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Abstract
Color encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized
perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role
in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect
people’s ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at
interpreting visualizations when viewing colors with more salient names (e.g., prototypical ‘blue’, ‘yellow’, and ‘red’ over ‘teal’,
‘beige’, and ‘maroon’). The effect was robust across four visualization types, but was more pronounced in continuous (e.g.,
smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants’ accuracy also improved
as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color
nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual
metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual
properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study
are available at https://osf.io/asb7n

CCS Concepts
• Human-centered computing → Empirical studies in visualization;

1. Introduction

Color plays a central role in the visual analysis and communication
of data. It is rare to find a visualization that does not make use of
color in one form or the other. In some representations, such as
choropleths and scalar fields, color serves as the principal channel
for communicating quantities and spatial patterns.

Designing effective color encodings has been a recurring theme
in visualization research. Over the years, the community has devel-
oped a repertoire of guidelines for color mapping [ZH16; BTS*17].
For example, researchers recommend colors with distinct hues for
categorical data [Mun14]. By contrast, for quantitative data, guide-
lines suggest perceptually uniform scales that vary predominantly
in luminance [RT94]. The assumption here is that gradations of lu-
minance help to convey a sense of order [Mor09]. Moreover, by
limiting changes in hue, an encoding emphasizes differences in
magnitude, while avoiding the appearance of false categories.

The guidelines above are primarily based on how the visual sys-
tem perceives colors. However, colors also evoke rich associations,
including conceptual [TSG*19], linguistic [BK91], and affective
responses [BPS17]. The processing of color stimuli, including vi-
sualizations, is thus likely to involve a number of cognitive subsys-
tems that operate on top of the perceptual system. Visualization in-

terpretation may depend on these higher-level cognitive processes
more than it depends on the perception of color appearance. Yet,
it is still unclear how these multifaceted associations impact one’s
understanding of visualized data.

Emerging research has challenged the purely perceptual ap-
proach to color design. For example, recent work shows that ‘col-
orful’ visualizations containing a variety of nameable colors are
easier to interpret [RS21]. In particular, the study demonstrates an
unusual advantage for rainbow color scales in a visual inference
task involving scalar fields. Yet, comparing color nameability with
perceptual properties created a confound in that study: as the per-
ceptual difference between colors increased, their names became
more distinct. Therefore, it was inconclusive which of the two fac-
tors was responsible for the improved performance. Given compet-
ing constraints, should a designer optimize for linguistic properties
(e.g., by choosing colors with varied and unique names) or is it
enough to consider perceptual factors alone (e.g., the perceptual
distance and uniformity between colors)? Understanding how the
perceptual and linguistic associations of color affect performance
is vital for effective visualization design. Furthermore, given the
widespread use of color in data displays, it is important to evaluate
those effects in a variety of representations.
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In this paper, we address two research goals. First, we aim to un-
tangle the linguistic effects of colors from their perceptual appear-
ance. Specifically, we study two nameability metrics for colormaps:
name variation, a measure of the number of nameable colors, and
name salience, the degree to which these colors have unique and
reliable names. Our central hypothesis is that nameability signifi-
cantly improves the interpretability of visualizations—even those
containing purely quantitative data. Our second goal is to test if
the linguistic associations of color are similarly beneficial (or mer-
itless) in a variety of visualization types. We specifically evaluate
a mix of continuous and discrete representations: 2D scalar field,
heatmaps, choropleth maps, and continuous geographical maps.

We test our hypotheses in two crowdsourced experiments. Par-
ticipants observed color-coded visualizations and made inferences
about the models underlying these visualizations. We find that,
across four visualization types, participants were more accurate
when viewing encodings with uniquely nameable colors. In partic-
ular, incorporating colors that can be described using salient terms,
such as ‘red’, ‘yellow’, or ‘blue’ led to more accurate inferences,
as compared with similar colors of lesser name salience (e.g., ‘ma-
roon’, ‘teal’, or ‘beige’). These performance variations could not
be explained by an alternative perceptual model, suggesting that
the benefits of color nameability are cognitive in nature. Our find-
ings provide a deeper understanding of the role of color names in
data interpretation. The results also suggest that linguistic proper-
ties of color can be a better predictor of usefulness than traditional
perceptual measures (e.g., perceptual discriminability). To that end,
we contribute concrete metrics that help in gauging colormap util-
ity. Our findings call for new guidelines and color design tools that
prioritize nameability as a central metric, even, counterintuitively,
for data that lacks inherent linguistic associations.

2. Related Work

Color encoding guidelines for quantitative data have historically
emphasized perceptual uniformity [Mor09; vdWS15] and/or lumi-
nance monotonicity [RT94; War12]. Diverging color scales have
also been recommended, particularly for choropleths [Bre96]. The
latter includes carefully crafted ‘spectral’ schemes [Bre97]. Other
researchers, however, strongly advise against ‘rainbow’ colormaps
for quantitative data [BI07; Mor16; RT98], given their lack of per-
ceptual order and uniformity. On the other hand, hue variation is
recommended for categorical data [Mun14]. Selecting ‘semanti-
cally resonant’ colors (e.g., yellow for banana and blue for water)
is thought to further aid chart interpretation [LFK*13; SLL20].

Empirical studies of color have covered a variety of percep-
tual tasks, including detection of localized features [KRPC00;
WTB*18], quantity estimation [War88; RNA18], and comparison
of color values [LH18]. For instance, Ware tested people’s accu-
racy in estimating quantities in color-coded scalar fields, and found
spectral (i.e., rainbow) schemes to be more accurate [War88]. These
results were attributed to a reduction in simultaneous contrast ef-
fects. For tasks requiring form perception, however, a monotonic
luminance ramp is thought to be more effective [RK01; War88].

