
Parallel Sets we performed a Pearson correlation analysis [Kir08]

Hassan et al. Koh et al. Kosara et al.

Rogers et al. (1) Rogers et al. (2) Schätzle et al.

Figure 9: Results of the correlation analysis of the metrics for all
reconstructed datasets. We found that no metric correlates with any
other metric for all analyzed datasets. This shows that all metrics
are independent and measure distinct properties.
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of the metrics. We calculated the value of all metrics for all dimen-
sion and category layout for all available datasets. The results of the
analysis are summarized in Figure 9. The metric Crossing Angle

shows a weak negative correlation for the Koh et al. [KSDK11]
dataset and Mutual Information shows a weak negative corre-
lation for the Rogers et al. (1) [RWH∗16] dataset. The Number of
Ribbons metric could not be analyzed for the data by Schätzle et
al. [SDB∗19] because it only has two dimensions and thus a fixed
number of ribbons for all configurations. The correlation analysis
shows that the correlations between metrics is dependent on the
dataset. This is shown by the differing Pearson correlations. Fig-
ure 9 provides the correlations between the metrics for all datasets.
We found that no metric correlates with any other metric for all
analyzed datasets. This shows that all metrics are independent and
measure distinct properties, and are mutually independent.

6. Discussion

The calculation of all quality metrics is dependent on the number
of ribbons of a Parallel Sets visualization. All metrics are described
in terms of vector graphics. Our metrics can be applied before
the ribbons are curved since the straight ribbons approximate the
properties of the curved ribbons. All dimension ordering-dependent
metrics are directly applicable since they are not dependent on the
ribbon shape. All category ordering-dependent metrics, except the
Number of Crossings metric, will provide an approximate result,
which can improve the visualization. All quality metrics, except
the angle-related metrics (i.e., Slope, Orthogonality, and Crossing
Angle) can be applied to Common Angle Plots directly since they
enforce the angle a ribbon has in-between two dimension axes. Our
metrics can be used to measure the quality increase or decrease
in cases where the underlying data changes. This is also true for
streaming scenarios, where new categories might be encountered.
However, determining an optimal ordering of dimensions and cate-
gories would require a more efficient optimization strategy, other
than calculating the metrics for all possible configurations. The
metrics are calculated reasonably fast, such that in an interactive
design process, they can be used to compare and rank different
manually created Parallel Sets visualizations instantly. Our correla-
tion analysis shows that all metrics measure distinct properties and
thus are mutually independent. We derive the set of metrics from
our discussion on parameters of Parallel Sets related to the choice
of the category and dimension ordering, dataset-dependent proper-
ties, and ribbon parameters. Our metrics address all parameters, and
thus, we argue for completeness in terms of geometric properties.
We plan a user study as an additional validation of completeness.

6.1. Guidelines

We found the following design guidelines for the layout of dimen-
sions and categories of Parallel Sets visualizations. (1) Choose the
first dimension according to the analysis question or well-known
categories. In exploratory tasks, choose a dimension with a cate-
gory count no larger than nine. We suggest following Miller’s Law,
which states to limit the number of shown items to seven plus or
minus two [Mil56]. We also suggest choosing a dimension with a
high entropy leading to equal-sized categories. (2) Filter the set of
all configurations by dimension ordering-dependent metrics. These

metrics can be used in a voting system as we do in Subsection 5.3.
(3) Minimize/Maximize a category ordering-dependent metric. In
our experiments, we found some suggestions: Parallel Sets with a
low number of ribbon splits, i.e., a low number of ribbons in the
lower levels of Parallel Sets show better results when optimized
with the Overlap and Slope metrics. Parallel Sets with a high num-
ber of ribbons are optimized with the Orthogonality, Number of
Crossings and Crossing Angle. Curved ribbons are easier to read.
This is based on the fact that curved lines have a larger crossing
angle, which makes lines easier to follow [HHE08, WPCM02].

6.2. Limitations and Future Work

Our metrics quantify the visual appearance of Parallel Sets. They
do not provide a reordering strategy. The next step is to assess the
properties of our metrics and derive a reordering algorithm. An-
other possible direction is an extension towards local metric de-
scriptors since our metrics only describe Parallel Sets globally. We
plan to study the connection between specific metrics with gen-
eral tasks and data set characteristics through a user-study. A user
study would also verify whether the set of metrics is exhaustive.
This work does not describe an efficient strategy to determine the
minimum and maximum value of a metric. Additionally, we plan to
study the effects of the metrics in the interactive design of Parallel
Sets suggesting and validating user choices. One drawback of our
approach is that the metrics need to be recalculated if the aspect ra-
tio of the plot changes. In the case of simple zooming with a fixed
aspect ratio, the values can be reused. Our quality metrics could po-
tentially be transferred to the quantification of properties of Sankey
diagrams since many desirable proprieties of Parallel Sets are also
desirable for Sankey diagrams, e.g., a low overlap of bands.

7. Conclusion

Determining a useful dimension and category ordering for Parallel
Sets is challenging. We propose a set of eight distinct quality met-
rics for Parallel Sets, called ParSetgnostics. They provide a new
model for quantifying properties of Parallel Sets visualizations,
which can be used as a quality criterion as described by Behrisch
et al. [BBK∗18]. Our metrics allow us to improve the readability
of Parallel Sets visualizations by optimizing a specific metric or a
combination thereof or even determining the presence of undesir-
able patterns. We argue for our metrics’ effectiveness by applying
them to Parallel Sets in previous publications, showing their ap-
plicability in a single- and multi-metric optimization approach. We
perform a correlation analysis on all datasets and quality metrics
combinations and validate that no metric correlates with any other
metric for all datasets, showing each metric’s distinctiveness. We
published the results online where users can explore our results and
test the quality metrics’ properties interactively. Our work provides
a more meaningful way to analyze categorical data with Parallel
Sets, especially in exploratory scenarios.
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