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Figure 1: Quasi-Monte Carlo in ray-traced renderings requests high-dimensional robust quasi-random sequences, which are normally
impossible to achieve by general rank-1 lattices. Our framework produces rank-1 lattices particularly optimized for estimating the path
integral. It successfully achieves promising rendered results compared to the Sobol' sequence.

Abstract

We introduce rank-1 lattices as a quasi-random sequence to the numerical estimation of the high-dimensional path integral.
Previous attempts at utilizing rank-1 lattices in computer graphics were very limited to low-dimensional applications, inten-
tionally avoiding high dimensionality due to that the lattice search is NP-hard. We propose a novel framework that tackles
this challenge, which was inspired by the rippling effect of the sample paths. Contrary to the conventional search approaches,
our framework is based on recursively permuting the preliminarily selected components of the generator vector to achieve
better pairwise projections and minimize the discrepancy of the path vertex coordinates in scene manifold spaces, resulting
in improved rendering quality. It allows for the offline search of arbitrarily high-dimensional lattices to finish in a reasonable
amount of time while removing the need to use all lattice points in the traditional definition, which opens the gate for their
use in progressive rendering. Our rank-1 lattices successfully maintain the pixel variance at a comparable or even lower level
compared to Sobol' sampler, which offers a brand new solution to design efficient samplers for path tracing.

CCS Concepts
e Computing methodologies — Rendering;

L. Introduction where in particular, the simulation of photorealistic light transport
In computer graphics, quasi-Monte Carlo (QMC) methods play in virtual scenes [Vea98] profits from QMC point sampling using
a vital role in the numerical estimation of complicated integrals, low-discrepancy sequences (LDS). The problem of path integral

estimation lies in finding paths connecting the pixels and the light
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sources. Among the sampling strategies, path tracing and bidirec-
tional path tracing are the most popular ones, where the paths are
produced randomly using random sampling or LDS. LDS gen-
erate sets of high-dimensional points in predictable manners, and
the points fill the sampling hypercube more evenly than the ran-
dom sampled ones. The integration usually converges quadratically
faster [KKO02], and less noisy images could be rendered in shorter
time. Digital nets and lattice rules are two LDS that were devel-
oped in parallel and widely used [OG18]. Rank-1 lattices are ones
of the most popular lattice rules. They are sequences of vectors
distributed in unit hypercubes, with each vector corresponding to a
unique sample index. Since Dammertz introduced rank-1 lattices to
computer graphics [Dam09], the attention of scholars has focused
on their applications in 2-D sampling [MBR*13], grid-based sim-
ulation [DKDOS], and other low-dimensional cases because of its
two distinct advantages. First, large mutual minimum distances can
be easily achieved in lower dimensions (especially 2-D and 3-D).
Second, due to their simple congruential forms, their runtime com-
putational cost is low, which results in a reduced computational
time and engineering complexity.

However, the rank-1 lattices are not as robust as digital nets
[LM16], especially in high dimensionality. This to some extent
makes them less popular in high-dimensional numerical estima-
tion. To the best of our knowledge, rank-1 lattices have never been
adopted in the field of path integral estimation. First, by definition,
rank-1 lattices postulate using all sample points, which reduces
their practical application, especially in progressive rendering that
claims a dynamic sample count. Second, finding a good rank-1 lat-
tice of high dimensionality is a known NP-hard problem with ex-
ponentially growing complexity [Car02, Hel85] (more details will
be followed in Sec. 3.1). In some cases like rendering a volumet-
ric scattering material concerning thousands of internal bounces of
the light path, the existing methods are unable to find such a high-
dimensional lattice. Furthermore, high-dimensional rank-1 lattices
inevitably suffer from correlation issues with arbitrary subsets of
lower-dimensional projections.