Studies with domain experts have appeared in the litera-
ture [DPR*18; BGP*11]. However, the tasks reported by those

users (e.g., diagnosing heart disease) were often reducible to ele-
mentary perceptual operations, such as finding low-lying regions in
an arterial scan [BGP*11] or estimating average values [DPR*18].
Few studies have investigated whether color choice impacts perfor-
mance in inferential tasks, wherein an analyst must infer something
about the model or phenomenon that underlies a visualization. Such
tasks are likely to be interpretive in nature, and may necessitate
color designs that are optimized for cognitive processing as op-
posed to perceptual precision. Recent work has shown that name
distance can be a good metric of color utility in graphical infer-
ence [RS21]. However, that work could not uniquely attribute the
results to linguistic aspects. We adopt a similar task (i.e., graphi-
cal inference), but employ more nuanced nameability metrics. We
also study the effects of nameability in a variety of visualizations.
Our experiments are specifically designed to separate linguistic and
perceptual effects, thus allowing for more specific guidance.

2.1. Color Names

Color names refer to the language terms we use to describe dif-
ferent colors [BK91]. But more than simply serving as linguis-
tic labels, color names are thought to categorize our perception
of color [Har87]. Evidence for categorical color perception comes
from the fact that people are better at discriminating between colors
that have distinctive names. For instance, Winawer et al. found Rus-
sian speakers to be faster at discriminating between shades of blue
that are otherwise perceptually similar [WWF*07]. The effect was
attributed to two words in Russian: goluboy for light blue and siniy
for dark blue. To Russian speakers, these colors are as distinct as
brown and orange [Par05]. Similarly, Healey found that people re-
quire a minimum name difference to discriminate colors effectively
in visualizations [Hea96]. Liu and Heer also suggest that colormap
interpretation involves naming and perceptual factors [LH18].

Not all colors are equal. Berlin and Kay argued that certain col-
ors are psychologically ‘salient’ given their association with basic
names in many languages [BK91]. Black, white, red, green, yellow,
and blue are examples of monoleximic terms thought to represent
an especially salient part of the color space [HMNP72]. Such col-
ors tend to exhibit ‘stability of reference’ [Bol78], with most people
agreeing on their name associations. Still, the role of color names in
visualization interpretation remains underexplored, except perhaps
in categorical assignments [SS15; SLWF18; GLS17; LFC*20]. We
investigate how color nameability impacts quantitative data inter-
pretation, a domain with no obvious linguistic associations.

The computer vision and visualization communities have taken
interest in building color name models, given their potential ap-
plications [Moj05; BTBV02; CSH08]. One model by Heer and
Stone [HS12] builds on a very large survey [Mun10]. The model is
a discretization of the CIELAB color space, accompanied by met-
rics for color name distance and salience. We employ this model
for our nameability measures, given its empirical foundation and
the useful operations it provides.

3. Research Questions & Methods

We conducted two crowdsourced experiments to understand how
the linguistic associations of color affect people’s ability to make
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inferences from quantitative, spatial data. The experiments were
designed to answer three research questions:

RQ1 — How does color nameability affect the interpretation of
visualizations? We conceptualize nameability as the ability to cate-
gorize and refer to colors by their names. We consider two metrics
to quantify this construct: color name variation, a measure of the
number of nameable colors in a given color scale. For example, the
sequence nnnnn incorporates approximately three distinct color
names: purple, pink, and white. By contrast, a rainbow sequence of
nnnnn incorporates a wider variety of names: blue, cyan, yel-
low, orange, and red. Rainbow thus has higher name variation. We
expect this metric to correlate with interpretability.

The second nameability factor we consider is color name
salience, the degree to which a color is associated with a unique
term. To illustrate, consider n, which most people associate with
the prototypical term ‘red’. When a large majority of observers re-
fer to a color uniquely using the same term, we can say that the
color is endowed with a highly salient name. On the other hand,
take n, which is likely to evoke more varied responses, such as
‘maroon’, ‘dark red’, ‘crimson’, and possibly even plain ‘red’. Be-
cause of its multiple name associations, this color exhibits rela-
tively lower name saliency. We expect people to perform better with
colors of more salient names.

RQ2 — To what extent does color nameability affect perfor-
mance, beyond that which is sufficient for perceptual discriminabil-
ity? In other words, is it enough to select colors that are perceived
as different, or is it important that those colors be also associated
with distinct and unique names? For example, the earlier sequence
of nnnnn incorporates purple, pink, and white, which are em-
pirically salient colors. By comparison nnnnn incorporates teal
and beige–names that are less salient on average. This is despite
that fact that these two sequences have virtually identical percep-
tual properties. We hypothesize that it is easier to interpret visual-
izations encoded with the first color scale than with the second.

RQ3 — Assuming there are advantages to encodings that op-
timize color nameability, do these benefits hold true across dif-
ferent visualizations? We are specifically interested in the effects
of nameability on discrete visualizations, such as choropleths and
heatmaps, versus similar continuous representations, like smooth
geographical maps and scalar fields.

We provide a deeper discussion of our hypotheses in §4, and
formally define our two nameability metrics in §5. But first, we in-
troduce the graphical inference task employed in our experiments.

3.1. Modeling Interpretive and Inferential Tasks

Empirical research on colormap characteristics have emphasized
elementary perceptual tasks, such as value estimation [War88;
RNA18] and feature detection [WTB*18]. Though useful, these
studies do not adequately reflect the more interpretive analyses peo-
ple undertake with visualizations. Consider, as an example, an epi-
demiologist who is modeling the spread of an infectious disease
by analyzing simulation results from a handful of competing mod-
els. These simulations may be visualized as choropleths that depict
infection rates at the county level (e.g., similar to Figure 1-left).

Here, the researcher may be interested in comparing the simula-
tions on whole to understand where the models converge or differ.
The researcher could conclude that the models are in agreement,
even though the simulations might exhibit slight variations. Alter-
natively, the researcher may declare one of the models to be unique
in that it exhibits a markedly distinct outcome. In conducting this
kind of visual analysis, the researcher may perform elementary per-
ceptual queries, such as estimating the color value at landmark lo-
cations in the map. However, it is unlikely that the analysis can be
completed alone by a sequence of value retrievals. Instead, the re-
searcher will likely resort to assessing the broader spatial patterns;
patterns of infection from several maps need to be compared, dif-
ferences attended to, and observations integrated [RTB08], before
one can begin to characterize the relationships between the models.

