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Appendix A: An Information-Theoretic View of ODDV

As described in Section 4, in ODDYV, many visual representa-
tions exhibit phenomena of data removal (e.g., node filtering, edge
bundling, etc.) or data distortion (e.g., grid maps, metro maps, etc.).
In terms of Shannon entropy [Sha48, CT06], these phenomena all
feature information loss as illustrated in Figure 9. While it is easy
to reason about the demerits of information loss in these phenom-
ena, information theory is so far the only mathematical framework
that offers an explanation about the merits of the information loss.
Chen and Golan propose to measure the cost-benefit of data anal-
ysis and data visualization processes by considering the trade-offs
of information loss [CG16]. The qualitative version of the measure
is defined as:

Benefit  Alphabet Compression — Potential Distortion
= M
Cost Cost

where “Alphabet Compression” and “Potential Distortion” are two
information-theoretic measures for estimating the positive and neg-
ative impacts of information loss caused by a data analysis or vi-
sualization process. As the input data and output data of a process
may have different forms (e.g., from a time series to a line plot,
or from a line plot to perceived visual features), the information
spaces of the input and output are referred to as alphabets in in-
formation theory, while a process is referred to as a transformation
from one alphabet to another (cf. translation).

When the information space of the output is of less entropy (i.e.,
less uncertain) than that of the input, there is an information loss,
which is a general trend of data analysis and visualization work-
flows as discussed in detail [CG16]. Hence the impact of this loss is
first measured positively as Alphabet Compression in Eq. 1. Mean-
while, the negative impact of information loss is measured sepa-
rately using the term Potential Distortion. Chen and Golan pro-
posed to measure the negative impact based on a reverse transfor-
mation from output back to input. One may imagine observing data
through a visualization image as a reverse transformation from the
image back to the original data (cf. a reverse translation in lan-
guage processing). When one applies the cost-benefit analysis to
machine-centric processes (e.g., using statistics and algorithms),
one can attest that almost all machine-centric processes also suf-
fer from potential distortion.

This reverse transformation is both data-dependent and user-
dependent, as viewers’ knowledge can alleviate the potential dis-
tortion. In addition, the potential distortion in a process may or may
not impact on the succeeding processes that provide alphabet com-
pression. For example, potential distortion in perceiving an indi-
vidual data point in a line plot may probabilistically have limited
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impact on the potential distortion in a succeeding process for deter-
mining the trend of a time series. As the cost-benefit analysis can
be applied to multiple processes in a workflow, the composite mea-
surement of the potential distortion of a sequence of processes is
also task-dependent when one views later processes as the tasks
of earlier processes in the sequence. The user-dependency and task-
dependency is highlighted in Figure 8. A more detailed description
of the cost-benefit analysis can be found in a short introduction to
the topic at arXiv [Che21].

Consider origin-destination data visualization (ODDV) as an ex-
ample. Before a viewer observes a visualization image, the viewer
is uncertain about the OD dataset D to be displayed. In informa-
tion theory, all mathematically-valid OD datasets form an alphabet
D, which is sometimes referred to as an information space. A valid
OD dataset is thus a letter of the alphabet, i.e., D € D. Every letter
in the alphabet is associated with a probability value, p(D), indi-
cating the likelihood that D may appear. In a given context (e.g.,
rail commuting), many letters in D become impossible (e.g., about
other mode of transport). All possible datasets in this context con-
stitute a sub-alphabet D¢ix C D. In terms of Shannon entropy that
measures the amount of uncertainty or information, the entropy of
Dcix is usually much lower than that D. Knowing the context en-
ables a viewer to think, often unconsciously, using the probability
distribution for D¢t instead that for D.

When an algorithm is used to manipulate OD datasets in D¢, it
may further reduce the variations in D¢x. For instance, as illustrated
in Figure 9, node filtering removes the possible variations of those
nodes that are deleted if they occur in the data, while edge bundling
creates a new alphabet that has fewer letters and thus fewer varia-
tions. Grid-mapping and path simplification encode different geo-
metrical variations using the same abstract representation.

In a given context, when a transformation F is applied to all
datasets in Dctx, it results in a new sub-alphabet Détx. If F fea-
tures operations such as filtering, grouping, or distortion-based ab-
straction, Dfix will have less entropy than De. Entropy reduction
implies information loss. The usefulness of many visual designs in
visualization, such as metro maps and many ODDV designs, ev-
idence that information loss can have an positive impact, while
challenging the traditional wisdom that a visual design needs to
preserve all information in the data. Sometimes one may argue that
a visual design needs to preserve all information useful to a task.
While the statement itself captures the task-dependent nature of vi-
sualization (but not the user-dependency), it is not ideal as it seems
to imply a circular argument: “a useful visual design shows useful
information,” while neither usefulness can easily be defined.

