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Figure 1: Thin iso-surface rendering of an armadillo carapace: (a) volume rendering of the dataset; (b) corresponding surface meshes
Mcurv and Mflat; (c) thin iso-surface rendering of a view from the outside; (d) a free moving camera enables different views of the curved
domain; (e) thin iso-surface rendering of a view from the inside with part of the skeleton interactively removed by shortening the ray lengths.

Abstract
Thin, curved structures occur in many volumetric datasets. Their analysis using classical volume rendering is difficult because
parts of such structures can bend away or hide behind occluding elements. This problem cannot be fully compensated by
effective navigation alone, as structure-adapted navigation in the volume is cumbersome and only parts of the structure are
visible in each view. We solve this problem by rendering a spatially transformed view of the volume so that an unobstructed
visualization of the entire curved structure is obtained. As a result, simple and intuitive navigation becomes possible. The domain
of the spatial transform is defined by a triangle mesh that is topologically equivalent to an open disc and that approximates the
structure of interest. The rendering is based on ray-casting, in which the rays traverse the original volume. In order to carve
out volumes of varying thicknesses, the lengths of the rays as well as the positions of the mesh vertices can be easily modified
by interactive painting under view control.
We describe a prototypical implementation and demonstrate the interactive visual inspection of complex structures from digital
humanities, biology, medicine, and material sciences. The visual representation of the structure as a whole allows for easy in-
spection of interesting substructures in their original spatial context. Overall, we show that thin, curved structures in volumetric
data can be excellently visualized using ray-casting-based volume rendering of transformed views defined by guiding surface
meshes, supplemented by interactive, local modifications of ray lengths and vertex positions.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques; • Computing methodologies → Render-
ing;

1. Introduction

Direct volume rendering (DVR) is a well-established, versatile
tool for visualizing volumetric data. However, if a volume contains
very many or large structures that occlude other structures, DVR
may not lead to the desired result. Adjusting transfer func-
tions [LKG∗16] or utilizing volume editing [BKW08] to remove
occluding structures can partially solve this problem, but this
process can be cumbersome and time-consuming. A particular
problem are structures that are bent and thus occlude other parts

of the same structure, so that removal of these structures by means
of transfer functions or volume editing is not possible. Some
applications also require the entire structure to be visible at once
to minimize navigation and allow easy comparison of multiple
datasets in a single view.

For certain types of structures, special solutions have been de-
veloped to address these issues. For example, for tubular struc-
tures like colons or vessels, curved planar reformation [KFW∗02]
has been developed. Another important, ubiquitous structure type
are thin, sheet-like volumetric structures whose thickness may vary
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spatially. Examples include tomographed documents that are rolled
and folded [BLLR15,LRLH17,BLH∗17], consisting of writing ma-
terials of various kinds, such as papyrus, parchment, lead, or silver.

While materials such as lead, silver and parchment are relatively
easy to segment in the volume data, the same is not true for antique
papyri, which are often in very poor condition. For such objects, it
is very difficult to develop a method that reliably and automatically
segments the writing medium. Data of this kind, namely ancient
papyri, which are rolled and folded, and sometimes severely dam-
aged, motivated the development of the interactive thin-volume vi-
sualization presented here. However, as we will show, the method
can be usefully applied to a much broader class of problems and
applications.

In this paper, we present a ray-casting-based visualization tech-
nique for representing thin, volumetric structures that
• provides complete, unobstructed views;
• is generic in the sense that it can be applied to a large variety of

datasets and applications;
• supports the interactive visual analysis, demonstrated by two in-

tuitive editing tools;
• allows for effective, structure-adaptive navigation in the volume.

The technique assumes the existence of two triangular meshes, a
curved one, Mcurv, and a flat one, Mflat. Both meshes need to be
in a one-to-one correspondence. While Mcurv is assumed to trace
the structure of interest inside the volume, Mflat is used to render
it. Creating Mcurv can be tedious for some data, but rather easy for
others. In many cases, Mcurv only needs to roughly approximate
the structure of interest and can be further adapted by the presented
user interactions. For the examples given in Sect. 6, we will briefly
describe how we created the curved and flattened surface meshes.
However, we will not describe how such surfaces can be generated
in general, as this is very data-specific. One way to obtain corre-
sponding surfaces is to generate Mflat from Mcurv by flattening.
For flattening, we make use of state-of-the-art methods, see for ex-
ample the works by Floater et al. [FH05], Sheffer et al. [SPR06], or
Li and Iyengar [LI14]. Thus, this work does neither make contribu-
tions to the field of automatic surface mesh generation from image
data nor to the field of mesh flattening.

2. Related Work

The method presented in this paper is related to unrolling, unfold-
ing, or generally flattening of thin volumetric structures embedded
in a larger 3D volume. The terms “unrolling” and “unfolding” im-
ply that the structure to be unrolled or unfolded was originally a
(nearly) planar, thin volumetric structure, or at least that its medial
surface can be mapped almost isometrically onto a plane, i.e., that
it is developable. The term “flattening” is more general and usu-
ally refers to methods that also work for structures that can only be
unrolled or unfolded with some distortion.

In the following, we will review methods that fall into the above
categories as well as methods that generate transformed views of
the data. Since the goal of the presented method is the visualization
of thin volumetric structures, in this section we will focus on meth-
ods that work with volumetric data. There are a few survey papers
that have reviewed methods and applications related to our method,

including the recent report on flattening in medical applications by
Kreisler et al. [KMM∗18] and the survey on manipulating sampled
object representations by Chen et al. [CCI∗07]. We will review se-
lected publications from these surveys as well as additional ones
not mentioned there.

