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Parametrization Aligned T-mesh Quad Layout

Figure 1: Given a seamless parametrization of a surface as input we construct a non-conforming T-mesh aligned with it. A modified version
of the motorcycle graph is employed for this purpose, in which traces do not stop at the first collision. We solve an integer linear program
to assign integers to the arcs of this T-mesh. By carefully constraining this quantization, the result implies a coarse conforming quad layout
whose separatrices deviate less than a user given bound from the directions prescribed by the seamless input parametrization.

Abstract
We present a robust and fast method for the creation of conforming quad layouts on surfaces. Our algorithm is based on the
quantization of a T-mesh, i.e. an assignment of integer lengths to the sides of a non-conforming rectangular partition of the
surface. This representation has the benefit of being able to encode an infinite number of layout connectivity options in a finite
manner, which guarantees that a valid layout can always be found. We carefully construct the T-mesh from a given seamless
parametrization such that the algorithm can provide guarantees on the results’ quality. In particular, the user can specify a
bound on the angular deviation of layout edges from prescribed directions. We solve an integer linear program (ILP) to find a
coarse quad layout adhering to that maximal deviation. Our algorithm is guaranteed to yield a conforming quad layout free of
T-junctions together with bounded angle distortion. Our results show that the presented method is fast, reliable, and achieves
high quality layouts.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models; Mesh geometry models; Shape modeling;

1. Introduction

Quad meshes are the preferred discrete surface representation for
many shape modeling applications of design and engineering alike.
Therefore, the automatic generation of such meshes has been an
ongoing topic of research in computer graphics. For a high quality
quad mesh, individual elements should have angles close to π/2 and
be aligned in certain ways, e.g. to the underlying surface’s prin-
cipal curvature directions. A variety of approaches have been ex-
plored for the generation of quad meshes [BLP∗13]. A class of
algorithms with a particular focus on element shape and align-
ment quality is that of parametrization-based field guided meth-
ods [KNP07, BZK09, KMZ11, BCE∗13, PPTSH14, ESCK16].

An additional quality criterion that these methods, however, do

not explicitly promote is the global structure of the mesh, in partic-
ular the simplicity of the mesh’s so-called block structure or base
complex [BLP∗13, §1.1]. This aspect is closely related to the ques-
tion how the irregular vertices are connected in the mesh by se-
quences of edges. This connectivity constitutes the mesh’s quad
layout [Cam17]. If the quad mesh has a simple, i.e., a coarse layout
it can be viewed as a “mesh of meshes”, a coarse quad partition
with finer regular quad grids inside each patch (Figure 1 right).
This enables the construction of mesh hierarchies, the structured
parametrization of the mesh over simple domains, or the definition
of spline spaces on top of the mesh [TPP∗11, MAB∗19, HSJ∗20].

In this paper we present an algorithm for the creation of coarse
quad layouts on 2-manifold surfaces. Such layouts can then, for in-
stance, be refined to block-structured quad meshes, or be passed as
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connectivity constraints to the above mentioned (natively layout-
unaware) quad mesh generation techniques. The layout construc-
tion – akin to the above parametrization-based mesh generation
methods – is built on top of a seamless surface parametrization.
This allows us to offer explicit control over the layout’s singu-
larity configuration and its directional alignment, to reliably yield
valid layouts, and to share a common foundation with mesh gen-
eration techniques for seamless integration. As a particular feature,
our method offers explicit and precise control over the balance be-
tween the two key opposing objectives inherent to quad layouts:
coarseness and directional alignment.

Problem Statement: Given a seamless surface parametrization
with arbitrary singularities on a surface of arbitrary topology, gen-
erate a coarse quad layout with exactly these singularities as irreg-
ular nodes such that its arcs (also called separatrices) do not direc-
tionally deviate from the parametrization’s isolines by more than a
user-given angular bound α.

After reviewing previous methods for the creation of coarse quad
layouts in Section 2, we describe in Section 3 how we construct a
T-mesh by tracing parametric iso-lines of a seamless parametriza-
tion taken as input. In our method we implicitly encode layout con-
nectivity via a discrete function on this T-mesh. Section 4 details
this encoding and shows how non-negative integers can be assigned
to the T-mesh’s arcs such that a valid and high quality layout is im-
plied. Such an assignment, called quantization, can be found by
solving an integer linear program as presented in Section 5, before
ultimately making the layout explicit in Section 6. We show the ef-
fectiveness of our algorithm on a variety of examples in Section 7.
Figure 1 illustrates the process.

2. Related Work

Early work that involved the generation of quad layouts as a sub-
step produced rather unstructured layouts without any particular
form of shape-aware directional alignment [EH96,BMRJ04]. Later
this problem received dedicated attention and subsequent methods
often take some form of directional guidance into account, whether
by means of the underlying surface’s principal curvature directions,
or more flexibly and controllably by specifically designed or pre-
scribed cross fields, quad meshes, or seamless parametrizations.

Layout Simplification. For instance, the method by Bommes et
al. [BLK11] takes as input a quad mesh with a possibly dense base
complex and iteratively modifies it so as to remove certain helical
connectivity patterns – which are one, though not the sole cause
of low quality base complexes. A coarser quad layout can then be
extracted from the modified quad mesh.