On the other hand, the cost-benefit analysis proposed by Chen
and Golan has offered a mathematical explanation that such visual
designs are cost-beneficial. According to the information-theoretic
cost-benefit analysis [CG16], such information loss is part of the
general trend of entropy reduction in a workflow from a data alpha-
bet to a decision alphabet. Statistics, algorithms, visualization, and
interaction in such a workflow all contribute to the entropy reduc-
tion (i.e., Alphabet Compression). Hence entropy reduction itself
is a merit rather than a demerit. Without entropy reduction, there
would be no decision.

In addition, entropy reduction at one stage helps reduce the Cost
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Figure 8: A design space may categorize different options based on the amount of alphabet compression (i.e., losing information) and ways
to achieve it. Too little information loss could increase the cost of the process and slowdown the progress towards the task objective. Too
much information loss could increase potential distortion. Users’ knowledge can alleviate potential distortion.
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Figure 9: Four examples of entropy reduction or information loss in ODDV. (a) Whether a dataset may include any of four cities can be
defined with an alphabet of 16 letters. When a filtering algorithm removes C and D from any input dataset, it creates a new alphabet with four
letters, which has lower entropy. (b) The alphabet for encoding all possible connection patterns (up to k edges) among three nodes contains
many letters. Bundling edges with the same source and destination is a many-to-one mapping, which reduces entropy. (c¢) Grid mapping and
path simplification, which are commonly-used design methods in ODDV, are also many-to-one mappings that cause information loss.

of the stage or the succeeding stages. In Figure 1, for many tasks
(e.g., observing if the directional flows between two locations are
similar) cost less time or cognitive load with the visual encoding on
the right due to the reduction of some informative representations.

Meanwhile, information loss may have a side-effect. When a
viewer observes an ODDV image that features filtering, group-
ing, distortion, or other data transformations that cause information
loss, there is a possibility of misinterpretation (i.e., Potential Dis-
tortion). Using Figure 9(d) as an example, a viewer who has little
knowledge about metro maps, may interpret the path between the
two stations is straight; a viewer, who understands concept of ab-
straction but knows little about the geography about that region,
may make a random guess that the path can be of an arbitrary
shape; or a viewer who lives nearby, may choose a shape that close
to the reality. Hence, the misinterpretation is viewer-dependent or
user-dependent as we often say in visualization. With the visual en-
coding on the right of Figure 1, once viewers know that the small

doughnut chart at each node summarizes the outgoing flows, they
can infer that those nodes without attached lines have little incom-
ing flow. They thus do not suffer much potential distortion that
could be caused by not drawing the first half of edges.

In many applications, some types of misinterpretations may not
have a negative impact on the succeeding processes, where the
transformations would converge to the same decisions regardless
the variations of such interpretations. As succeeding processes in-
clude tasks, this indicates that visualization is task-dependent. For
example, although every edge was drawn fully in top-left image
in Figure 1, tracing flow lines are not very effective. This suggests
that errors in tracing flow lines may not be an issue with many tasks
associated with a generic flow map, providing a rationale for the vi-
sual encoding on the right.

Once we appreciate that ODDV should enable entropy reduction
and cannot avoid information loss unless the dataset is trivially sim-
ple, the question is then about what information to lose and how
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to lose information. The principle design criteria are to reduce the
potential distortions by maximizing the use of viewers’ knowledge,
reduce the costs of other human- and machine-processes that han-
dle the data following the information loss, and reduce the negative
impact on such processes. In the main body of this paper, we out-
line a design space categorized based primarily on the notions of
what and how.

Our design space (Section 4) focuses on different ways of al-
phabet compression as highlighted in Figure 8. In order to organise
many ways of entropy reduction or information loss into a design
space, we find that the four dimensions discussed in Section 4 can
help differentiate ways of entropy reduction and provide the design
space with a structure. For Dimensions 1 and 2, it is relatively obvi-
ous to consider the transformations Filter and Group as entropy re-
duction methods. Note that a Filter transformation reduces entropy
by removing valid letters in an alphabet, while a Group transforma-
tion changes the ordinal alphabet to a new alphabet.

There are also Add and Split transformation in Dimensions 1 and
2. Although entropy reduction is the general trend in the workflow
from data to decisions, in many circumstances, a viewer may per-
form actions to reintroduce some entropy within a particular part of
the workflow. In the context of ODDYV, a location or path may be
added, or a grouped component may be split. Almost all actions for
increasing entropy involve interaction. For example, a viewer may
sense that the information loss in an overview may cause too much
potential distortion, and decide to use zoom-in or tool-tips to bring
some details back (i.e., undo filtering); or a viewer may judge that
some clustering was not helpful, and exercise some control to split
the clusters concerned (i.e., undo grouping). In terms of informa-
tion theory, the existence of such operations evidences the quantifi-
able values of human-computer interaction, and demonstrates that
interaction enables viewers to self-optimize the amount and pace of
information loss during visualization [CE19].

For Dimensions 3 and 4, we find that traditional terms for de-
scribing visual encoding of individual nodes and edges do not nat-
urally define categories of entropy reduction. This is likely because
the original node list and edge list are the referencing benchmarks
for Dimensions 1 and 2 respectively, while it is less common to
consider a referencing benchmark for visually encoding a node or
an edge. We therefore define node norm and edge norm as the refer-
encing benchmarks for Dimensions 3 and 4, and then define types
of entropy reduction in relation to these benchmarks.