Inferential tasks, where the analyst must infer model characteris-
tics from an ensemble of visualizations, abound in both the compu-
tational and natural sciences. The focus here is not on the recovery
of quantities but rather on patterns and distributions, which enable
one to infer qualitative differences between visualizations. These
operations may necessitate color encodings that facilitate attention
to patterns, perhaps at the expense of quantitative precision.

We operationalize notions of ‘interpretation’ and ‘inference’
in our experiments by appropriating a graphical inference
task [BCH*09; WCHB10]. This task was conceived as a visual
equivalent to statistical hypothesis testing. It is meant to test if an
observer can tell apart the ‘real’ data from other distributions that
could have arisen by chance. The setup involves concealing a plot
of the real data in a lineup that also contains several other ‘decoy’
plots sampled from a ‘null’ distribution. An observer is then asked
to identify the plot that “doesn’t belong”, with the correct answer
being the real plot. Successful discrimination amounts to making a
(correct) inference that the two models (i.e., the real and the null)
represent distinct phenomena. The analogy to statistical inference
makes the test useful for controlling the rate of false discovery.
However, it can also be used to compare the statistical power of dif-
ferent visualization techniques [HFMC12] or, for that matter, dif-
ferent colormap designs. If a a particular colormap makes it easier
to discriminate between models, then that colormap can be said to
have higher power. We adopt this task, and use it to test if colormaps
with better nameability can improve graphical inference.

3.2. Synthesizing Lineup Visualizations

We start by synthesizing a target model. We use a mixture of 2D
Gaussian kernels that placed randomly within a 2D domain. We use
anywhere between 3 and 6 kernels, randomly varying the parame-
ters of those kernels (centroid, standard deviation, X-Y correlation)
within a fixed range (determined through piloting). The individual
kernels are integrated to form a joint probability density function.
We then obtain a corresponding decoy model by perturbing the pa-
rameters of the kernels in the target model. The degree of pertur-
bation dictates the ensuing target-decoy dissimilarity; larger per-
turbation amounts to higher target-decoy divergence, which would
be easier to discriminate visually. We quantify the latter using KL
divergence, the entropy-distance between the two models.
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Choropleths Smooth maps

Experiment 1 Experiment 2

Discrete heatmaps Scalar fields

jet turbo purple-pink teal-beige

Figure 1: Example lineup stimuli from the two experiments. The observer is tasked with identifying the plot that doesn’t belong. The answers
can be found on the last page of the paper.

The last step in generating a lineup is to sample both models.
Three plots are sampled from the decoy, and one is sampled from
the target. The plots are then displayed to participants in a 2×2 lay-
out (see Figure 1). The participant is tasked with identifying the plot
that does not belong. Note that in addition to the principal target-
decoy variation, the decoy plots will also vary among themselves
due to the random sampling. The observer thus needs to consider
which plot features reflect true differences between the underlying
models, as opposed to fluctuations arising from the sampling pro-
cess. These added complexities make for a more interpretive task,
as compared with tasks that focus on value estimation [RNA18;
RP19] or image similarity [DPR*18]. Furthermore, the ontological
parallel to statistical inference provides a useful approach to eval-
uating color utility for data interpretation purposes. Note also that
the synthetic procedure allows for lineups with a variety of charac-
teristics and patterns to emerge, due to interactions between multi-
ple Gaussians. Model-differentiating features also occur at different
color levels (e.g., as hotspots, middle, or lower values).

4. Hypothesis Development

Visualization guidelines suggest that colors should “faithfully rep-
resent the magnitude of continuous data” [RK01]. However, it is
unclear if quantitative precision is always important to the interpre-
tation of visualizations [BCF20]. Many analyses can be completed
by operating on visual proxies [JOEF19]—task-relevant visual fea-
tures that allow the viewer to entirely skip quantitative interpreta-
tion. Consider the visual inference task introduced in §3.1 (illus-
trated in Figure 1). Here, an observer may resort to comparing the
color layout in different visualizations in order to identify the plot
with a seemingly ‘odd’ distribution. This comparison on whole can
be fairly complex, so the observer could attempt to break up the
task into several sub-comparisons [Gle17]. One potential strategy
is to selectively attend to a narrow range of quantities (i.e., colors)
at a time. For example, the observer may start by comparing the
hotspots, and then switch to comparing valleys. At a more granular
level, the observer could selectively attend to individual quartiles
in the color scale (e.g., high, mid-high, mid-low, or low values),
comparing the shapes occupied by these quartiles in different plots.

This kind of shape- or pattern-based matching, we conjecture, is
easier when colors appear categorized. Evidence from experimental

psychology suggests that people can easily attend to a shape or
pattern defined by color, but only if that pattern spans a single color
category [HP07]. Color encodings that create a categorized look
may present an advantage here by making it easier to selectively
attend to specific distributional features (e.g., hotspots, valleys, or
middle values). Prototypical color categories (e.g., red, yellow, and
blue) tend to come more readily to attention than others [Ros73].
While visual salience is modulated by low-level vision, task-driven
attention is likely controlled by cognitive and linguistic features,
including color names.