Tarini et al. [TPP∗11] follow a similar strategy but enable more
general modifications by working directly on separatrices (i.e., the
paths forming the layout’s arcs, its patches’ borders). They itera-
tively improve a layout energy which is based on length and di-
rection deviation of the separatrices by removing a separatrix and
bringing the then incomplete layout back into a (coarser) complete
state by a series of separatrix reconnections and an insertion.

Instead of starting with conforming dense quad layouts, Vier-
tel et al. [VOS19] start from an initial non-conforming layout, a

T-mesh with many T-junctions. It is obtained by tracing stream-
lines of a surface cross field. In this layout so-called chord collapses
are applied greedily, in order from narrow to wide, while excluding
collapses that would result in too much directional deviation. Par-
ticularly on complex or closed surfaces, T-junctions may remain in
the final layout, making it non-conforming.

These methods have in common that modifications are applied
iteratively in a greedy fashion.

Layout from Separatrix Candidates. A common strategy to cre-
ate layouts from scratch is based on finding a set of separatrix can-
didates, i.e., paths connecting pairs of prescribed (irregular) layout
nodes in topologically distinct ways, from which a subset is then
selected to define a complete layout.

Razafindrazaka et al. [RRP15] trace isolines of a seamless pa-
rametrization, starting from its singularities (which form the lay-
out’s irregular nodes). Whenever two traces meet, this implies a
separatrix candidate between their two origin singularities. Each
candidate is associated with a cost, penalizing directional deviation
from the parametric isolines. A binary problem is then solved to
select a cost-minimizing subset that properly connects all singular-
ities without crossing in improper ways. In theory the candidate set
is infinite; in practice one needs to restrict to a finite subset. This
may preclude the existence of a valid solution (or a high-quality so-
lution). Tracing up to a maximum distance limit is reported to com-
monly work well, but the existence of a solution is not guaranteed
(unless trial-and-error with increasing distance limit is performed).

Pietroni et al. [PPM∗16] follow a similar approach but create
separatrix candidates based on a cross field [VCD∗16] rather than
a parametrization (which is harder to obtain with the required prop-
erties [CSZZ19]). Similar to [RRP15] they solve a binary linear
program to choose a non-conflicting subset of these. As a conse-
quence of not deriving directional guidance from a parametrization
(which corresponds to an integrable cross field) but rather from
a generic cross field, a complete conforming quad layout cannot
be guaranteed; T-junctions have to be accepted, similar to the ap-
proach of Viertel et al. [VOS19] discussed above. T-junctions may
be reduced by increasing the number of separatrix candidates es-
tablished for each singularity or by iterating the process with fixed
partial layout, but complete removal can only be achieved by in-
serting additional irregularities.

For both these methods, runtime, quality, and even the existence
of a solution depend on the precomputed set of separatrix candi-
dates. If the set is chosen too small there may be no valid subset.
Increasing the candidate set size at the cost of increased runtime
only increases the probability of program feasibility. In contrast,
our formulation, instead of using a binary program which picks
separatrices from a finite set of candidates, employs an integer pro-
gram which can choose from an infinite set of separatrices and is
always guaranteed to be feasible.

[RP17] and [ZZY16] propose further candidate set based meth-
ods, but start from a quad mesh as input. This effectively enables
a fallback to the quad mesh itself or its base complex as a valid
(though commonly rather dense) output layout in case no other so-
lution is found due to the involved restriction.
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Dual Approach. Campen et al. [CBK12] tackle the problem in the
dual space and search for a set of dual loops which separate all sin-
gularities. While the dual setting allows for relatively simple con-
ditions guaranteeing a valid primal layout it does not allow explicit
control over the geometric quality of the implied separatrices.

Mesh as Layout. An alternative approach to create coarse quad
layouts is to use a generic quad mesh generation method (without
explicit layout considerations) and aim for a mesh with very large
elements – which can then be considered a coarse layout. While
some of these methods are robust enough to operate reliably under
this extreme requirement (e.g. [BCE∗13, CBK15]), it is typically
difficult for these methods to control the quality of the resulting
layout under these circumstances (cf. Section 7.1).

3. T-Mesh Construction

A motorcycle graph is a cell decomposition of a surface [EGKT08].
Campen et al. [CBK15, MC19] show how a rectangular partition
of a surface can be constructed by tracing motorcycles starting at
singularities along the iso-lines of a seamless parametrization. The
resulting T-mesh T = (N ,A,P) consists of nodes N for every
singularity and intersection of traces, arcs A consisting of the seg-
ments of a trace between two nodes, and patches P representing
rectangular regions bounded by arcs.

Such a motorcycle graph forms the basis of our quantization
(cf. Section 4) which assigns integer lengths to the arcs and thereby
defines the connectivty of the resulting layout.

We adopt a construction similar to [CBK15], with one important
difference: in our case motorcycles may survive a crash with an
existing trace and continue driving. In such a case a regular valence
4 node is formed at the intersection. Before defining the criterion
that determines this, we establish a few definitions and notation.