An application class in which transformed views have long
played an important role is the visualization and analysis of ves-
sels and colons in medicine. Here, transformed views are neces-
sary to allow an unobstructed view of elongated structures that
bend in the 3D images recorded using CT or MRI. For these struc-
tures, curved planar reformations (CPRs) [KFW∗02] were devel-
oped. A CPR starts from the centerline of an elongate structure
and spans a surface by extending the centerline in opposite direc-
tions from each point on the centerline. The result is a parametrized
surface that is then used for volume reformation. The proposed
CPR methods differ slightly in the exact way the surfaces are
spanned [KFW∗02, Kan04]. While most CPR methods only gen-
erate a cut through the 3D image or a projection, Williams et
al. [WGC∗07] extend the method by combining it with direct vol-
ume rendering (DVR), thus allowing the user to obtain a 3D impres-
sion of the colon inside. Instead of placing a local plane through the
elongated structure, other methods display the neighborhood of the
centerline by sending radial rays off from many points on the cen-
terline. Vilanova et al. [VBWKG01] use nonlinear ray-casting for
unfolding the entire inner surface of the colon in order to avoid the
duplicate rendering of structures in strongly bent regions. In a sim-
ilar spirit, Lampe et al. [LCMH09] also use inside-out rendering
from the centerline and apply it to comparison of vessel structures
and stream lines. In contrast, Hong et al. [HGQ∗06] use a confor-
mal mapping to parametrize the colon surface. In combination with
DVR, they visually unfold the colon surface.

Apart from vessels and colons, other anatomical structures
have also been approached using flattening techniques [MPG∗17,
KST∗14]. While Martinke et al. [MPG∗17] extend previous ap-
proaches by creating shape-adaptive unfoldings to better reflect
the cross-sectional shape of the structure of interest, Kretschmer
et al. [KST∗14] use generic 2D surface meshes that serve to flat-
ten the structures of interest, for example, the ribcage, pelvis, or
feet. They apply as-rigid-as-possible volume parametrization and
resample the image data into a new, flattened space in which they
can then utilize all visualization techniques available for 3D image
data.

Unrolling and unfolding techniques have also been applied to
data from digital humanities and materials science. In digital hu-
manities, usually written documents need to be unfolded, includ-
ing parchment rolls [LRLH17], silver packages [BLLR15], and pa-
pyrus rolls and packages [BLH∗17]. In materials science, unrolling
is particularly interesting for the analysis of batteries [ZAF∗20].
Due to the small thickness of the structures in all these applications,
it is critical that both the position of the mesh used for unfolding
and the thickness are well defined so that no important information
is overlooked.

Additionally, the fields of interactive volume editing [BKW08]
and interactive volume deformation [WRS01, CCI∗07] are also re-
lated to our work. However, to the best of our knowledge, none of
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Figure 2: Correspondence of rays for volume rendering. Each
view ray r̄ is transformed from a coordinate system Cv̄ = {x̄, ȳ, n̄}
for Mflat, to the corresponding ray r in Cv = {x,y,n} for Mcurv.

these methods has ever been applied to the reformatting volume
visualizations reviewed in this section.

Most similar to our approach are the works by Hong et
al. [HGQ∗06] and Williams et al. [WGC∗07], which both provide
approaches based on ray-casting to the unfolding of tubular struc-
tures. Both use curves to define the structure of interest inside the
volume. However, the work by Hong et al. [HGQ∗06] only sup-
ports fixed cameras, which do not allow to interact with the ren-
dering as one is used to in common volume rendering. Williams et
al. [WGC∗07], on the other hand, generate a ruled surface by ex-
panding the curve, such that a direction without curvature exists at
every point on the surface. Although technically a surface, the sup-
ported types of surfaces and their construction are too restrictive
for tracing general surface-like structures.

The approach described here allows both to freely move the cam-
era, which eases the 3D understanding, and the use of generic 2D
surface meshes similar to the work by Kretschmer et al. [KST∗14].
However, unlike the latter work, we provide direct rendering based
on ray-casting, instead of resampling the volume. This allows us
to interactively modify both the position of the surface mesh and
the length of the rays. We consider the resulting flexibility as major
advantage of our method.

3. Rendering Approach

In classical volume rendering using standard GPU ray-casting, rays
are usually set up by rasterizing some form of proxy geometry, for
example the bounding box of the volume [EHK∗04]. The volume
is then sampled along the ray from a start to an end position, e.g.,
from where the ray enters the bounding box to where it exits again.

This section describes our approach for thin-volume rendering.
While we used a perspective camera model, the technique can be
readily adapted to implement an orthographic camera model.

3.1. Ray Setup in Thin-Volume Rendering

In contrast to the standard approach, in the thin-volume render-
ing framework the proxy geometry used for ray-casting consists
of a flattened mesh Mflat, as illustrated in Fig. 2. However, while

(a) (b) (c)

(d) (e)

Figure 3: Volume rendering using transformed rays. (Top) A test
volume with the surface Mcurv shown embedded. (Bottom) The
flattened mesh Mflat comprises the proxy geometry for the volume
rendering using transformed view rays on the right.

rays r̄ originally correspond to the direction from the camera to
points on the mesh Mflat, before the volume V can be sampled,
each ray must first be transformed into the volume space of V , giv-
ing the corresponding transformed rays r. This transformation is
determined by the curved geometry of the mesh Mcurv, which is
embedded in V . The volume is then sampled along the transformed
rays r, using user-specified ray segment lengths in front and behind
the prescribed geometry Mcurv, determining the view-dependent
thickness of the thin volume around the curved domain described
by Mcurv.