The actions for design space exploration outlined in Section 5.2
are based on a workflow optimisation methodology underpinned by
information theory [CE19]. As most filtering and grouping opera-
tions are implemented using algorithms, they may have too much
alphabet compression to some users, causing symptoms of a high
level of potential distortion and/or cognitive load for some tasks.
One balancing act is to use interaction as a remedy to to reintro-
duce the lost information, through interaction itself would intro-
duce extra cost. Similarly, one may use remedies of statistics and
visualization to preserve some information (e.g., computing and vi-
sual encoding the group size of a super-node or super-edge). Mean-
while, the commonly-adopted wisdom of “knowing the users and
tasks” is also supported by the information-theoretic reasoning as
shown in Figure 8.
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Mathematical Definitions of the Cost-benefit Measure

In the remainder of this appendix, we provide a concise summary
of the mathematical definitions related to the cost-benefit mea-
sure proposed by Chen and Golan [CG16]. From these definitions,
those readers who are knowledgeable about the fundamental con-
cepts in information theory can quickly notice that the cost-benefit
measure is composed of two commonly-used information-theoretic
measures. For those readers who are new to information theory,
these definitions provide a pointer to relevant part of an informa-
tion theory textbook (e.g., [CT06]). In addition, the original paper
by Chen and Golan [CG16] provides the mathematical rationale
for the cost-benefit measure, while a recent book chapter by Viola
et al. [VCI20] provides the concept of “visual abstraction” with a
mathematical explanation based on the cost-benefit measure.

LetZ={zy,22,...,2n} be an alphabet and z; be one of its letters.
Z is associated with a probability distribution or probability mass
function (PMF) P(Z) = {p1,p2,---,pn} such that p; = p(z;)) > 0
and Y| p; = 1. The Shannon Entropy of Z is:

H(Z)=H(P)=— Zpilogzpi (unit: bit)
i=1

Here we use base 2 logarithm as the unit of bit is more intuitive
in the context of computer science and data science.

An alphabet Z may have different PMFs in different conditions.
Let P and Q be such PMFs. The Kullback-Leibler divergence
(KL-Divergence), Dk, (P||Q), measures the difference between the
two PMFs in bits:

n .
Dr(PIQ) = Y. pi logZ% (unit: bit)
i=1 !
Dkr1(P||Q) is referred as the divergence of P from Q. This is not a
metric since Dk (P||Q) = Dk (Q||P) cannot be assured.

Consider a transformation F : Zj, — Zout, Where Zj, is the input
alphabet of F' with a PMF P;, and Zoyt is the output alphabet with
a PMF Poy; . The term Alphabet Compression in Eq. 1 is the differ-
ence between the input and output alphabet, H.(Z;,) — H(Zout)-

Consider a reverse transformation F~! that attempts to recon-
struct the input from the output. The reconstructed alphabet is ex-
pected to have a PMF different from that of the original input alpha-
bet. We denote the reconstructed alphabet as Z/, with a PMF Py,.
Thus the reverse transformation is F ! : Zoy — Z!.. The potential
distortion is defined using the KL-divergence as Dk .(Z},||Zin)-

The mathematical definition of the qualitative formula in Eq. 1 is
thus:
Benefit _ H(Zin) — H(Zow) — Dk1(Ziy||Zin)
Cost Cost
The fundamental measurement of the Cost is the energy required
to perform F and F~ !, while it can be approximated by a time or
monetary measurement.

@3

Most measurement systems are not ground truth. They are func-
tions that map some reality to some quantitative values, in order to
aid the explanation of the reality and the computation of making
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predictions. The cost-benefit measure in Eq. 2 is one of such func-
tions. While the cost-benefit measure successfully captures trade-
offs in data analysis and visualization workflows, the measured
values could shoot up toward infinity easily, hindering the recon-
struction of the reality from the measured values. Recently, Chen
an Sbert proposed to replace the KL-divergence in Eq.2 with a
bounded divergence measure [CS21], and Chen et al described two
empirical studies for collecting practical data and using the data to
evaluate several candidate divergence measures [CARSS21]. One
of the empirical studies used two London underground maps, one
abstract and one geographically-faithful, as the stimuli.

Appendix B: Classification of ODDYV in the Literature

The following figures show some examples of ODDV in the
literature, and their classification according to the types of trans-
formations in each dimensions.
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Figure 10: Example (a): MobilityGraphs [LBR* 16].
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Figure 11: Example (b): Flow map by Minard (1862) [Rob67].
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Figure 12: Example (c): Spiral trees [VBS11].
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Figure 13: Example (d): OD matrix [Guo07].
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Figure 14: Example (e): OD maps [WDS10, SKD14, cGS*19]
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Figure 15: Example (f): MapTrix [YDGM17]
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Figure 16: Example (g): Circular plot [AS14]
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Figure 17: Example (h): Flow diagrams [AAFWI17]
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