Diehl et al. / Hornero

Appendix: Algorithms

The algorithms implemented to create the visual component storm
graph structure consist of: (1) a cluster-based layout that groups
nodes vertically depending on their spatial closeness, and (2) a
collapsible feature that simplifies large consecutive trains of storm
cell nodes, in the temporal axis (horizontally). These trains do not
present splitting or merging branches.

For the clusterization of the storm branches, the algorithm
groups nodes based on the DBScan clustering technique (see Algo-
rithm 1). When computing the layout of the graph, the nodes that
correspond to a same geographic cluster are grouped together in
the storm graph structure. The layout is created considering larger
spaces between clusters of nodes, namely storm branches, and mak-
ing storm branches geographically distant, also farther distant from
their sibling clustered storm branches in the graph.

Algorithm 1: Clustering of nodes in each time step

In: timesteps (list of dates), stepsByDate
Result: Steps clusters
1: clustersByStepld + {}
2: clustersByDate < {}
3: for all data € timesteps do
4: steps + stepsByDate|date]
5: clusters < getDBScanClusters(pointsForStep)
6 clustersList.push(clusters)
7: end for
8: return clustersList

The collapsible feature (see Algorithm 2), starts with no potential
interval (indicated by interval End and IntervalStart setto -1). The
first iteration of the loop checks if the last time step could be the
end of a new potential interval. For this case, nodes should not be
the result of a join (Line 8). The next iteration will try to grow
the interval by setting a new start for the interval, or by making it
grow if intervalStart is not -1. The condition for adding the time
step is that its nodes do not result from a join or generate a split
(conditions in Line 5 and Line 12). If these conditions are not met,
then the interval can be closed if it contains more than one time
step. At this point, no potential interval exists and so interval End
and intervalStart are set to -1, so a new end can be searched in the
next iteration.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Algorithm 2: Assembing collapsible node chains in the
graph

In: dates (list of dates), nodes by date
Result: An array of intervals that can be collapsed
1: interval End < -1
2: intervalStart <— -1
3. intervals < []
4: for di = dates.length - 1 TO 0 do
5 eys <— do all nodes in time step di have less that one parent
and one child?

6: if intervalEnd = —1 then
7: ps < do all nodes in time step di + 1 have less than one
parent?
8: if eys and ps then
9: intervalEnd < di
10: end if
11: else
12: is <— do all nodes in time step d — 1 have less than one
child?
13: if eys and is then
14: intervalStart < di
15: else
16: if intervalStart < interval End and
intervalStart # —1 then
17: newlnterval < {intervalStart,interval End}
intervals.push(newlnterval)
18: end if
19: intervalEnd <+ —1
20: intervalStart <+ —1
21: end if
22: endif
23: end for

24: if intervalEnd # —1 and intervalStart # interval End then

25: newlnterval < {0, interval End}
intervals.push(newlnterval)

26: end if

27: return intervals