In short, we conjecture that categorizable colors aid selec-
tive attention in visualizations, making it easier to access task-
relevant features for detailed inspection. “Linguistically codable”
colors [Hei72], we speculate, serve as salient anchors, allowing
viewers to compare and reason over complex patterns. These at-
tentional benefits cannot be explained alone by perceptual discrim-
inability, but are rather (at least partially) attributable to color name-
ability. The more linguistically salient the colors, we argue, the
more useful they are as attentional anchors. Accordingly, we posit
the following hypotheses:

H1 — Color categorization is a useful property when making
graphical inferences about visualizations. Categorization tendency
can be increased by incorporating colors with a diverse set of
names. We quantify the latter with a metric referred to as color
name variation (see §5 for definition). We expect people to be more
accurate when viewing color encodings of higher name variation.
H2 — Colors with salient linguistic terms (e.g., ‘red’ over ‘crim-
son’) will further improve accuracy in graphical inference. An ex-
ample of a highly name-salient colormap is jet (see Figure 2). It
consists of saturated colors associated with basic terms. Compare
to turbo, which has a similar rainbow appearance but blends colors
that are less prototypical, giving it lower name salience. We expect
people to be more accurate when viewing colors associated with
more salient names.
H3 — The linguistic associations of colors are a better predictor
of performance than their perceptual properties. Specifically, we
expect name salience and name variation to provide a better corre-
lation to accuracy than perceptual distance in the LAB space.
H4 — We hypothesize that name salience and name variation will
have similar positive effects across different visualizations. More
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specifically, we expect the effects to hold in smooth (e.g., scalar
fields) and discrete representations (e.g., choropleths).

H1 was proposed by Reda and Szafir [RS21], who found sup-
port for it. However, they were unable to uniquely attribute the
observed benefits to linguistic associations or to perceptual fac-
tors (color name variation was highly correlated with perceptual
discriminability in their setup). Our second hypothesis (H2) pro-
vides further nuance by considering not only the distinctiveness of
color names but also their linguistic prominence. Name salience, in
particular, is not tightly correlated with perceptual discriminability
(see Figure 3). We take advantage of this fact by testing colormaps
with similar perceptual discriminability, but that which exhibit dif-
ferent name-salience levels. Thus, in addition to independently test-
ing for effects of name salience and name variation, our study al-
lows us to test an overarching hypothesis: the linguistic properties
of colors are a better predictor of performance than perceptual dis-
criminability, in a graphical inference task (H3). The counterargu-
ment (¬H3) is that linguistic properties do not explain participants’
performance any more than what can be readily explained by per-
ceptual differences. Lastly, H4 generalizes these effects across sev-
eral visualization types.

5. Linguistic and Perceptual Metrics

We formalize two metrics of color nameability: name salience and
name variation, both of which are specified in terms of operations
over Heer and Stone’s color name model [HS12]. We then define
a measure of perceptual discriminability using the CIELAB ∆E76

distance function. Each of these three metrics is a function that
takes a continuous colormap C as input and outputs a real num-
ber. A colormap is a mapping C : [0,1]→ CIELAB, with c = Ci
representing the color value at the ith normalized coordinate. For
example, C0.5 is the color at the center of the scale.

5.1. Color Name Salience

Heer and Stone define name salience as the “degree to which a color
value is uniquely named” [HS12]. They argued that saliency for a
given color can be measured by obtaining a distribution of names
given to that color by independent respondents, and measuring the
focality of that distribution. A narrow distribution, in which virtu-
ally all respondents agree on the same unique term, implies almost
zero entropy (i.e., no randomness), and thus high name salience.
We generalize this notion to a continuous colormap by computing
the entropy at n uniformly spaced points on the scale, and averaging
those measurements:

Name Salience(C) =
1
n

n−1

∑
i=0
S(C i

n−1
)

where S(c) =−H(p(W |c)) = ∑
w∈W

p(w|c)log p(w|c)

S is the name saliency metric from [HS12], defined as the neg-
ative entropy of the distribution p(W |c), where p(w|c) is the prob-
ability of a name w given the color c, and W is the set of all color
names reported by surveyed respondents. Heer and Stone observed

an empirical entropy range of [−4.5,0], which we map to [0,1]; the
closer the value to 1, the higher the name saliency.

5.2. Color Name Variation

This metric is meant to approximate the number of distinctly name-
able colors in a scale. It is computed by sampling the colormap at n
uniformly spaced points, and summing the probabilistic name dis-
tance between pairs of adjacent color samples:

Name Variation(C) =
n−1

∑
i=1

∆cos(C i−1
n−1

,C i
n−1

)

∆cos is a cosine name-distance metric [HS12], which takes two
LAB colors and outputs the probability they evoke different names.
We opted for cosine distance over an alternative Hellinger metric
due to its simplicity (the two metrics tend to produce qualitatively
similar distance results).

5.3. Perceptual Discriminability

Perceptual discriminability refers to the likelihood an observer
can discriminate between different colors [SLL20]. The likelihood
should be proportional to the distance between those colors. For a
continuous colormap, we define perceptual discriminability as the
summation of distances between pairs of adjacent colors. The cu-
mulative distance corresponds to the arc length of a colormap’s
curve in the CIELAB color space. A log transform reduces skew
and improves model fit:

Perceptual Discriminability(C) = log[LAB Length(C)]

= log
n−1

∑
i=1

∆E76(C i−1
n−1

,C i
n−1

)

In all the above metrics, we employ n = 9, sampling the col-
ormap uniformly at nine locations to compute the above nameabil-
ity and perceptual discriminability measures. The choice of an odd
number of samples allows us to sample at exactly the middle of the
scale, which can be an especially salient color in some designs (e.g.,
diverging ramps). Note that there is generally strong correlation be-
tween color name variation and perceptual discriminability (Pear-
son’s r = 0.946). Intuitively, the more distant the colors, the more
distinct the names. We therefore use one or the other in our model
construction. On the other hand, name salience exhibits a weak re-
lationship with perceptual discriminability (see Figure 3). Name-
ability thus cannot be explained by perception alone, but rather re-
quires knowledge of linguistic associations [BK91].