To adopt rank-1 lattices in path tracing, we investigated the in-
tegration process. We noticed one thing that differed the path in-
tegrals from general multi-dimensional integrals was that the inte-
gration variables, i.e., the path vertices at each path length, were
correlated. For example, consider a path of length 2. Modifying the
first vertex position results in the change of the second vertex po-
sition, even if the (quasi-) random vector to generate the second
vertex remains unchanged. This is known as the rippling effect: the
continuing and spreading results of a change. In this perspective,
the (quasi-) random vector is actually decorrelated to the path ver-
tices. Therefore, even when the distributed sample vectors is not
well designed, they might still generate decorrelated vertices.

With the above observation, we present a novel solution to adopt
rank-1 lattices in estimating path integrals. In Sec. 3, we analyzed
the computational challenge of the lattice search algorithms in high
dimensionality. To seek another solution, we examined the corre-
lation between the quasi-random vectors and the discrepancy of
intersection positions in the scene manifold space with an exam-
ple. By simply permuting an ill-formed lattice into improved 2-D
projections, more randomness (decorrelation) of the manifold posi-

tions was achieved, thanks to the rippling effect. The rippling effect
guarantees an enhanced decorrelation between the vertices and the
input random vectors. We provide evidence by differentiating the
vertex positions to support our theory. In Sec. 4, we formulate a
framework making use of the rippling effect. It involves two steps,
first finding the best preliminary components, then performing pair-
wise permutation. Finally, in Sec. 5, we verified our framework by
a series of experiments. In addition to a lattice search time compari-
son against the widely used component-by-component (CBC) algo-
rithm [KJO2], we compare the sampling efficiency mainly with the
Sobol’ sequence [Sob67], which is widely accepted to be diment-
sionally robust. The experimental results prove the effectiveness of
the lattice-based samplers. Our framework creates the possibility
of constructing arbitrarily high-dimensional rank-1 lattices for ren-
dering.

Our contributions are:

e Proof-of-concept of rank-1 lattices being worthy candidates in
(bidirectional) path tracing as quasi-random sequences, inspired
by the rippling effect of the sample path;

e Novel criterion that efficiently measures the quality of incom-
plete lattice sequences;

e Solid lattice-search framework optimized for arbitrarily high di-
mensionality;

e Lattice solution for designing high-efficiency samplers for ren-
dering applications.

2. Preliminaries

In this section, we describe the most relevant theories and methods
to draw the blueprint of our approach.

Rank-1 lattices. The research of rank-1 lattices was pioneered by
Korobov and examined by many others [Dam09]. The rank-1 lattice
rule is a quadrature rule for estimating the integral over the unit s-
dimensional hypercube for a function f, in the form

n—1

E(f)~— ) f(xi), €
n &=
i=0
where L, = (X, ..,X,_1) is the rank-1 lattice with points

xi:{ﬁg}]E[O,I)S,i:O,...,n—l, @)

n is the total number of points, g = (g1,...,8s) is the generator
vector of integer components, and {x} denotes the fractional part
of vector x. A valid generator vector to fulfill the condition is:

ng(g17"'7gS7n):1' (3)

Lattice search algorithms. As indicated in Eq. 2, the distribution
quality of a rank-1 lattice is governed by the generator vector g.
Given a quality criterion, the lattice search is equivalent to selecting
the components of g from all possible candidates to maximize (or
minimize) the criterion.

While the quality of a digital net is measured by their discrep-
ancy [Nie87, OG18], a rank-1 lattice is usually measured by the
mutual minimum distance

dmin(Ln) = - min_[|x; —x;] )

<i<j<n
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Figure 2: Variance in rendering of the Cornell Box scene.

using the Euclidean distance [Dam(9]. Several methods have been
developed to efficiently find the minimum distance, including the
spectral test [L1082], Lenstra-Lenstra-Lovdsz (LLL) Basis Reduc-
tion [Brell], and exhaustively searching the distance to the ori-
gin [Dam09]. The search algorithm is then adopted to find the com-
ponents of the generator vector, by maximizing the overall mini-
mum distance or the ones of lower-dimensional projections. The
mathematical software Lattice Builder was introduced by L’Ecuyer
and Munger [LM16] which is a comprehensive tool for building
lattices, containing the implementation of exhaustive and random
searches, as well as CBC and random CBC constructions.