The meshes Mflat and Mcurv are required to be in one-to-one
correspondence, i.e., they have to have the same number and order-
ing of vertices and faces, and the same connectivity. Because the
mesh Mflat is flat, we obtain a view into the volume that is free of
occlusion, however guided by the curved geometry of Mcurv. Fig. 3
depicts a simple example. The mesh Mflat can also be used directly
for user input and visual feedback. Because Mcurv is embedded in
the volume V , it traces the desired structure of interest, and it also
provides supporting information about the structure’s geometry.

The goal of the ray transformations is to produce volume render-
ings that feel natural. If the camera looks at Mflat from a direction
close to orthogonal to it (taking into account the diverging rays in a
perspective camera), the volume V will be sampled along rays that
are close to orthogonal to Mcurv (i.e., locally close to orthogonal to
the tangent plane at each given point on the curved surface approxi-
mated by Mcurv). Likewise, when the viewing direction onto Mflat
is tilted, the rays along which the volume V is sampled are tilted the
same way, at the same angles, relative to Mcurv (its tangent planes).

3.2. Ray Transformation with Adapted Coordinate Frames

The key to transforming view rays from Mflat to Mcurv, embed-
ded in V , is to set up suitably corresponding coordinate frames for
each point p̄ ∈ Mflat and the corresponding point p ∈ Mcurv. To
achieve this in a way that is well adapted to the curved surface de-
formation represented by the given mesh Mcurv, we use a method
based on (overcomplete) frames [CK13], as described below. In
contrast to standard tangent space normal mapping [AMHH08],
our method essentially computes a least-squares fit over each 1-ring
vertex neighborhood to capture the deformation of Mcurv more ac-
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Figure 4: Comparison of tangent space basis transformations for
two different triangulations of Mflat and Mcurv: (a) and (b) show
the results when transforming based on a single tangent space basis
pair; (c) and (d) show the results using our frame-based approach.
While the standard approach shows deviations (arrow), our frame-
based approach renders the same result for both triangulations.

curately than just transforming a single tangent space basis. This
is particularly helpful in making the ray transformation less de-
pendent on the triangulation, and it does not require a surface pa-
rameterization. A quality comparison illustrating the benefit of our
frame-based approach is depicted in Fig. 4.

Proxy Geometry and Correspondence with Curved Domain

The main proxy geometry used for ray-casting is the flat
mesh Mflat, and the corresponding curved mesh Mcurv determines
the transformation of view rays required to obtain the thin-volume
rendering relative to the curved domain described by Mcurv.

In our implementation, both Mflat and Mcurv are triangle
meshes. We label the vertex set of Mflat as {v̄1, v̄2, · · · , v̄n}, and
that of Mcurv as {v1,v2, · · · ,vn}. Every vertex v̄i in Mflat has a cor-
responding vertex vi in Mcurv. Furthermore, we require that Mflat
and Mcurv have the same topology. That is, (v̄i, v̄ j) form an edge
in Mflat if and only if (vi,v j) form an edge in Mcurv. For points
in the interior of triangles, the correspondence between Mflat
and Mcurv is established in a straightforward manner via barycen-
tric interpolation: For a point p̄ in a triangle (v̄i, v̄ j, v̄k), we can
write p̄ = α v̄i + β v̄ j + γ v̄k, with barycentric coordinates (α,β,γ).
The corresponding point p in Mcurv, in the corresponding trian-
gle (vi,v j,vk), is simply p = αvi +βv j + γvk.

Coordinate Frame Transformation to the Curved Domain

To prepare for transforming view rays r̄ from Mflat to Mcurv,
embedded in the volume V , we first define an orthonormal ba-
sis Cv̄ = {x̄, ȳ, n̄} for every vertex v̄ ∈Mflat. The three basis vectors
are identical for all vertices, and are chosen such that they corre-
spond to a right-handed coordinate system, where the vector n̄ is
normal to the surface Mflat. For each vertex v̄, we then transform
this basis to a corresponding transformed basis Cv = {x,y,n} at the
corresponding vertex v ∈ Mcurv, using the method described be-
low. Fig. 2 depicts this simplified to the 2D case. Furthermore, to
obtain a basis at every point p ∈ Mcurv, including the interior of
triangles, we interpolate the basis vectors using the barycentric in-
terpolation described above, followed by re-normalization and or-
thogonalization of the interpolated bases. This results in an inter-
polated transformed basis Cp = {x,y,n}, at any point p ∈ Mcurv,
which will afterward be used for the transformation of view rays.

To obtain the basis Cv = {x,y,n} at the vertex v∈Mcurv, we first
obtain the normal vector n directly as the normal vector of Mcurv.

v̄

v̄1

v̄2

v̄3

v̄4

v̄5

ē4
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Figure 5: For the transformation of view rays from Mflat to Mcurv,
we compute how the neighborhood of vertex v̄ ∈Mflat transfers to
the neighborhood of vertex v ∈Mcurv, by using two corresponding
overcomplete frames {ēk},{ek} of K vectors (here, K = 5), com-
puted from the 1-ring vertex neighborhoods of v̄ and v, respectively.

However, the other two basis vectors x and y must be computed
such that they adapt to the deformation of Mflat to Mcurv. To
compute a basis vector x that is adapted to the transformation of a
whole neighborhood on the 2-manifold Mflat, into the correspond-
ing neighborhood on the 2-manifold Mcurv, we want to take into
account the whole 1-ring neighborhood of the vertex v̄, transform-
ing into the corresponding 1-ring neighborhood of v. In order to
achieve this, instead of directly transforming a coordinate basis for
the tangent plane of Mflat at the vertex v̄, consisting of two linearly
independent vectors, we use a frame {ēk}K

k=1, which is a spanning
set comprising K vectors [CK13], where for 2-manifolds K ≥ 2.