6. Colormap Selection

We selected a set of 6 colormaps for our experiments representing
various designs (see Figure 2). We first started with a corpus of 235
color scales that were collected from a variety of sources by Smart
et al. [SWS19]. We then selected three colormap pairs with increas-
ing degrees of name variation and, by extension, increasing levels

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

53



Reda et al. / Color Nameability Predicts Inference Accuracy in Spatial Visualizations

turbo
salience: 0.41
variation: 5.25

jet
salience: 0.57
variation: 4.78

grey-red
salience: 0.39
variation: 2.57

blue-brown
salience: 0.25
variation: 2.66

teal-beige
salience: 0.20
variation: 1.94

purple-pink
salience: 0.47
variation: 1.13

white

beige

pinkpurple

teal

whitegrey red

teal white brown

blue

blue

yellow red

yellow

Figure 2: We selected six colormaps for Experiments 1 and 2. The top row represents scales with relatively high color name salience.
Curves show the running name salience (blue) and name distance (red) measurements across the scale. The summary measures are in text.
To illustrate the concept of name saliency, we show the distribution of names given to a color by survey respondents, along with the most
common name. A narrower distribution implies a color is more strongly associated with a specific term, contributing to higher name saliency.

Perceptual Discriminability
( log-LAB Length )

Na
m

e 
Sa

lie
nc

e

teal-beige

purple-pink

grey-red

blue-brown

turbo

jet

Figure 3: Perceptual discriminability vs. color name salience for a
235-colormap corpus. The six selected colormaps are highlighted.

of perceptual discriminability: <teal-beige and purple-pink>—low
name variation, <blue-brown and grey-red>—medium name vari-
ation, <turbo and jet>—high name variation. The three pairs also
cover three distinct designs: multi-hue with monotonically increas-
ing luminance, diverging scheme, and a rainbow design, respec-
tively. For each pair, we purposely selected one colormap with low
name salience and another with high salience. Specifically, teal-
beige, blue-brown, and turbo have a relatively low name salience
(.2, .25, and .41, respectively), whereas purple-pink, grey-red, jet
enjoy higher salience (.47, .39, and .57). Figure 3 plots the relation-
ship between name saliency and perceptual discriminability, high-
lighting the six selected colormaps.

This colormap selection enables us to independently estimate the
effects of name variation (H1) and name salience (H2). If the latter
indeed improves interpretation, we would expect to see differences
in performance within the pairs, which are otherwise virtually iden-
tical in perceptual discriminability. This near equivalence further
allows us to attribute within-pair differences (e.g., between teal-
beige and purple-pink or between turbo and jet) to linguistic rather
than perceptual factors (H3).

7. Experiment I

We evaluate the six colormaps above in a graphical inference task
with two visualization types: 1) a choropleth map of the US with
counties as geographical units and 2) a smooth map spanning the
same geography, but with the data varying continuously. Figure 1
illustrates the two conditions. We employ the synthetic procedure
described in §3.2, sampling three plots from the decoy model and
one plot from the target. We aggregate sample data by county in
the choropleth, and normalize by county area. In the smooth map
condition, the samples are aggregated pixel-by-pixel.

7.1. Pre-study

Participants’ ability to infer the correct target may differ across
the two visualizations, given differences in how model samples are
aggregated. We therefore conducted a pre-study in order to deter-
mine appropriate levels of target-decoy divergence (i.e., difficulty).
We recruited 50 participants from Amazon Mechanical Turk who
were screened for color-vision deficiency. Participants completed
19 trials with each of the two visualizations, for a total of 38 trials.
Each trial consisted of a freshly generated lineup. In both visual-
izations, we modulated trial difficulty by synthesizing target-decoy
pairs with varying levels of KL divergence. Specifically, we uni-
formly sampled trials with divergence between 6% and 30%, pro-
viding a range of barely noticeable to highly salient lineups. Lower
divergence implies less noticeable differences between the target
and the decoys and, thus, more difficult judgement. We used the
viridis colormap (a default in many systems) to visualize all line-
ups in the pre-study. We fitted the results to a logistic regression
model to predict the expected inference accuracy for the two visu-
alizations as a function of KL divergence.

We did not find significant difference between the smooth map
and the choropleth (Wald’s Z = 0.833, p = 0.8389). This suggests
that people can make inferences with similar accuracy in both rep-
resentations. We used the logistic model to predict a divergence
level that would lead to an expected accuracy of 62.5%—halfway
between chance (P=0.25) and perfect accuracy. Pooling results
from the two visualizations, the model predicts a KL divergence
level of 14.86%, which we adopt for all stimuli in the main experi-
ment.
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7.2. Participants

For the main experiment, we recruited 100 participants (59 males,
41 females) from Amazon Mechanical Turk. We recruited workers
who are US residents and who have a minimum task-approval rate
of 97%, excluding participants in the pre-study. Participants com-
pleted a color vision test consisting of 14 Ishihara panels prior to
enrolling in the experiment. They received a $3 compensation.

7.3. Experiment Design

We employ a mixed design: visualization type (choropleth or
smooth map) was varied between-subjects, whereas colormap (6
designs) was a within-subject factor. Half of the participants (50
individuals) saw only choropleth maps, and half saw smooth maps.
All participants were tested with the six colormaps. The experi-
ment was blocked by colormaps (6 blocks in total), with random-
ized block order. Participants completed 12 trials with each block,
for a total of 72 trials. A trial consisted of a newly generated lineup
with 4 choropleths or smooth maps. Individual maps were sized
to fit within a 350×250-pixels bounding box. A color scale was
displayed to the right of the lineup. Participants were instructed to
“click on the plot that doesn’t belong”. After making a choice, they
confirmed their selection by pressing Enter, and moved to the next
trial. All lineups consisted of three decoys and one target plot (the
correct answer). All trials had a fixed KL divergence of 14.86%
(based on results from the pre-study).

7.4. Procedure

Participants first completed the color vision test, followed by a brief
tutorial. They then completed a training session with 24 practice
trials (4 practice trials × 6 colormaps). During practice, partici-
pants were provided with feedback and informed of the correct
plot. They then completed the analyzed trials, in which no feed-
back was provided. In addition to the trials, we randomly inserted
2 engagement checks per block, for a total of 12 checks through-
out the experiments. Engagement checks consisted of lineups with
high target-decoy divergence (36%), making them very easy to an-
swer (accuracy on the engagement checks was 96.3% on average).
Participants who failed the majority of the checks were removed
from the analysis. We recruited new participants in replacement of
those excluded, until we reached 100 individuals.