Notation. Given two traces ti and t j starting in singularities
i and j, respectively, we refer to the node created at their
intersection as ni j ∈ N . (For simplicity of no-
tation we ignore the fact that two traces may in-
tersect more than once; it will be clear from the
context which intersection node is referred to.)
We define Si j ⊂ A as the set of arcs between
the start of trace ti and node ni j, and li j ∈R as
the total parametric length of those arcs. The two arc sets Si j and
S ji form the legs of a right triangle. Let αi j ∈ (− π

2 ,
π

2 ) be the signed
(ccw) angle of that triangle at the start of trace ti.

We further give a dedicated name, ni∗, per trace ti to the
intersection closest to the origin of ti which satisfies
li∗ > l∗i, i.e. the first intersection of ti with a trace that
starts inside the π/2-sector (blue) around ti (see inset).
In the classical motorcycle graph a trace ti would stop
exactly at ni∗. By contrast, we keep on tracing and only
stop based on the following criterion.

Stopping Criterion. Given a user defined angular bound α, a trace
is stopped as soon as it intersected two traces tk and tl such that

Figure 2: T-meshes on the BUNNY model created for angle devia-
tion bound α = 5◦,15◦,35◦, respectively.

αik ∈ [0,α] and αil ∈ [−α,0], i.e., as soon as on
both sides of trace ti a trace is found such that
the formed triangles are contained in the sector of
half-angle α around ti. With this stopping crite-
rion we ensure that we reach the traces of at least
one singularity on each side of the trace which, intuitively, could be
connected to singularity i by a separatrix which respects the maxi-
mum angular deviation bound. We will see in detail in Section 4.3
how this construction helps to guarantee a maximum separatrix de-
viation. Figure 2 shows a few examples of the resulting T-meshes
for different α and how tighter bounds lead to longer traces.

4. Quantization

A quantization of a T-mesh is an assignment of a non-negative in-
teger qi to every arc ai ∈ A. These values are to be interpreted
as parametric length specification for the arcs, virtually overrid-
ing their length in the input parametrization. Since every arc is
associated with a parametric iso-line, the quantization implies an
assignment of integer parametric distances between singularities
[CBK15]. These distances can be used as constraints for a global
re-parametrization of the surface where every singularity is lo-
cated on an integer position, enabling the extraction of a quad
mesh [CBK15, LCBK19]. This quad mesh’s base complex defines
a quad layout. The edges of the base complex – the separatrices –
connect singularities that lie on the same parametric iso-line. Effec-
tively, the quantization implies which singularities are connected
by separatrices by assigning zero lengths to certain arcs. Depend-
ing on the T-mesh structure and the quantization, singularities may
be connected by separatrices corresponding to different parametric
directions (cf. Figure 3(left, middle)) or not (cf. Figure 3(right)).

While the above previous works aim to find a quantization which
approximates the arcs’ original parametric lengths, we detail in this
section how we instead find a quantization that promotes a coarse
quad layout. We begin by discussing two important properties of a
quantization – validity and consistency – in the following section.
We continue by presenting a sufficient condition which guarantees
validity, and finally describe which additional constraints we set up
to enforce a high quality quad layout.

4.1. Consistency and Validity

In order to compute a valid (locally injective, fold-over free) para-
metrization that adheres to the singularity distance constraints de-
fined by the quantization, two properties need to be fulfilled. The
quantization needs to be consistent and valid [CBK15].
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Figure 3: Layouts resulting from different quantizations. Singular-
ities (dots) are separated in vertical direction leading to an angle
α > π/4 compared to the desired direction (left). With our separa-
tion constraint, singularities are separated in the direction corre-
sponding to the larger difference in the seamless parametrization
always leading to separatrix angles smaller than π/4 (middle). If
both separatrices form an unacceptably large angle, singularities
need to be separated in both directions (right). Note that the actual
quantization (beyond zero vs non-zero) is less important for the lay-
out, consisting of the (bold) edges of the base complex only.

A quantization is consistent if pairs of opposite sides of each T-
mesh patch are quantized to the same length. This property ensures
that all patches remain rectangular in the parametric domain.

A quantization is valid if the distance between any two singu-
larities is strictly positive, such that they do not collapse parametri-
cally. In terms of the quantization this means there must be no arc
path with total quantized length of 0 between any two singularities.

Let di j ∈R2 be the (u,v)-difference between singularities i and j
measured in the seamless parametrization (in some path homotopy
class) and qi j ∈Z2 be the quantized difference vector. W.l.o.g. as-
sume that du

i j > 0 and |du
i j| ≥ |dv

i j|. To ensure validity it is sufficient
to require qu

i j > 0 ∨ qv
i j ̸= 0 [CBK15]. We propose to use instead

the simpler sufficient condition of qu
i j > 0, i.e. singularities are sep-

arated by the quantization in the dominant separation direction in
the input parametrization. While this condition is stricter, what we
effectively exclude are quantizations with qu

i j = 0 and qv
i j ̸= 0 (Fig-

ure 3 left); thereby we already ensure a maximal separatrix devi-
ation of π/4. Even more practically relevant, this disjunction-less
condition is easier to formulate and more efficient to handle.