We compute the frame vectors ēk from the 1-ring vertices {v̄k},
around the center vertex v̄, as ēk := v̄k − v̄. This is illustrated in
Fig. 5 for K = 5. Because this frame is neither orthogonal nor lin-
early independent, for the computation of frame coefficients with
respect to {ēk}, we have to use the corresponding dual frame {ẽk}.
We use the canonical dual frame [HKLW07, p.157], given by

ẽk := S−1 ēk. (1)

Here we need S−1, the inverse of the frame operator S, given by

Sv := ∑
k
⟨v, ēk⟩ ēk, for any vector v. (2)

In components, we can compute the frame operator S as the matrix
S = TT T, with the analysis operator T given by the K ×2 matrix

T :=


— ē1 —
— ē2 —

...
— ēK —

 . (3)

In our case, the frame operator S is therefore given by the 2×2 ma-
trix S = TT T. This matrix is non-singular, because otherwise {ēk}
would not be a spanning set. Thus, we can directly compute S−1.

By using the dual frame {ẽk}, the expansion of x̄ with respect to
the frame {ēk} can now be written using frame coefficients ck, as

x̄ = ∑
k

ck(x̄) ēk, with ck(x̄) := ⟨x̄, ẽk⟩. (4)

We can now compute the transformed vector x′, which is the vec-
tor x̄ transformed from Mflat to Mcurv, which we then only have to
normalize to obtain the final vector x. We first compute an expan-
sion with the frame coefficients ck computed for Mflat, however we
expand with the transformed frame {ek} at the vertex v ∈ Mcurv,
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which is given by ek := vk − v (Fig. 5). We then project into the
tangent plane orthogonal to the normal vector n. This is given by

x′ = x̂−⟨x̂,n⟩n, with x̂ = ∑
k

ck(x̄)ek, ck(x̄) := ⟨x̄, ẽk⟩. (5)

The canonical dual (Eq. (1)) chooses the coefficient vector (ck) of
minimum L2 norm in Eq. (4). In this sense, (ck) in Eq. (5) gives
a least-squares fit to the tangential component of the deformation
around v, while the normal component is captured by the prescribed
vector n. The final transformed orthonormal basis {x,y,n} is then

x = x′/∥x′∥, y = n×x, n. (6)

The basis {x,y,n} is simply a rotation of the basis {x̄, ȳ, n̄}. How-
ever, its tangential rotation orthogonal to the surface normal n at v
takes into account the transformation of the whole 1-ring neighbor-
hood of the vertex v̄, due to the frame-based computation above.

Ray Transformation

We transform an arbitrary view ray r̄, given relative to Mflat, to the
corresponding view ray r, given relative to Mcurv, as follows. At
any given point p̄ ∈ Mflat, intersected by the view ray described
by the vector r̄, we expand r̄ relative to the orthonormal basis given
by Cp̄ = {x̄, ȳ, n̄}, i.e., r̄= r̄x x̄+ r̄y ȳ+ r̄n n̄. Given the ray r̄ in world
coordinates (rx,ry,rz), we compute the coefficients (r̄x, r̄y, r̄n) as

(r̄x, r̄y, r̄n)
T = C−1

p̄ (rx,ry,rz)
T . (7)

We interchangeably use Cp̄ for both the set of three basis vectors
as well as for the matrix with column vectors given by these basis
vectors. We then use the same coefficients {r̄x, r̄y, r̄n} to get the
corresponding transformed view ray r, relative to the transformed
(rotated) orthonormal basis given by Cp = {x,y,n} at the point p, of
the mesh Mcurv. That is, at p we obtain the ray r= r̄x x+ r̄y y+ r̄n n.

3.3. Ray-Casting

Given a point p ∈ Mcurv in the volume space V , on the embed-
ded mesh Mcurv, and the corresponding view ray r intersecting the
point p, ray-casting is performed by sampling the ray segment from
a signed distance ℓ− along r, with respect to Mcurv, to a signed
distance ℓ+ along r. Thus, sampling is performed along the line
segment

p(t) := p+
(
ℓ−+ t (ℓ+− ℓ−)

)
r, with t ∈ [0,1], (8)

where r is the ray direction, and p ∈ Mcurv is the point on the
curved mesh around which ray casting is performed corresponding
to the “thickness” |ℓ+− ℓ−| of the thin volume around the point p.

A simple illustrative example of thin-volume rendering using the
described approach is depicted in Fig. 3.

Determining Ray Segment Lengths

By default, the user can specify the parameters ℓ− and ℓ+ as global
constants. However, we store these parameters for every vertex of
the mesh Mflat, interpolating them to the interior of triangles using
barycentric interpolation. This allows us to use adapted ray segment
lengths. In particular, we allow the user to paint directly on the
flat mesh Mflat in order to adapt the length parameters as desired,
see Sect. 4.1. Since Mcurv traces the structure of interest, using

this capability for example allows the user to adjust the sampled
segment according to the thickness of the structure of interest.

4. Interaction and Navigation

The surface Mflat is not only a very simple proxy geometry for
ray-casting but it also provides an ideal basis for implementing user
interaction. Because it is flat, it is guaranteed that no part of the ge-
ometry can be occluded by itself. In this section, we give examples
for how we utilize Mflat for user interaction. For technical details,
the reader is referred to Sect. 5.

4.1. Adjustment of Ray Lengths

Our thin-volume rendering allows using locally varying ray
lengths, that is, a potentially different ray length per mesh vertex.
In particular, it is not always possible to compute ray lengths that
result in satisfying visualizations for all parts of the thin volume
around the curved surface Mcurv. This can happen, for example, if
the structure of interest has a variable thickness. Globally modify-
ing the ray length might solve problems in some regions but create
new ones in others, for example, by inadvertantly removing parts
of the structure of interest or introducing new occluding structures.