7.5. Results

Participants completed the experiment in 25.97 minutes on average
(σ = 9.47). Altogether, they provided 7,200 binary rated judge-
ments (correct for inferring the target plot). On average, partici-
pants achieved 74.6% accuracy at the task (σ = 15.3%). Figure 4
shows the observed accuracies as a function of colormap. We fit
these results to two logistic regression models: A linguistic effects
model that predicts participants’ accuracy using a colormap’s name
variation and name salience as independent variables. The model
also includes a discrete variable representing the visualization type
(choropleth or smooth map), plus interaction terms between visual-
ization and the two linguistic factors. A second perceptual model
predicts performance based on a colormap’s perceptual discrim-
inability (i.e., log-LAB Length). The model similarly includes a
fixed effect of visualization type and its interaction with percep-
tual discriminability. Both models also include a fixed effect that
accounts for the target-decoy divergence in a given trial. While di-
vergence is set to a fixed level, the stimulus synthesis procedure
introduces inevitable but small variations between the trials, which
we account for. Lastly, we incorporate a random intercept to ac-
count for individual variations among participants.

The linguistic model predicts based on the nameability of a col-
ormap, enabling us to independently test for effects of color name
variation (H1) and name salience (H2). By contrast, the percep-
tual model relies solely on the appearance of colors, thus providing
a more parsimonious and purely perceptual explanation of the re-
sults. We analyze the two models separately and then compare their
likelihoods to infer which of the two is more plausible (H3).

7.5.1. Linguistic Model

The model indicates color name variation to be a significant pre-
dictor of inference performance (Wald’s Z = 5.227, p < 0.0001).
Adding one distinctive name to the color scale improves the odds
of correct inference by 1.14 (95% CI: 1.09 — 1.20). For exam-
ple, comparing jet and grey-red (a difference of 2.21 in the number
of names), the odds of inference are 1.34 times higher with jet.
The model also indicates a significant main effect of color name
salience (Z = 2.409, p < 0.05); a unit-increment here increases in-
ference odds by a factor of 2.20 (CI: 1.16 — 4.17). As an exam-
ple, the difference between the high- and low-salience colormaps is
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0.19 on average. Accordingly, we would expect people to be 1.16
times more accurate when viewing a highly name-salient colormap.

We found no evidence of interaction between visualization type
and color name salience (Z = 0.728, p = 0.467), or between visu-
alization and name variation (Z = 1.204, p = 0.228). Nameability
seems to have a similar positive effect in both visualizations. There
was, however, a main effect of visualization type (Z = 2.011, p <
0.05); participants who saw the smooth map made more accurate
inferences (by a factor of 1.63, CI: 1.01 — 2.64).

7.5.2. Perceptual Model

Perceptual discriminability is a significant predictor of performance
(Z = 6.942, p < 0.001). A step increase in log-LAB Length im-
proves the odds of inference by a factor of 1.6 (CI: 1.4 — 1.83).
There was no evidence of interaction between visualization type
and perceptual discriminability (Z = 1.630, p = 0.1030).

7.5.3. Model Comparison and Discussion

We use AIC scores to compare the goodness-of-fit for the two mod-
els (lower AIC is better). Table 1 provides this metric along with
other criteria. The AIC score for the linguistic model is lower than
the perceptual model (∆AIC=3.126). The difference, being greater
than 2, indicates that the former provides a significantly better
fit [BA02]. The likelihood ratio indicates that the empirical data
is 36.6 times more likely to be observed under the linguistic model
than under the perceptual model.

DeviancelogLikParameters

5 -3746.9 7493.7
7  -3743.3 7486.6

Perceptual
Linguistic

AIC
7502.6
7505.7

Model

Table 1: Goodness-of-fit for the linguistic and perceptual models.

Overall, we find that color nameability is a good predictor of
performance. Both name salience and name variation significantly
affected performance. Specifically, incorporating colors with varied
and unique names improved inferences about maps. These results
support H1 and H2. Importantly, the results cannot be explained by
considering perceptual factors alone. Instead, we obtained signifi-
cantly better explainability with the linguistic model, thus lending
support to H3. Lastly, we did not find evidence for an interaction
between nameability and visualization type, which lends support
to H4. However, a post-hoc analysis of the differences between the
high and low name-salient colormaps suggests the potential for a
zero effect in choropleths (2.72%, CI: -0.04 — 5.88%). In con-
trast, the highly salient color scales provided a non-zero advantage
in smooth maps (3.94%, CI: 0.68 — 7.19%). Note that these dif-
ferences are not significant in our models, which account for in-
dividual variations among subjects. Nevertheless, the data in Fig-
ure 4-right begs a question: could color name salience have a dif-
ferent effect in smooth versus discrete visualizations? We address
this question in a followup experiment.

8. Experiment II

Experiment 1 demonstrates that nameable color encodings confer
a reliable advantage. Yet, the results hint that the benefit could

differ across visualization types. In particular, name salience ex-
erts a smaller effect in choropleths than in smooth maps. A po-
tential explanation is the differences in the spatial structure be-
tween the two representations. Specifically, the choropleth con-
sisted of irregular geography defined by approximately 3,000 US
counties. When sampled from a model, the choropleth shows faster
change in color between adjacent counties. The resulting color-
layout exhibits more ‘randomness’, requiring increased attentional
resources [HW12]. By contrast, the smooth map exhibits more
gradual change, with identical-name colors forming larger con-
nected shapes that may be easier to attend to. A structured color
pattern may thus confer higher advantage for salient names. To
eliminate this confound, Experiment 2 tests two other visualiza-
tions: a smooth scalar field and a discrete heatmap (see Figure 1).
Unlike the choropleth, however, the heatmap utilizes regular bins
(10×10 pixels each), resulting in a more contiguous spatial struc-
ture, despite the discrete look.