Campen et al. propose for their iterative quantization improve-
ment to test validity after each change by explicitly searching sin-
gularity connecting arc paths with quantized length of zero. In the
worst case this test is in O(n2) and in general not easily applicable
in the context of solving an integer linear program. In the following
section we present how separation of singularities can be guaran-
teed using only one linear constraint per trace.

4.2. Singularity Separation

To guarantee the separation of singularities in the quantization we
propose a simple criterion based on the following lemma:
Lemma 1. If for every trace ti one of the arcs in Si∗ is quantized
to at least 1, the quantization is valid.

Here, Si∗ is the set of arcs between the start of ti and ni∗, i.e. the
first intersection of ti with an earlier trace (cf. Section 3).

Proof. We show that every singularity in the π/2-sector centered
at a singularity i and around the positive u direction is separated
from i. The same argument then trivially holds for all other para-
metric directions as well.

Let j be the singularity at the start of t∗. Then, j is separated from
i in u direction by at least 1 according to the lemma’s premise. Con-
sider another singularity k within the
π/2-sector and its trace tk in negative
(or positive) v direction towards ti. If
tk intersects the parametric iso-line of
ti it must do so further away than t∗
since t∗ is the intersection closest to
i by definition. Since the intersection
lies behind that of t∗, k is separated by at least 1 in u direction
as well. If, on the other hand, the trace of k does not intersect the
parametric iso-line of ti it must have been stopped before reaching
it. Since at least one of the arcs of tk is quantized to at least one
according to the condition in the lemma, k is separated from i in
positive (or negative) v direction.

Note that Lemma 1 does not depend on our special T-mesh con-
struction and also holds if traces stop at the first intersection.

We conclude that it is sufficient to require one arc of Si∗ to be
quantized to a strictly positive number for each trace ti to ensure
validity, i.e., one constraint per trace is sufficient.

4.3. Layout Constraints

In the previous section we detailed how simple constraints on the
minimal quantization of certain arcs guarantee a valid quantization.
Computing the smallest quantization adhering to these constraints
results in a coarse quad layout. However, the separatrices of that
layout may deviate up to π/4 from the directions of the seamless
parametrization (cf. Figure 3 b). In particular the separatrix corre-
sponding to a trace ti will connect to the first singularity within the
π/2-sector which is not separated in the direction orthogonal to ti.
We propose a simple solution to create layouts in which the separa-
trices do not deviate from the intended directions more than a user
specified maximum of α by enforcing the additional separation of
offending singularities in orthogonal direction (cf. Figure 3 c).

Given two intersecting traces ti and t j with li j ≥ l ji originating
from singularites i and j, we defined in the previous sections con-
straints that ensure the arc set Si j is quantized to at least 1, sepa-
rating i and j in the direction of ti. If S ji will be quantized to 0, i
and j would lie on the same iso-parameter line and would therefore
be connected by a separatrix (unless there is a singularity closer
to i which also lies on the same iso-parameter line). If angle |αi j|
of this separatrix is larger than the user defined bound α we need
to prevent such a quantization. By additionally separating j in the
direction of t j it is ensured that the corresponding separatrix is not
formed. We therefore include the additional constraint that S ji is
quantized to at least 1 for every pair of intersecting traces ti and t j
with |αi j|> α.

In the light of this, we can now explain the rationale behind
our choice of stopping criterion in the T-mesh construction, con-
tinuing a trace ti until at least two traces tk and tl are intersected
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with αik ∈ [0,α] and αil ∈ [−α,0] (cf. Section 3). We want to
guarantee that all separatrix deviations are below the user de-
fined bound. With the constraints above, any separatrix created be-
tween singularities whose traces intersect fulfills this. But what if
the quantization implies none of them, i.e. S ji is quantized to at
least 1 for all traces t j that intersect ti, which may be necessary
due to a combination of separation and consistency constraints?
In that case the separatrix will lie in
the corridor (blue) between the two
potential separatrices connecting the
start of ti to the starts of tk or tl . Since
both these potential separatrices sat-
isfy the bound, the actually implied separatrix (blue dotted line)
lying in between satisfies it as well.

4.4. Feature Lines & Boundaries

Some models contain sharp creases for which it is typically desir-
able that they are represented by arcs in a layout. Similarly, bound-
aries of models should be represented by arcs. Both these cases,
as well as arbitrary, user defined feature curves are supported by
our method by aligning the parametrization with these features and
tracing them with motorcycles to integrate them into our T-mesh
[CBK15]. To ensure that the traced separatrix is not diverted to-
wards another singularity away from the feature curve it is enough
to simply add layout constraints (cf. Section 4.3) for all intersecting
traces. This can be interpreted as prescribing a maximum separatrix
deviation of α= 0 for all traces that follow a feature curve. Figure 9
shows examples where boundary alignment is enforced this way.

