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Tensor decompositions represent multidimensional objects like mathematical functions or data sets
over regular grids as sums and products of a limited number of coefficients (the decomposition’s weights
or parameters). Such formats are convenient because the decomposition algorithms that produce them
are numerically stable, scalable, and build upon long-standing mathematical theory [KB09, OT10]. More
recently, tensor decompositions have been identified as a particular case of deep neural networks, namely
architectures whose activation functions are all linear [NPOV15], and have been also connected with
graphical models [RS18].

A decisive advantage of such representations is their intrinsic multilinearity. Multidimensional integration,
a challenging task in mathematical modeling and numerical methods, can be performed inexpensively using
tensor decompositions. In this paper, we have expressed set functions as compressed tensor trains (TT). This
is one of the most recently proposed decompositions and it has enjoyed great popularity over the last decade.
Its main strength is the straightforward in which it lays out the input dimensions: each dimension is mapped
to a tensor core, which is essentially a collection of matrices. It can be seamlessly applied to set functions,
whereby for every n, the n-th core consists of exactly two matrices that represent the absence or the presence
of the n-th item in the set, respectively.

In TT tensors, multilinearity means that all usual set operations (unions, intersections, set complements,
etc.s) can be performed in the compressed domain by simple linear combinations of some coefficients. For
instance, set unions translate to summing matrices together, whereas set intersections translate to subtracting
matrices from one another [BRPP19]. For example, if n /∈ ααα, then the cardinality of ααα and maybe n is
Tααα + Tααα∪{n} and is decompressed as we would decompress ααα ∪ {n}, after summing together both matrices
of the n-th core. This kind of matrix-wise operations in the TT cores is instrumental to obtaining derivations
of Sobol indices in real time. For example, let T with cores [[G(1), . . . ,G(N)]] be a TT representation of all
the Sobol indices of some model. Let us create a new tensor T̂ with cores [[Ĝ(1), . . . , Ĝ(N)]] defined as:{

Ĝ(n)[:, 0, :] := G(n)[:, 0, :]

Ĝ(n)[:, 1, :] := G(n)[:, 0, :] + G(n)[:, 1, :]

for n = 1, . . . , N , where we are using NumPy-like notation to index our tensors. After this manipulation,
the entries of T now contain all closed indices of the original model. Similar operations can yield the total or
superset indices, instead.

We can also perform other more advanced transformations via the so-called TT cross-approximation
algorithm (CA), which is able to apply any element-wise function to a tensor (for example, square its
elements). CA can be also used to find global extrema of a tensor, which is in turn useful to find, for instance,
the largest Sobol index (or any related quantity covered in this paper) of a model. For more details on these
and other operations that can be performed in the TT compressed domain, we refer the interested reader
to [Ose11, OT10].
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