We have therefore implemented an interaction technique that,
similar to an eraser tool in a 2D image processing software, allows
one to increase or decrease the ray length locally using the mouse.

4.2. Adjustment of Vertex Position

If the mesh Mcurv deviates too much from the structure of interest,
locally changing the ray lengths might not be sufficient. In order to
cope with this situation, we have implemented another interaction
technique that, instead of adjusting ray lengths locally, modifies the
actual vertex positions of the mesh Mcurv by moving vertices along
their surface normals.

4.3. Selection of Regions of Interest

In addition to interactively changing ray lengths and vertex posi-
tions, Mflat can also be used for selecting regions of interest for
more detailed inspection. Using the mouse, the user can select a re-
gion in screen space, from which all triangles and vertices are com-
puted that project to this region. For these, we can then compute the
spatially neighboring vertices and triangles in Mcurv, which can
then either be highlighted in the thin-volume rendering or be used
to crop out a volumetric region from the original volume to visual-
ize it using classical DVR. See for example Fig. 7. Both navigation
modes help to overcome the loss of spatial information introduced
by unfolding. This is particularly important for structures that are
rolled or folded multiple times.

5. Implementation

We have integrated a prototype implementation of the proposed
method, written in C++ and using the OpenGL API, into the vi-
sualization software Amira [SWH05].
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5.1. Rendering Approach

The method described in Sect. 3 fits nicely into the shader-based
rendering pipeline of OpenGL, using only vertex and fragment
shaders. The 3D volume data V is passed to the GPU as a 3D
texture. Entities defined for each OpenGL vertex are passed to the
GPU as attributes. These attributes include:

• The vertex coordinates of the geometry to be rendered, that is,
{v̄1, v̄2, . . . , v̄n} of Mflat. As we assume Mflat to be a triangular
mesh, it can natively be handled by OpenGL.

• Texture coordinates for computing the anchor points of the seg-
ments along which V will be sampled. For this purpose, we need
the vertex coordinates {v1,v2, . . . ,vn} of Mcurv.

• To map camera ray directions via r̄ to r, the transformations Cp̄
and Cp are required. By embedding Mflat into the xy-plane and
orienting it such that the normal direction points into the positive
z direction, we let the coordinate systems Cp̄ and the world co-
ordinate system coincide. Thus, we can skip the multiplication
with C−1

p̄ as described in Eq. (7) and only supply the matrix Cv
from which Cp can be derived via barycentric interpolation.

• Two scalar values ℓ+ and ℓ− that define the length of the sampled
segment around each position on Mcurv.

The vertex shader essentially just passes attributed values to the
fragment shader, where the interesting part of the work is done. In
the fragment shader, we compute the ray direction r̄, and map it to
r = Cp r̄. The sampled segment is determined as given in Eq. (8),
using the interpolated attributes ℓ− and ℓ+ at the position p corre-
sponding to the fragment. Sampling and compositing are then per-
formed in the standard way, as described, for example, by Engel et
al. [EHK∗04].

5.2. Interaction and Navigation

Implementation of the interaction and navigation functionality is
done in the application, outside of the OpenGL pipeline.

Adjustment of Ray Lengths and Vertex Positions

Both ray length adjustment and vertex movement have the same
user interface. The user triggers the effect by dragging the mouse
across the screen while pressing the left mouse button, i.e. painting
over the area that is to be affected. At each moment, the influence
area is a circular region in screen space around the current mouse
position. To give some visual feedback on the influence area, we
draw a white, inwardly fading circle of the according size (Fig. 6).
The user can adjust the radius of the influence area by pressing the
middle mouse button and dragging the mouse vertically. Pressing
the middle mouse button and dragging the mouse horizontally ad-
justs the effect strength. As a visual cue on the effect strength, a
proportional part of the white, inwardly fading circle is colored in
blue or red, depending on the sign of the effect, that is, whether ver-
tices are moved along or against the normal direction, or whether
ray lengths are increased or decreased.
For a smoother feeling, we scale the effect strength with a Gaussian
centered at the current mouse position, and with standard deviation
of half the radius of the influence area.

In the following, we describe the selection of the affected ver-

Figure 6: A white circle gives visual feedback on the influence
area of the interaction. The size can be adjusted with vertical mouse
movement, the effect strength with horizontal mouse movement. The
effect strength is indicated by a colored portion of the circle, red for
an increasing, blue for a decreasing effect. The right image pair
shows the interaction tool in action.

tices in more detail. The circular influence area in screen space cor-
responds to a cylindrical volume that spans the whole depth from
−1 to +1 in normalized device coordinate space, and to a cone frus-
tum with circular cross sections that spans from the near to the far
plane in world space which, in our case, coincides with the model
space of Mflat. Let pn and p f denote the points at which the cone
axis intersects the near and far plane, and let rp be the cone radius
at any point p in the segment spanned by pn and p f . To test if a
vertex v̄ is affected, we check if its projection a onto the cylinder
axis lies between the near and far plane. If it does, the distance
to the cone, |v̄ − a| is compared against the cone radius ra. If v̄
lies inside the cone, we use the relative distance dv̄ = |v̄− a|/ra
to compute the Gaussian weakening factor for v̄ as N (dv̄ ; 0,ra/2).
Here, N (· ; µ,σ) describes a normal distribution with mean µ and
standard deviation σ.