5. Integer Linear Program

We established how a quantization can be constrained such that
no separatrix in the implied quad layout deviates more than a user
given bound from the intended direction. In the space of feasi-
ble quantizations respecting these constraints, we are looking for
a quad layout as coarse as possible. In this section we discuss how
such a quantization can be found efficiently by solving an integer
linear program (ILP). We first describe the basic integer linear pro-
gram, which can be constructed in a straightforward fashion follow-
ing the previous discussion. After that we discuss how the program
size can be reduced for better performance of the solver.

5.1. Definition

Our ILP uses one integer variable qi ∈Z for every arc ai ∈A which
represents the quantization of this arc. Every arc ai ∈ A requires a
non-negative quantization:

qi ≥ 0 (1)

For consistency (cf. Section 4.1) we add the following constraint
(analogous to previous work on consistent interval assignment for
non-conforming partitions [CBK15, ULP∗15]) for each pair of arc
sets S and So which make up two opposite sides of a patch:

∑
ai∈S

qi − ∑
a j∈So

q j = 0 (2)

To ensure validity we add the following validity constraints
which ensure that for each trace ti one of its arcs between its origin
and the first intersection ni∗ with a trace starting in the π/2-sector
around ti is quantized to at least 1 (cf. Section 4.2 ):

∑
ak∈Si∗

qk ≥ 1 ∀ traces ti (3)

The layout constraints of Section 4.3 have a very similar form
but are created for every intersection of two arcs forming a triangle
with angles larger than α to prevent the creation of separatrices with
excessive deviation:

∑
ak∈S ji

qk ≥ 1 ∀ ni j with
l ji

li j
> tanα (4)

Finally, to promote layout coarseness, we define the objective to
be minimized as

E = ∑
ai∈A

l⊥i ·qi → min (5)

where l⊥i is half the parametric distance between
the two arcs opposite of arc ai (or half the para-
metric distance between the one opposite arc and
ai itself if ai is boundary). Since the quantization
of an arc specifies the number of quad strips that
pass through this arc orthogonally (in the quad mesh implied by
the quantized parametrization), this energy corresponds to the total
length of the layout’s quad strips.

An integer linear program is feasible if an assignment of vari-
ables exists such that all constraints are satisfied. Campen et
al. [CBK15] show that a consistent quantization always exists in
which all arcs are quantized to at least 1. Such a baseline quantiza-
tion trivially fulfills all our constraints.

5.2. ILP Size

The size of the integer linear program described in the previous
section depends largely on the size of the constructed T-mesh. For
every arc there is one integer variable representing its quantized
length (1), for every patch there are two consistency constraints (2),
every trace adds a validity constraint (3), and for every node created

Figure 4: On the BUNNY mesh with 192 traces the number of arcs
quickly grows for decreasing α values to 189k at α = 0.25◦ but the
number of integer variables remains around 252 (left). Since motor-
cycles need to be traced further and the resulting T-mesh consists
of more elements for decreasing α, timings go up for both T-mesh
construction and setup of the ILP (to 2.9 s and 0.4 s, respectively, at
α = 0.25◦) but the time to solve the problem remains around 0.03 s.
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at an intersection a layout constraint (4) may be created. With de-
creasing angular bound α the traces get longer and the number of
arcs, patches, and nodes in the T-mesh increases quickly (cf. Fig-
ure 4 left). In the following we describe how the program can be
simplified significantly; interestingly, its size ultimately is propor-
tional to the number of traces n, which is a constant independent of
parameter α.

First of all, note that the number of T-junctions in the T-mesh is
at most n since every trace can create at most one T-junction when
it ends.

Now, we begin by looking at the number of variables and
consistency constraints. Consider a simple strip of consecutive
patches bounded by two traces, one on each side. Such a strip
ends at T-junctions leading to wider patches (see inset top) or
narrower patches (bottom). Running across the strip
are individual arcs (blue) which need to be quantized
to the same length for consistency (Equation (2)).
By representing these arcs with the same variable,
the consistency constraint is trivially fulfilled. Con-
sistency constraints are then only needed for opposite
patch sides in which at least one contains more than
one arc which is only the case at T-junctions. Thus, the number of
required constraints is at most n. Further, while strips tend to get
longer for smaller values of α (cf. Figure 2) their total number, and
thus also the total number of integer variables, is bounded from
above by 3

2 n as every strip starts and ends with a T-junction and a
T-junction can be incident to at most three strips.

Finally, we consider the number of validity and layout con-
straints. Section 4.3 describes how the layout constraints are
generated for a given trace when it intersects another one.
These constraints define a set of arcs for which at least one
has to be quantized to at least one. The sets of arcs contain
all arcs between the start singularity and the intersection node.
Similarly, the validity constraints also de-
fine a set of arcs between the start of a
trace and an intersection which needs to be
quantized to at least one (cf. Section 4.2).
Thus, set Si∗ and sets {Si j} created for
trace i can be sorted by size, such that
S0 ⊂ S1 ⊂ . . .⊂ Sk as illustrated in the in-
set. Obviously, if an arc in S0 is quantized
to one, all supersets S1... Sk are quantized
to at least one as well. Thus, a layout con-
straint needs to be created only from the
smallest set per trace. Therefore, the numbers of integer variables,
consistency constraints, validity constraints, and layout constraints
are all O(n).