8.1. Participants, Experiment Design, and Procedures

We recruited 120 participants from Amazon Mechanical Turk (78
males, 41 females, and 1 did not identify). All participants suc-
cessfully passed a color-vision test. They were compensated with
$3. The design mirrored that of Experiment 1: visualization type
(heatmap or scalar field) was varied between-subjects. Half of the
participants (60 individuals) saw only heatmaps and the other half
saw scalar fields. The size of individual plots was fixed at 350×250
pixels. Colormap was a within-subjects factor, with all participants
encountering the 6 colormaps. The procedures were similar to Ex-
periment 1: participants first saw a brief tutorial and completed 24
practice trials. The main experiment consisted of 6 colormap blocks
presented in random order. Blocks comprised 12 trials each, for a
total of 72 trials (plus 12 engagement checks). Based on a pre-study
with 50 participants, we set the target-decoy divergence to 16.2%
in all trials for a 62.5% expected accuracy.

8.2. Results

Participants completed the experiment in 25.1 minutes on average
(σ = 9.2). They provided 8,640 judgements with an average accu-
racy of 65.9% (σ = 16%). Figure 5 plots the observed accuracies.
As in Experiment 1, we fit the results to two logistic models rep-
resenting competing explanations: a linguistic model, with color
name salience and name variation as predictors, and a perceptual
discriminability model that uses log-LAB Length as a predictor.

We found a significant effect of name salience (Wald’s Z =
3.186, p < 0.01): a unit-increase in salience increases the odds of
inference by a factor of 2.57 (95% CI: 1.44 — 4.59). There was
no evidence of interaction between name salience and visualiza-
tion type, indicating that the effect is similar in scalar fields and
heatmaps. The effect of color name variation was not significant
(Z = 1.827, p = 0.0678). Adding one distinct color name multi-
plies the odds by 1.04. Yet, the effect was not reliable (CI: 0.99 —
1.09) with a possible odds ratio of 1 (i.e., no effect). The percep-
tual model shows a significant effect for perceptual discriminabil-
ity (Z = 4.163, p < 0.001). A step-increase in log-LAB Length in-
creases the odds by a factor of 1.28 (CI: 1.14 — 1.44).
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Figure 5: Performance in Experiment 2. Left: Average accuracy in the six colormaps. Right: Difference in performance between high and low
name-salience colormaps. Dots depict performance deltas for individual subjects. Diamonds depict group average. Error bars are 95% CI.

8.2.1. Model Comparison and Discussion

Table 2 gives fit scores for the two models. We similarly use AIC
to select between the two models (lower is better). The score for
the linguistic model is lower than the perceptual model (∆AIC =
14.56). The difference is substantially larger than 2, providing
strong evidence in favor of the linguistic model.

DeviancelogLikParameters

5 -5211.1 10422.3
7 -5201.9 10403.7

Perceptual
Linguistic

AIC
10419.7
10434.3

Model

Table 2: Goodness-of-fit for the models in Experiment 2.

Overall, the effect of name salience on inference (odds multi-
plier: 2.57, CI: 1.44 — 4.59) was comparable to that of Experiment
1 (2.20, CI: 1.16 — 4.17). However, the confidence intervals sug-
gest a more robust impact for name salience in this experiment. The
results support H2. On the other hand, the evidence for color name
variation (H1) is weak and non-significant (p = 0.0678). The es-
timated effect, while likely positive (1.04), is substantially weaker
when compared to Experiment 1 (1.14). Even so, comparing the
linguistic and perceptual models indicates that benefits of name-
ability cannot be attributed to perceptual properties alone, with the
AIC criterion showing strong evidence in favor of H3. Lastly, we
found no evidence of interaction between either nameability met-
rics and visualization type. In both visualizations, participants’ ac-
curacy improved reliably with high-salience colormaps (mean delta
accuracy: 5.69%, CI: 2.83 — 8.56% in scalar fields vs. 4.02%, CI:
1.19 — 6.86% in heatmaps). These results are consistent with H4.
While 5.7% might seem like a small delta, the impact of name
salience amounts to approximately 9% better inference (CI: 4% —
13%), considering the baseline task accuracy (65.9%).

9. General Discussion

Guidelines for color design in visualization have long emphasized
perceptual properties. However, colors also evoke semantic and lin-
guistic associations, which are known to influence the interpreta-
tion of categorical data [SLL20]. We sought to understand how
color names affect people’s ability to make inferences about quan-
titative visualizations. We studied metrics that capture two name-
ability aspects: the distinctiveness and uniqueness (i.e., salience) of

color names. We theorized that these linguistic properties provide
a better indicator of colormap usefulness for graphical inference.

9.1. Nameability Predicts Accuracy in Graphical Inference

Results from both experiments show that color nameability plays a
role in interpreting visualizations. Moreover, nameability appears
to have greater influence on task-performance than traditional per-
ceptual properties, such as order and uniformity. As an example, the
most accurate colormap in both experiments was jet. The advantage
for this scale can be explained by the variety and saliency of its
color names (prototypical blue, green, yellow, orange, and red). By
comparison, turbo, an almost equivalent rainbow performed less
well. Notably, turbo incorporates similar but less saturated hues
in an attempt to improve perceptual uniformity [Mik19]. However,
these less prototypical colors gave rise to lower name salience, and
ultimately, lower accuracy. Similar differences were found between
purple-pink (high name-salience) and teal-beige (low salience),
with the former performing better despite the two sharing identical
perceptual discriminability. The difference between grey-red and
blue-brown, however, was less clear, possibly due to the smaller
saliency gap between this pair.