Limitation. The brevity of rank-1 lattices leads to the lack of ro-
bustness of the rank-1 lattices, which are mainly because of two
constraints.

Constraint 1: using all sample points. Using only part of the
sample points potentially omits large areas of the sampling hyper-
cube [OG18], which results in a considerable bias. This is because
traditional approaches to search for a rank-1 lattice never consider
an incomplete sequence of lattice points, as it adds a large expense
to the existing computational cost. To illustrate this, we measured
the average variances of the renderings using the Sobol’ sequence,
random sampling, and a rank-1 lattice constructed using the CBC
algorithm in Lattice Builder, with dimension s = 16 and interval
count n = 4096. As plotted in Fig. 2, the lattice produced poor con-
vergence even worse than random sampling when using incomplete
sequences of sample points. Such samplers are not practical in pro-
duction, especially where the artists terminate the sampling process
at a random point in time.

Constraint 2: low dimensionality. The utilization of rank-1 lat-
tices is prevented in two ways in high-dimensional integration. On
the one hand, as the number of dimension increases, it becomes im-
possible to guarantee the evenness of the projection of every pair of
dimensions, i.e., ill-formed projections are inevitable even when
enumerating all possible generator vectors of such dimensionality
(see Fig. 3). On the other hand, searching such a generator vector
has an extremely undesirable exponential computational cost using
the existing approaches, making them impossible to terminate in
finite time.

Given this, our motivation is to start with a featured characteristic
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Figure 3: The best and worst projections of a 12-D lattice (n =
1024) search by the CBC algorithm.

_:C):_ Light
Vi

k

Sensor_V

Figure 4: A sample path generated by importance sampling.

of path integrals, the rippling effect which makes them distinct from
other general integrals.

Path integral of light transport. The path integral framework
[Vea98] measures the camera response in the form of an integral:

I= /Q £ () du(p) ®)

where p = vg ...V, € Qis a complete path from a light to the cam-
era, with all points on the scene manifold; Q is the set of all pos-
sible light paths of arbitrary length; du(p) = dA (vo)...dA (vg) is
the area product measure, and f is the measurement contribution
function.

Importance sampling. As one of the most useful schemes to effi-
ciently sample the path integral, importance sampling in path trac-
ing refers to the principle of choosing a density function p propor-
tional to the reflectance function (e.g., the bidirectional reflectance
distribution function (BRDF)). In local sampling, the next vertex of
a given incomplete path is determined by the previous vertices

Vit1 :Vi-i-t(V,',d)‘d 6)

where d is the sampling direction chosen from the inverse cumula-
tive distribution function of p at v; viewing from v;_; (for conve-
nience, we directly use v; as a notation of its position); #(v,d) mea-
sures the distance to the next closest intersection at v in direction
d, as illustrated in Fig. 4. It’s worth mentioning that a unified direc-
tional vector has a degree of freedom of 2 (usually in the spherical
coordinate), which indicates that x is (up to) 2-D for each scene
vertex.

The Rippling effect. The phase of "rippling effect” was first dis-
cussed in the course of the research on Markov Chain Monte Carlo
(MCMC) algorithms, stating that subtle modification of a path ver-
tex results in a large change to the subsequent path. Support for this
conclusion lies in the dependency of adjacent vertices in Eq. 6, but
lacked in-depth assessments in previous work. In later sections, we
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shall give both intuitive and stringent explanations of the substance
of the rippling effect and how our framework relies on this effect to
specifically resolve the dimensionality issue of rank-1 lattices for
path integral estimation.

2.1. Related work

Lattices in Korobov forms. Korobov rank-1 lattices L, are a
special class of rank-1 lattices whose generator vector has form as
g= (l,a,az7 ...,a’) . While naively searching a high-dimensional
rank-1 lattice is hard, searching one in Korobov form is relatively
easy, since it only contains a single parameter a. However, in our
paper, we didn’t consider the use of Korobov lattices due to two
reasons. First, Korobov lattices are not able to solve the correla-
tion issue of high-dimensional sample points as shown in Fig. 3.
Secondly, they only use a single parameter, which makes them less
controllable, especially when considering incomplete sequences.