6. Quad Mesh Extraction

A valid and consistent quantization such as produced by our al-
gorithm specifies which singularities should lie on the same para-
metric iso-lines and thus defines which singularities should be con-
nected by separatrices. There are a couple of ways to make use
of this layout specification. For instance, one can generate a quad
mesh adhering to this layout – in various ways.

In the context of the algorithm of [CBK15] our quantization
could directly be used, as a drop-in replacement, to compute an in-
teger grid map in which singularities are constrained onto specific
integer locations resulting in a coarse quad mesh with one quad
per layout patch. Alternatively, a path search on the T-mesh can
be used to explicitly locate for each trace the closest singularity
not separated in both coordinates. A separatrix between these two
singularities could then be traced in the seamless input parametri-
zation as in [RRP15, §6.1], obtaining an explicit embedding of the
layout arcs.

For reasons of flexibility and guaranteed reliability, we opted
to employ the recent re-parametrization approach of [LCBK19,
§6] for our experiments. In a first step, this algorithm integrates
the T-mesh into the underlying triangle mesh. Then, T-mesh re-
embedding operations are used to get rid of all T-mesh arcs which
are quantized to zero through collapsing. We then follow up with an
additional step: we iteratively extend all T-junctions to the opposite

Figure 5: Results of our algorithm on a variety of meshes. On the
lower right model (BRAIN) a huge number (3.7K) of singularitites
(i.e. layout nodes) are prescribed as input; while this naturally lim-
its the level of coarseness that can be achieved, it serves to demon-
strate the reliability and efficiency of our approach.
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α = 5◦
#P = 516

α = 10◦
#P = 268

α = 15◦
#P = 162

α = 25◦
#P = 129

α = 35◦
#P = 77

α = 45◦
#P = 56

Figure 6: Higher values of α lead to layouts with a smaller number of patches #P.

Model #Faces #Sing α #Traces #Arcs #Vars #P dmean dmax MSJavg tMCG tILP

ROCKERARM 20088 36 15◦ 144 2742 192 159 3.7◦ 14.7◦ 0.989 92 ms 30 ms
HEPTOROID 20000 166 10◦ 832 22822 1131 2051 2.3◦ 9.9◦ 0.982 348 ms 158 ms
SCULPT 7342 14 25◦ 88 936 107 54 5.5◦ 17.7◦ 0.982 29 ms 26 ms
KITTEN 100000 68 35◦ 272 2072 364 322 8.1◦ 34.9◦ 0.971 152 ms 43 ms
BOTIJO 29994 72 45◦ 320 2116 400 121 7.2◦ 41.4◦ 0.979 87 ms 34 ms
MASTERCYLINDER 100000 44 15◦ 192 3476 256 214 3.8◦ 14.2◦ 0.988 245 ms 42 ms
BLOCK 68352 48 35◦ 208 1604 291 76 6.6◦ 32.5◦ 0.985 116 ms 32 ms
BRAIN 100000 3721 45◦ 15332 122570 18722 23817 10.7◦ 45.0◦ 0.912 2214 ms 10522 ms
DUCK 19720 28 5◦ 104 5232 148 516 1.4◦ 3.8◦ 0.983 112 ms 37 ms
DUCK 19720 28 35◦ 104 852 138 77 9.8◦ 32.4◦ 0.976 38 ms 28 ms
TEST1 16323 10 15◦ 38 106 17 28 0.4◦ 6.0◦ 0.996 26 ms 22 ms
SPRAYER 21381 4 5◦ 22 93 10 12 0.1◦ 0.8◦ 0.998 26 ms 2 ms
GLUEGUN 12186 50 25◦ 244 1293 181 209 3.2◦ 24.2◦ 0.969 57 ms 31 ms
COGNIT 18934 54 25◦ 301 1631 199 181 2.1◦ 20.7◦ 0.988 66 ms 25 ms
CHAIN 5021 60 35◦ 303 1243 200 144 2.2◦ 34.6◦ 0.965 67 ms 27 ms
PUMP 2378 65 45◦ 320 1242 200 141 4.2◦ 40.7◦ 0.955 34 ms 28 ms
ENGINE 16502 24 15◦ 87 316 48 26 2.0◦ 10.1◦ 0.995 43 ms 25 ms
PART29 10698 12 35◦ 43 105 20 20 0.4◦ 3.1◦ 0.998 11 ms 3 ms

Table 1: Statistical data for our results. From left to right: Model name, number of faces and singularities in the input, angular bound,
number of traces, number of arcs in the motorcycle graph, number of variables in the reduced problem, number of patches in the resulting
layout, mean and maximal separatrix deviation, average minimum scaled Jacobian of quads (of the depicted layout-aligned quad meshes),
time for motorcycle graph construction and for solving of the ILP.

sides of a patch, connecting opposing T-junctions if the quantiza-
tion matches or splitting the corresponding opposite arc if not. The
result is a T-mesh with no T-junctions left, explicitly representing
all layout arcs (integrated into the triangle mesh as edge paths).
Into each quad layout patch region we map a regular quad grid
(size chosen compatibly based on the patches’ parametric extent)
by means of an optimized harmonic parametrization as described
in [LCBK19, §6.2] for visualization purposes in the following.