Selection of Regions of Interest

Defining regions of interest on Mflat and locating them in V or
computing close areas to them in Mcurv is straightforward. Using
the mouse, the user selects a rectangular region on the screen. For
each vertex of Mflat, we test if it is rendered into this region by
mapping the x and y coordinates of the selection and of Mcurv in
the normalized device coordinate space and comparing the coordi-
nates. The selected vertices are indicated by a color overlay on the
rendering of Mcurv (Fig. 7(d,f)).

Having computed the set of vertices that fall into the selected re-
gion, the corresponding vertex set in Mcurv can be used to either
define an appropriate region of V or to expand the selection by lo-
cating other vertices in Mcurv that are close to the initial selection.

When specifying the region of interest in V , we use the largest
and smallest x,y,z components of all selected points to define an
axis aligned box. This box can be used to clip the volume during
traditional volume rendering (Fig. 7(e,g)).

When expanding the selection to vertices that are close in V ,
the user can specify the maximum and minimum distance that any
vertex is allowed to have to the set of initially selected vertices. In-
cluding those vertices into the color overlay of the selection serves
as feedback to the user (Fig. 7(d,f)).

6. Results

We have used the prototype implementation of our thin-volume
rendering method to visualize and explore six datasets. In defining
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Figure 7: Neutron tomography image of a battery after discharg-
ing: (a) cross-section through the middle; (b) volume rendering
using gray-scale colormap; (c) volume rendering with Mcurv;
(d) thin-volume rendering with selection, also shown in ROI (e);
(f) thin-volume rendering with extended selection, showing neigh-
boring regions, also as ROI (g).

Mcurv, we made heavy use of an existing software infrastructure
that allowed us, among other things, to generate 1D contours in 2D
images, to connect a sequence of 1D contours into a triangulated
surface mesh, to remesh and smooth such a surface, and finally to
flatten it. All labor or time estimates apply if such infrastructure is
in place.

Fine tuning the general rendering parameters required little effort
in all cases considered here, as we had sliders available to interac-
tively adjust a) the minimum and maximum values of the transfer
function, b) the magnitude of the initially constant ray length, and
c) the iso-value (for thin iso-surface rendering). Depending on the
desired quality of the result, local interactive ray length adjustments
and geometry manipulations can consume significantly more time.
The results shown here were obtained with at most a few minutes
of manual interaction, indicating a sufficiently close initial tracing
of Mcurv, and thus little need for excessive interactive correction.

Table 1 lists relevant specifications for each dataset. All re-
sults were obtained on a workstation running Ubuntu 18.04
with Intel Xeon(R) (3.20 GHz × 12) CPU and an Nvidia
GeForce GTX 1080 GPU. As can be seen from the fps numbers,
all datasets can be rendered with interactive frame rates.

6.1. Battery – Region Selection

Here, we present the results for a battery that was imaged using
Neutron tomography [ZAF∗20] (data courtesy by Ralf Ziesche,
University College London). The dataset is used to illustrate the
utility of our method in analyzing adjacent regions. The results are
shown in Fig. 7.

The curved surface, Mcurv, was generated from three 1D con-
tours that trace the electrodes in three 2D cross-sectional images
oriented orthogonally to the winding axis (Fig. 7(a)). The images
were chosen at the beginning, middle, and end of the electrode
cylinder. The contours were equidistantly resampled to form poly-
lines and the vertices of adjacent polylines were then connected to

form the triangular mesh Mcurv (Fig. 7(c)). Near-isometric flatten-
ing [AZvT19] was applied to generate Mflat.

Classical volume rendering (Fig. 7(b)) makes it hard to inspect
the whole electrode, while thin-volume renderings (Fig. 7(d,f))
show the unrolled electrode in a single view. Additionally, it al-
lows one to easily select regions (Fig. 7(d,e)) for which neighbor-
ing regions can then automatically get selected in the unrolled data
(Fig. 7(f)) and the original image (Fig. 7(g)). Here, the highlighted
regions show an irregularity that occurs at neighboring windings. It
can be seen that the dark region in the left selection and the bright
region in the middle selection are located close to each other on
adjacent layers.

This example illustrates that spotting an irregularity and pre-
cisely locating it in the thin-volume rendering is simple, whereas
it would be very difficult in classical DVR. The combination of
thin- and classical volume rendering, using the earlier one for in-
teraction, allows the analysis in both the original and the unrolled
state.

6.2. Silver Scroll – Interactive Ray Adjustment

The µCT dataset of a silver scroll [BLLR15,LR20] found at Jerash,
Jordan, was analyzed to showcase the use of the interactive ray
adjustment to remove self-occluding parts from the unrolled visu-
alization.

Similar to the battery dataset, Mcurv was obtained by first tracing
1D contours, which in turn were equidistantly sampled, and the
resulting polylines were connected to a surface mesh. Due to the
much greater complexity of the dataset, we traced contours in 64
out of 1834 cross-sections. The initial curved surface mesh was
then refined, smoothed, and finally flattened using quasi-isometric
flattening [AZvT19].

The result of applying thin-volume rendering to the silver scroll
is shown in Fig. 8(d). Instead of DVR, for this dataset we applied
iso-surface ray-casting since only the surface of the silver scroll
is of interest. In Fig. 8(e), the points on the iso-surface are color-
coded according to the distance (along the ray) from the curved
surface, where blue denotes the distance away from and red closer
to the viewer. As can be seen, in most regions the writing is clearly
visible, but there are some regions, where selecting a single ray
length does not provide satisfying results. An example is illustrated
in Fig. 8(f). Using the interactive ray-length adjustment (Sect. 4.1),
we locally modified the ray length (Fig. 8(f)) and thereby created
an unobstructed view of the writing (Fig. 8(h)).