Concatenated 2-D Sequences. Since well-distributed 2-D rank-
1 lattices are easy to obtain, one straightforward approach to
construct high-dimensional lattice-based samplers is to concate-
nate multiple 2-D sequences by shuffling the points [CKK18,
PJH17b].The reason why we insist on optimizing high-dimensional
rank-1 lattices is that the shuffling process usually costs an extra
computation time and degrades the sampler’s scalability in progres-
sive sampling. For example, one designing a real-time ray-tracing
application would not prefer shuffling due to its cost and inconve-
nience.

3. Our method: blueprint

Before describing the technical details in section 4, we provide
some illustrative and intuitive explanations and introduce some
concepts first. In Sec. 3.1, we describe how the time complexity of
the conventional approach hinders the search for high-dimensional
generator vectors. To distinguish the particular context of path inte-
gration from general multidimensional sampling, we use a special
example to explain the substance of the rippling effect in Sec. 3.2.1.
Then, in Sec. 3.2.2, we provide the theoretical deduction to support
our inference and disclose our core contribution: the pairwise per-
mutation framework. Finally, in Sec. 3.3, we discuss a lower bound
of the minimum distance of a sequence of lattice points. A scheme
of finding preliminary components is then presented to maximize
this bound.

3.1. The crux of high dimensionality

Consider an s-dimensional rank-1 lattice £, = (x1,...,X,). The
naive search algorithm [Dam(9] walks through all (nfnis')'s' pos-
sible permutations of the components and return the vector
of the largest minimum distance (yielding the so-called maxi-
mized minimum distance (MMD) lattice), with a complexity of
O (K(s) -min (n*,n" ™)), where K (5) = s* log s is the average poly-
nomial complexity of computing the minimum distance for an s-
dimensional rank-1 lattice using LLL basis reduction [JSMO8].

Therefore, even the MMD lattice in high dimensionality does
exist, it is impractical to find using exhaustive methods. As a com-
promise, there are some faster approaches for finding local optimal

rank-1 lattices. For example, the CBC algorithm [KJ02] that ap-
pends new components, one at a time, to the end of the generator
vector, and early termination of lattice search proposed by Finckh
et al. [FDL14]. Unfortunately, they can not meet the dimensionality
demand mainly due to:

1. The complexity of O (n*) is still too costly.

2. The resulted lattices must use all sample points. If incomplete
point sequences are considered, the existing cost will be greatly
increased by

a. enumeration of different sequence lengths being required;

b. the fast methods for computing the minimum distance (like
LLL basis reduction) being no longer valid as they must ac-
count for all lattice points.

Therefore, a novel framework of searching for the generator vec-
tor is required to fulfill our demand for path tracing.

3.2. The rippling effect
3.2.1. An example

In general, the complexity of reflection models and intricate visibil-
ity relationships among arbitrary scene geometry all lead to the im-
possibility of analytically investigating the path integral [PJH17b].
To start the investigation on the correlation of quasi-random vector
and positions of the path vertices in the scene manifold, we demon-
strate one specific uncomplicated setting.

As an example, consider the interior surface of a unit Lamber-
tian sphere, where the density function for importance sampling is
p= % with 6 being the angle between the surface normal and
ray direction. Due to symmetry, the outgoing radiance at arbitrary
points on the surface must be the same. As a result, our investiga-
tion starts at a random point on the surface. We trace the vertices
at different path lengths using importance sampling, record their
positions, and transform the positions to the manifold space scaled
to a unit square. The result is displayed in Fig. 5. To expound the
contrast, we adopt three different quasi-random sequences for com-
parison: a deliberately chosen rank-1 lattice with each pair of pro-
jection exhibiting highly ill-formed patterns (titled "Original"); an-
other rank-1 lattice whose components of the generator vector are
identical to the first one except that they are in a different order
(titled "Permuted"); and the Sobol’ sequence.