7. Results

For the results in this section we created the input seamless pa-
rametrization by optimizing the energy proposed by Bommes et
al. [BZK09] which minimizes the difference between the parame-
trization gradient to a cross field. The cross fields were obtained
using the method of Bommes et al. [BZK09] with directional con-
straints as proposed by [CIE∗16] (Sections 7 and 7.1), or using the
method of Viertel et al. [VOS19] (Section 7.2). For models BOTIJO

and ELK, as well as those in Section 7.3, we used the frame field
provided in the supplemental material of [PPM∗16]. We use Gurobi
to solve the ILP and QEx [EBCK13] to extract the quad mesh from
the final parametrization.

We show results of our method on a variety of models in Figure 5
and summarize statistical data in Table 1. Our layouts are typically
well aligned and coarse – with α determining the balance. Both
the construction of the T-mesh as well as solving the integer linear
program typically take well below one second. Even on the BRAIN

model with 3721 singularities the T-mesh construction completes
in about 2 seconds and the ILP is solved in less than 11 seconds on
a commodity PC, showing good scalability of our formulation.

Our algorithm is controlled by one parameter α which defines
the maximum acceptable separatrix deviation from the seamless
parametrization. As demonstrated in Figures 6 and 7 our layouts
contain fewer patches at the cost of higher separatrix deviation for
increasing values of α. Table 1 shows that the maximum separa-
trix deviation (dmax) generally stays below the given bound α, and
the average deviation (dmean) typically is significantly lower. Note
that our formulation guarantees that the quad layout connectivity
defined by the resulting quantization can always be embedded in
the surface with deviation strictly bounded by α (e.g. by using the
re-tracing strategy of [RRP15], cf. Section 6); when further op-
timizing or smoothing the embedding (e.g., following [LCBK19]
or [CK14b]), this bound may be weakened of course.
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Figure 7: Layout comparison. For QGP the target edge length ℓ is
given in % of the bounding box diagonal.

7.1. Comparison with Campen et al.

We compare our results to those of the Quantized Global Parame-
trization (QGP) algorithm of Campen et al. [CBK15] who also cre-
ate quad meshes via a quantization of a T-mesh. However, their
quantization tries to minimize the difference between the arc length
(rather than angle) in the input parametrization and the quantization
which makes control over the resulting layout difficult. We gener-
ated quad meshes with their algorithm for target edge lengths ℓ of
1%, 5%, and 20% of the bounding box diagonal. The two coarser
quad meshes are subdivided (via uniform scaling of the resulting
parametrization) to achieve a similar number of quads as the result
for 1% for better visual comparison. We applied our algorithm with
α between 5◦ and 45◦ in steps of 5◦ and show results with the best
matching number of layout patches. In Table 2 we report the num-
ber of layout patches, as well as average and maximum separatrix
deviation.

Model Method ℓ/α #P dmean dmax MSJavg

ELK

CBK15
1% 3929 1.2◦ 33.3◦ 0.991
5% 268 6.2◦ 71.6◦ 0.970

20% 138 9.7◦ 82.9◦ 0.862

ours
5◦ 412 1.1◦ 4.8◦ 0.983

10◦ 206 2.2◦ 8.7◦ 0.986
15◦ 134 3.2◦ 14.2◦ 0.982

FERTILITY

CBK15
1% 2109 1.3◦ 11.8◦ 0.994
5% 161 5.9◦ 58.4◦ 0.980

20% 103 9.2◦ 62.8◦ 0.880

ours
5◦ 337 1.3◦ 4.3◦ 0.985

20◦ 161 3.3◦ 17.7◦ 0.984
30◦ 105 5.0◦ 29.3◦ 0.985

BUNNY

CBK15
1% 7033 0.8◦ 8.3◦ 0.991
5% 333 7.5◦ 83.3◦ 0.971

20% 146 10.1◦ 81.8◦ 0.891

ours
5◦ 1088 1.5◦ 5.0◦ 0.977

20◦ 344 4.3◦ 18.9◦ 0.971
35◦ 148 7.5◦ 34.2◦ 0.958

Table 2: Comparison with [CBK15]. In the third column we give
the target edge length ℓ in % of the bounding box diagonal for
[CBK15] and α for ours. #P, dmean, dmax, and MSJavg are number
of layout patches, mean and max separatrix deviation, and the av-
erage minimal scaled Jacobian of the quads, respectively.

Figure 8: Plotting number of layout patches #P against maximum
(left) and mean (right) separatrix deviation. Our method (orange)
consistently creates coarser layouts with less separatrix deviation
than QGP (blue).