6.3. Papyrus – Interactive Geometry Manipulation

In this section, we present the results for a µCT dataset [MAB∗20]
of an ancient papyrus package (L/El227b/4-pG Greek papyrus; data
courtesy by Eve Menei and Marc Etienne, Musée du Louvre, Paris).
The package is folded twice in orthogonal directions and it is too
fragile to be physically opened. The visual results for this dataset
are shown in Fig. 9.

In this case, the surface generation started from the flattened
mesh, Mflat, where the vertices were arranged in a regular grid.
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Dataset Rendering type Volume dim. #Faces #Samples fps Generation of Mcurv
Battery DVR 704×664×1024 2540 30 65 ≈ 1 hour
Silver scroll iso-surface 400×408×1834 884,352 80 66 ≈ 2 days
Papyrus DVR 1812×424×1492 210,000 50 42 ≈ 2 hours
Armadillo iso-surface 624×830×997 780 1400 66 ≈ 1 hour
Ribcage DVR 512×512×264 990 60 64 ≈ 1 hour
Knee DVR 160×384×384 6752 80 65 ≈ 1 hour

Table 1: Type of thin-volume rendering, volume dimensions, number of faces in Mcurv and Mflat, maximum number of samples per ray for
image qualities as depicted in this article, corresponding frame rates, and the time it took to generate Mcurv per dataset. In the prototype
implementation the number of samples was kept constant per dataset (that is, shorter ray segments were sampled with higher frequency).
The higher number of samples for the Armadillo is due to the much greater ray lengths with which the dataset was rendered. The times to
generate Mcurv presuppose the existence of a software infrastructure as described in Sect. 6.

This mesh was then virtually folded along two orthogonal folding
lines. The resulting idealized folded mesh was then fitted to the im-
age data using landmark-based thin-plate spline warping [Boo89].

The final curved mesh, Mcurv, only coarsely traces the papyrus
structure (Fig. 9(b)), while the dense layering restricts the lengths
of the rays if rendering neighbouring layers should be avoided. Ac-
cordingly, the initial rendering of the papyrus shown in Fig. 9(c)
contains more holes than can be explained by the poor condition of
the papyrus. When rendering an iso-surface with color-coding the
distance of the iso-surface points from Mcurv, we get hints about
how to move the mesh vertices to fill the holes. The color (blue or
red) indicates on which side of Mcurv the rendered point lies, the
saturation indicates its distance to Mcurv. For example, the blue
color surrounding the hole in the attached subfigure of Fig. 9(c) in-
dicates to which side the papyrus submerges. Shifting the vertices
according to the surrounding color closes the hole as the modified
Mcurv more closely traces the papyrus (Fig. 9(d)).

Even though the papyrus package was only folded twice, volume
rendering of the “folded” data makes it very hard to see any letters.
This problem becomes even more severe when more complicated,
multi-folded packages are to be unfolded.

The presented example shows that the thin-volume renderings
allow to inspect the whole surface of the unfolded papyrus without
any occlusions of the papyrus itself (Fig. 9(c,d)). The task of in-
teractively fitting an initial geometry to a thin structure image data
in 3D is not trivial. Already the evaluation of the quality of a fit
can become intricate. Using the proposed method of painting over
clearly identifiable misaligned regions on a flat mesh while getting
immediate feedback about the quality of the fit, turns this task into
a very intuitive and even pleasant one. Future work will explore
more elaborate geometry manipulation techniques to increase the
flexibility of the manipulation and further relax the requirements
for an initial fit of Mcurv.

6.4. Armadillo – Interactive Ray Adjustment

In this section, we present the results of applying thin iso-surface
rendering to the carapace of a southern three-banded armadillo
(Tolypeutes matacus), imaged using computed tomography (data
courtesy by Ramon Nagesan and Cody Thompson from the Mu-
seum of Zoology, University of Michigan). The dataset was created
as part of the oVert project [oVe17,WCLR∗18]. Here, we show the
applicability of our method to a structure for which no isometric

mapping into the plane exists. We also show the usability of inter-
active ray adjustment to remove parts of the skeleton when looking
at the carapace from the inside.

The results of applying thin iso-surface rendering to this dataset
are shown in Fig. 1. For generating the curved surface, Mcurv, we
manually drew 18 contours, which were equidistantly resampled
and connected to a surface mesh. Again, we applied quasi-isometric
flattening [AZvT19] to create the flattened mesh, Mflat.

As can be seen in Fig. 1(a), volume rendering of the unflattened
dataset does not allow one to see the whole carapace at once. How-
ever, this is often required for data comparison. We applied iso-
surface ray-casting to render the flattened carapace. Since the out-
side is not occluded, no interaction was necessary to obtain the de-
sired result (Fig. 1(c)). However, the inside of the carapace is heav-
ily occluded by the skeleton, because we chose a long ray length.
This example shows that if Mcurv has a low curvature, even rather
thick volume slabs can be rendered with reasonable results. By ap-
plying the interactive ray-length adjustment, we removed the upper
right part of the skeleton (Fig. 1(d)) to create an unobstructed view
onto the inside of the carapace.

The flattened view from the inside allows the user to relate
nearby structures to the position of the carapace. Interactive modi-
fication of the ray lengths enables the reduction of occluding struc-
tures to the desired degree, which might even mean the complete
removal of inner structures.

6.5. Ribcage – Flattening

Here, we present the result for the CT scan of the Visible Human
Male dataset [SASW96]. In particular, we look at the ribcage and
unfold the ribs (Fig. 10).

The curved mesh, Mcurv, was generated from 16 manually
drawn polylines, each with the same number of points so that they
roughly trace the ribcage. This surface was then flattened using a
relaxation-based approach [BLH∗17] by center-aligning the poly-
lines before starting the relaxation.