We use the notion of star discrepancy [Nie87,ThiO1] to quantify
how much the manifold positions resemble the random distribution

D*(B,P) = sup M _
beB

V) ™

where P = (xq,...,X,_1) is the manifold coordinates; |x; € b| is
the number of points in b; V (b) measures the volume of b; and B is
the family of rectangular box shapes in the subsets of [0, 1)2. The
measured discrepancies D* of all examined manifolds are labelled
in the images. There are two observed facts to be noted:

1. Although the "Original" lattice exhibits highly linearly corre-
lated patterns in lower path lengths, the discrepancy descends
fast with the increase of path length. In other words, due to
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Figure 5: Numerically integrating in the interior of a unit sphere. From left to right, the path length increases, exhibiting the change of
correlation between the quasi-random sequences, traced vertex positions, and the discrepancies of corresponding manifold coordinates.

the rippling effect, the vertices become increasingly random and
decorrelated to the input lattice points. It can be justifiably in-
ferred that, if the quasi-random patterns are decorrelated at each
path length (especially initially), decorrelated manifold coordi-
nates will occur.

2. The "Permuted" lattice, despite having the identical components
as the "Original" lattice (and thus the identical distribution), ob-
tains decorrelated manifold coordinates as well as a manifold
discrepancy close to the Sobol’ sequence.

Conclusion. As presented, by simply permuting a deliberately
chosen "bad" lattice, manifold discrepancy and patterns similar to
the Sobol’ sequence can still be achieved. The decorrelation be-
tween the input sample vectors and the output manifold positions
expands with the increase of path length, which is exactly the sub-
stance of the so-called rippling effect. It offers a possible solution
to our lattice search, namely, to perform 2-D optimizations at each
path length to lay the components of "bad" projections in different
path lengths and decorrelate them into randomly distributed mani-
fold positions.

However, this extremely simple example offers only intuitive il-
lustrations, while having little help for general-purpose rendering.
When arbitrarily complicated geometry and scene manifold, as well
as different materials and optical effects are included, the corre-
lation is unpredictable. We shall prove the correlation in the next
subsection.

3.2.2. Generalization

Theorem 1 In importance sampling, the change of quasi-random
vectors at non-Dirac (i.e. non-specular) path vertices contributes to
an increased variation of the subsequent vertices with respect to the
delta path length.

Consider a function f which, resembling Eq. 6, gives the manifold
positions for the path vertices

Vi = FME) ®)
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where V,M € M is the position of the i™ vertex in the 2-D scene
manifold space M; &; € [0, 1)2 is the i 2-D quasi-random vector;
the partial derivatives of f with respect to the first argument is de-
noted by D f, and the second argument by D; f, respectively. The
special part lies in that, the vertices V{M7 .. 7v,ﬁvl are determined by

&o,...,Ek_1 and the initial position V(/)Vl.

We unfold the total differential for the manifold positions

v =Dy f(v" &o)dve " + Do f (v " Eo)dEo
dva! =Dy (v €AV + Dy f (v €1 ),
=D (v &)D1 (v, Eo)dvy”
Dy F(vL DD (v 80)dEg + D f(viV €1 )dE,

i—1
M =av! [ DifvME))
j=0

i—1
0 orete) @

i—2
+ Y dg “Daf (v, &)
=0 =kt 1

+dgiy - Daf (VML E ).

As illustrated in Fig. 6, dvi! ~ dv{¥l, (k=0,...,i — 1) are equiv-
alent infinitesimals at arbitrary points of surfaces (assuming that
the material is locally consistent, and thus O(D; f) = O(1)), and
D, f > 0 for non-Dirac surfaces. So, the infinitesimal change of a
manifold vertex dviM is equivalent to
i—1
M~ avg + Y dg Do f (V8.
k=0

10)

indicating that it is accumulated by the change of initial position
(e.g., that due to pixel jittering or aperture samples) and the changes
of quasi-random vectors at non-Dirac vertices. Theorem 1 is thus
proven, supporting our inference in Sec. 3.1.
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Figure 6: Intuitive visualization of the partial derivatives of func-
tion f. P is the cumulative distribution function (CDF) of the den-
sity function p.
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Figure 7: The top axis: the first 32 points of different candidate
components clumps at the beginning of the axis. The middle axis:
every 3 points clumps at a minimum distance of 5/1024. The bottom
one is with larger minimum distance distance of 14/1024 close to
a uniform distribution. (all n = 1024)