In modeling the effects of color name variation and salience,
we found support of both. Evidence in favor of name variation
(H1), however, was marginally weaker in the second experiment
(p = 0.0678). On the other hand, both experiments provided pos-
itive evidence for name salience (H2). It is noteworthy that while
color name variation is highly correlated with perceptual discrim-
inability (r = .95), name saliency does not exhibit the same strong
association. This means that one cannot predict the nameability of
colors (and by extension their usefulness) from their perceptual
properties alone (H3). Indeed, in both experiments, the linguis-
tic model consistently outperformed a more parsimonious LAB-
based model. The results suggest cognitive benefits to color names,
which appear to transcend low-level color appearance. These ben-
efits were observed in all four visualizations we evaluated (H4),
although they may be weaker in choropleths. The latter is possi-
bly due to nonuniform geographies causing a less structured color
distribution, which may strain one’s attention [HW12; BDM*16].

The above results partially–but not entirely–confirm recent work,
which found a positive effect for color name variation [RS21].
However, this work extends those earlier results in several impor-
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tant ways. Specifically, we found a robust effect for name salience,
which turned out to be a more reliable predictor of performance
than name variation alone. In other words, it is not enough to se-
lect colors that vary in name, but it is beneficial to incorporate
colors with salient and prototypical names (e.g., ‘blue’, ‘yellow’
over ‘teal’ and ’beige’). We have shown that nameability is a bet-
ter predictor of colormap utility than perceptual characteristics, a
contribution with theoretical and practical implications. Lastly, we
demonstrated that nameability effects present across a variety of vi-
sualizations. This not only indicates that above nameability-centric
guidelines are robust, but also points to language-driven processes
involved in interpreting quantitative colormaps. It is important to
note, however, that these results may not generalize to other analy-
sis tasks. Prior research suggests that perceptual uniformity and lu-
minance monotonicity are still important factors [LH18; DPR*18;
RNA18]. Colormap designers may therefore need to weigh these
traditional perceptual properties in addition to nameability.

9.2. Color Categorization Considered Helpful

A central question is: why do color names matter, especially
when the data being represented is quantitative, with no obvi-
ous name associations? A potential explanation starts by recog-
nizing that color names serve to discretize a continuous data do-
main into a number of color categories that are easy to reference.
Though researchers have long argued against this kind of catego-
rization [BI07; QPCM19], we suggest that it can be helpful in the
more interpretive tasks like graphical inference. Here, the observer
has to identify a plot containing an unusual data distribution. This
is a useful model task because it requires one to distinguish be-
tween percepts that truly differentiate models from others that are
due to chance (i.e., random sampling). The observer then weighs
those percepts against four competing hypotheses (corresponding
to each of the four plots being the true target).

We speculate that people are better at performing tasks such
as the above when the representation affords visual grouping (or
‘chunking’). A color scale with categorizable colors serves that ex-
act purpose. For example, jet affords grouping of quantities into
rough structures, such as hotpots (red), mid-high values (yellow),
mid-low (cyan), and valleys (blue). An observer can then attend to
those structures more easily throughout the task, as in when com-
paring different simulations. Visual chunking is thought to be a cru-
cial visuospatial strategy in STEM [SWD*20], and color represen-
tations that facilitate this strategy can be advantageous. Conversely,
encodings that give rise to a smooth, highly uniform representation
may complicate some analyses. This observation may explain why
practitioners continue to prefer colorful encodings (e.g., rainbows),
to the dismay of visualization researchers [Mor16].

Colors with salient names are possibly easier to attend to, not
just because nameability improves discriminability (as the experi-
ment with Russian speakers shows [WWF*07]), but also because
salient colors are “linguistically codable” [Hei72]. For instance, it
may be easier to think about ‘red’ vs. ‘blue’ patterns, than it is
to describe ‘maroon’ and ‘teal’ features. Salient linguistic associ-
ations are not only useful for communication, but could also aid
one’s own problem solving loop by increasing the opportunity to
use verbal working memory.

10. Limitations and Future Research

Our results suggest that color design tools should help designers
explicitly think about color names. Examples from the community
already exist. For instance, Heer and Stone provide a set of sample
applications that demonstrate new image editing capabilities based
on color names [HS12]. Colorgorical generates categorical palettes
based partly on name distance and uniqueness [GLS17]. However,
quantitative color mapping tools (e.g., CCC [NCS*19] and Color
Crafter [SWS19]) still only consider perceptual factors. An oppor-
tunity exists to augment these tools with nameability metrics and,
in the process, extend the design space of quantitative colormaps.

Although we show advantages to colorful encodings (e.g., rain-
bows), it is important to note other shortcomings: rainbows may
exclude people with color-vision deficiency. The green area in an
RGB rainbow also suffers from low perceptual discriminability,
which could impede the perception of small features in that re-
gion [WTB*18]. Designers thus need to balance nameability with
other considerations, including accessibility. Future design tools
could aid in optimizing for these potentially competing constraints.

While emphasizing color names appears to be useful in graph-
ical inference, the results may not generalize to other tasks. It is
crucial to understand circumstances under which nameability aids
or hinders performance. In particular, future research may consider
a potential trade off between perceptual precision (i.e., the ability
to accurately retrieve and compare color-coded values in a visual-
ization) versus enabling the observer to think categorically about
color, which may lead to lower quantitative precision. A related
question is how well-suited these different colormap affordances
are for various data distributions, beyond the Gaussian-mixture
models employed in this study.

11. Conclusion

Color is a principal channel for encoding quantitative data. Visual-
ization research has so far focused on the perceptual characteristics
of colors, painting an incomplete picture that minimizes other con-
siderations. We investigated how color nameability affects people’s
ability to interpret and make inferences about visualizations. Re-
sults from two studies suggest that people are more accurate when
viewing colors associated with salient names. Colorful visualiza-
tions with a variety of nameable colors also seemed more inter-
pretable, though that latter effect was not as robust. Together, how-
ever, these two linguistic properties provided a better explanation
of participants’ performance than did the perceptual color prop-
erties. Our findings have theoretical and practical implications for
visualization design. They also suggest a need for design tools to
incorporate color nameability metrics, even for encodings that are
purely quantitative.

Answers for the lineups in Figure 1: From left to right: bottom-
left quadrant; bottom-left; bottom-left; top-right.
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