For small target edge lengths leading to larger quantized values
on the arcs QGP achieves results with uniformly sized quads but
typically very dense layouts (Figure 7 left). With larger target edge
lengths the base complex naturally becomes coarser as the quad
mesh itself contains fewer quads (before subdivision). However, the
separatrix deviation quickly increases and is often close to π/2, es-
pecially if the mesh contains regions with denser layout vertex dis-
tribution where the distance between pairs of layout vertices may
be below the target edge length. Table 2 shows that QGP achieves
lower element quality, as indicated by the average minimum scaled
Jacobian, than our method except for the densest layout where the
higher element quality comes at the cost of an order of magnitude
more layout patches.

Low layout complexity and small separatrix deviation are com-
peting goals. In Figure 8 we plot the number of layout patches
against the maximum and mean separatrix deviation for different
values of α and ℓ averaged over the models from Table 2. The plot
as well as the numbers in Table 2 show that our algorithm consis-
tently achieves a lower separatrix deviation with layouts of similar
or smaller complexity.
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Figure 9: Our results on meshes with boundaries [VOS19].

7.2. Comparison with Viertel et al.

Our algorithm shares some similarity with the one presented by
Viertel et al. [VOS19] who create quad layouts (potentially non-
conforming, containing T-junctions) by tracing a motorcycle graph
and iteratively collapsing quad strips. In our algorithm assigning a
quantization of 0 to an arc is equivalent to collapsing it [LCBK19].
Our ILP formulation has the advantage of finding the global opti-
mum of a linear objective, Equation (5), and thus not suffering from
running into local optima that a greedy optimization could reach
and which Viertel et al. report may lead to T-junctions remaining in
the layout which could have been avoided with a different collapse
order. In addition, a valid and consistent quantization as produced
by our algorithm always defines a conforming quad layout free of
T-junctions. We present the result of our method on the models used
in [VOS19] in Figure 9.

7.3. Comparision with Pietroni et al.

In Figure 10 we compare our results with those of [PPM∗16]. Since
Pietroni et al. create their layouts by searching separatrix candi-
dates directly in a cross field, rather than a parametrization as in our
case, we present the average deviation of the two directions induced
by the resulting patchwise parametrization to the direction of the
input cross field for a fair comparison. Note that, while we guaran-
tee a maximal deviation to our (field-guided) input parametrization,
the deviation compared to the guiding cross field may deviate more
than α. The results show that, when aiming for a similar number of
patches, we achieve lower distortion. For complex models Pietroni
et al. generate layouts containing T-junctions. These can be con-
verted to a conforming layout by extending all T-junctions. Doing
this for the 78 T-junctions of the LION model, however, leads to
a layout with over 82k patches. By contrast, our method yields a
conforming layout with only 2.1k patches.

8. Conclusion & Future Work

We presented an algorithm for the creation of coarse quad layouts
based on assigning integers to the arcs of a T-mesh by solving an
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0
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5
°

2
0
°

2
5
°

Figure 10: Comparison with [PPM∗16]. The color coding shows
the angular deviation between input cross field and resulting para-
metrization, d is the area weighted average over the whole mesh.

ILP. Our algorithm is controlled by only a single, intuitive param-
eter defining the maximum separatrix deviation from the seamless
input parametrization. This could be especially useful in contexts
where a certain minimum quality needs to be guaranteed while
coarseness of the layout is also desirable. Our experiments show
that the presented method not only achieves good results but is also
computationally efficient, requiring only a couple of seconds for
meshes with thousands of singularities.

Our algorithm relies on a seamless parametrization given as in-
put to define layout singularities and desired separatrix alignment.
As we base all our measurements on that seamless parametriza-
tion, our algorithm is oblivious to any metric distortion potentially
already present in that parametrization. In cases where the parame-
trization is computed from a cross field – which may then be seen
as the actual, original alignment intent – it is certainly tempting to
omit the intermediate parametrization step. While a T-mesh simi-
lar to ours could directly be traced based on a cross field, as done
in [MPZ14] and [PPM∗16], a key challenge is dealing with mat-
ters of non-integrability and non-parametrizable singularity config-
urations in this setting. In any case, strict angle bounds will not
be possible in a cross field based approach; arbitrarily large devia-
tion may be necessary to obtain any valid layout in theory – unless
T-junctions are acceptable. In that case rectangularity constraints
could be implemented in a soft manner. The quantized T-mesh will
then contain non-rectangular patches which could be resolved by
inserting singularities [MPZ14] or by leaving T-junctions in the
layout [PPM∗16, VOS19].

In scenarios where strict adherence to the given input configura-
tion is not required many interesting opportunities open up. For in-
stance it would be interesting to explore variations of our approach
that allow merging or splitting of singularities whenever beneficial
for layout quality. It would also be interesting if the layout algo-
rithm could make use of the fact that singularities may be free to
move – at least within a certain range. In that case, small move-
ments of layout vertices could move separatrices into the acceptable
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bound, opening new opportunities to form a potentially coarser or
better aligned layout.

Ultimately, for cases where the singularity configuration is en-
tirely flexible, a holistic approach to layout creation would be de-
sirable that, instead of separating the creation of layout vertices and
the creation of their connecting separatrices in independent steps,
creates both of them together in one step. This perspective is taken
in [CK14a], albeit in a non-automatic approach, requiring user ex-
pertise and interaction.
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