The resulting thin-volume visualization shows a high similar-
ity to the resampling-based results presented by Kretschmer et
al. [KST∗14]. Compared to the classical DVR of the unflattened
dataset, the thin DVR does not require to rotate the dataset in or-
der to completely inspect all ribs. However, our approach still al-
lows rotating and zooming in order to obtain better views or to
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Figure 8: Silver scroll: (a) volume rendering of µCT image;
(b) same as (a) with Mcurv; (c) Mcurv; (d) thin iso-surface render-
ing; (e) thin iso-surface rendering with distance to Mcurv color-
coded (blue=behind, red=in front of Mcurv); (f) zoom-in with oc-
cluding structure; (g) modified ray length color-coded; (h) occlud-
ing structure partially removed.

more closely inspect anomalies. Note also that information about
the spatial context, such as muscle tissue, is preserved.

6.6. Knee – Interactive Geometry Manipulation

The data visualized in this section is from the OAI database [OAI,
PGE∗06]. It shows a knee imaged with MRI that has a cartilage
lesion located at the medial femoral condyle.

The curved surface (Fig. 11(a)) represents the articular cartilage
region of the femur (data courtesy by Alexander Tack and Felix
Ambellan) [ATEZ19]. The flattened surface (Fig. 11(b)) was gen-
erated using near-isometric flattening based on the shape represen-
tation described by Ambellan et al. [AZvT19].

The automatically generated surface does not immediately allow
one to see all the interesting structures (Fig. 11(c)), since part of the
surface lies inside the bone instead of on its boundary. Interactively

(a) (b)

(c)

(d)

min max

min max min max

Figure 9: Greek papyrus package: (a) volume rendering; (b) vol-
ume rendering with Mcurv; (c) thin-volume rendering for badly
fitting Mcurv; (d) improved fit of Mcurv revealing some Greek let-
ters.

adjusting the mesh vertices brings out a bright structure next to
the medial meniscus which represents accumulated joint fluid as an
indicator of a pathology (Fig. 11(d)).

For such data, using classical DVR for diagnostic purposes is
difficult, since the structure of interest is both curved and very thin.
Adjusting the visualization using DVR by changing the transfer
function or volume editing will be difficult and time-consuming.
Thin-volume rendering might be an effective alternative for this
and similar diagnoses that frequently occur in clinical practice.

7. Discussion & Conclusion

We have presented an interactive ray-casting-based method for the
rendering of thin volumetric structures with a curved domain. The
presented results suggest that the method is generic in the sense that
it can be easily applied to a large variety of datasets even though
it was originally developed for the analysis of rolled and folded
writing material, in particular papyrus. The achieved frame rates
(Table 1) indicate the suitability of the method for interactive ex-
ploration. All datasets, despite their range of volume dimensions,
mesh sizes and sampling rates, could be rendered with frame rates
larger than 40 fps. The method works also surprisingly well even
for quite thick structures (see, for example, the Armadillo dataset
in Fig. 1).

The major bottleneck for applying the tool is the generation of
curved surfaces approximating the thin volumes to be rendered. To
speed-up this process, specifically tailored application-dependent
tools are needed. Presenting these tools was outside the scope of
this paper.

A limitation of the presented method is that linear rays trans-
formed using curved meshes as described, will eventually cross.
How quickly this happens depends on both ray length and local cur-
vature of Mcurv. Crossing rays can lead to duplicated renderings of
the same feature at different locations of Mflat and to an inversion
of their order. This was not an issue for the mostly thin volumes
or, in case of the Armadillo, for volumes with low curvature inves-
tigated here. In order to support the rendering of thicker volumes
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Figure 10: Ribcage of the Visable Human Male: (a) DVR;
(b) DVR+Mcurv; (c) thin DVR.

around surface meshes with higher curvature than that used for the
Armadillo carapace, we plan to explore the use of non-linear ray-
casting as described by Gröller [Grö95] and Vilanova et al. [VB-
WKG01]. However, an extension for non-orthogonal rays will be
needed, at the least.

Even though the thin-volume rendering is most interesting when
the camera looks orthogonally onto Mflat, we deliberately allow
the camera to be changed arbitrarily to give the user the same look
and feel as with a classical volume rendering. For the same rea-
son, we implemented perspective camera mode, which results in a
change of the camera orientation across the screen space, see for ex-
ample, Fig. 3. Since we currently use view-independent ray lengths,
the thickness of the rendered volume changes with the camera ori-
entation, which is another limitation of the presented approach. If
the angle at which we look at the flat surface is around 90◦, the
thickness change is negligible, but the smaller the angle gets the
more noticeable does the thickness change become. This is another
point we want to look at in the future.

Pseudo-coloring the iso-surface rendering with the signed dis-
tance of the iso-surface points to the curved surface provides very
important visual cues for moving the mesh vertices. This has cur-
rently only been implemented for iso-surface rendering but would
also be versatile for the volume rendering mode.

The thin-volume rendering approach was originally developed to
support the visual analysis of rolled and folded papyri, which are
particularly difficult to analyze due to the inhomogeneous struc-
ture of papyrus that is further complicated by the often poor state
of preservation of the ancient documents. Prototypically, we have
implemented a few tools for interactive editing that demonstrate
that intuitive data exploration is feasible using the suggested frame-
work. While the developed interaction tools provide a first step into

(a) (b)

(c) (d)
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max

Figure 11: Femur with cartilage lesion in medial compartment:
(a) cross-sections of MRI image with Mcurv; (b) Mflat; (c) initial
thin-volume rendering; (d) thin DVR after vertex adjustment.

analyzing such complicated objects, the development of more so-
phisticated mesh deformation tools is planned.
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