3.2.3. Discussion

To summarize, our novel framework, in contrast to traditional ap-
proaches, shall be built upon permuting components of the existing
generator vectors. Given an initial generator vector g, we find a
local optimal permutation that maximizes the minimum distance
of each 2-D pair of dimensions for arbitrary high dimensional-
ity. As an advantage over previous algorithms, the proposed algo-
rithm tends to terminate in a much more reasonable time. However,
there is still room for further optimization on higher-dimensional
pairings. The implementation details of the framework will be de-
scribed in later sections, where the optimization will be extended
into higher dimensionality to ensure more robustness for the lat-
tices.

3.3. Preliminary components: on a lower bound of minimum
distance

So far, our primary task is to determine the initial components for
the generator vector g. Any component g; that fulfills ged(g;,n) =1
fills the identical intervals on the coordinate axis without having
overlapping points. The difference of these components, as shown
in Fig. 7, presents in the incomplete sequence: some distribute more
evenly on the axis, while others form a cluster in part of the axis,
which will lead to the undesirable convergence curve in Fig. 2.

Here we prove how the unevenly distributed samples on axes

influence the incomplete lattice. Assume x; and x; being a pair of
lattice points in the s-dimensional point set P, with ||x; —x;|| being
the minimum distance

i (Xik =% k)

k=1

s
Xk — X
25 Yot [Xik — X4
Vs
N Yo ming<acpen [Xak — Xp |
2 /5
where X; ;. denotes the K component of vector x;. Eq. 11 gives a
lower bound of the minimum distance for the lattices, indicating
that the per-axis distribution has an impact on the overall quality.

In response, the proposal of selecting the preliminary components
in our framework is based on maximizing this bound.

dmin (Pn) -

an

We consider all possible lengths of an incomplete sequence, us-

ing a rank
1/(n—1)
Xik x,,k!) (12)

to depict the average evenness of points according to the component
g;.. Theoretically, the vector should then be initialized with the first
s candidate components of the highest rank.

n
r(gr) = ( m-  min
2

= 0<i<j<m

4. Our method: technical presentation

As outlined in the blueprint, our framework consists of two steps,
namely: selecting the preliminary components, and finding an op-
timal permutation based on the pairwise optimization. In this sec-
tion, we provide the concrete technical details. First, in Sec. 4.1,
we make three assumptions of the parameters for our rank-1 lat-
tice. Then, in Sec. 4.2, we tackle the challenge of the high compu-
tational expense due to looking for the mutual minimum distance
for incomplete sequence by using a fast estimation approach. Fi-
nally, in Sec. 4.3, we complete the framework by introducing the
high-dimensional extension of the 2-D pairwise permutation.

4.1. Assumptions on the lattice parameters

Since we rely on several fast approaches, we make three assump-
tions regarding the lattice parameters to facilitate the follow-up dis-
cussion.

Assumption 1: The total number of lattice points n is power of
2. Two benefits can be drawn from this: the first is that a floating
point number divided by a power of 2 is generally fast. The sec-
ond is more robustness of the computation. For example consider
a large n hitting the maximum integer, and only when »n being a
power of 2 can it be guaranteed that

(ig mod Zb) mod n ig mod n
n - n

X; =

) 13)

where 2° — 1 is the maximum unsigned integer in binary computers.

Assumption 2: The dimension of generator vector g is power of
2. This is required by the swapping strategy extending into a higher
dimensionality in Sec. 4.3.

Assumption 3: The components of g are odd. With the previous
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two assumptions, all components being odd integers efficiently sat-
isfies ged(g;,n) = 1, such that the points fill every integer interval
without overlapping.

4.2. Fast realization of mutual minimum distance for
incomplete sequences

In Eq. 12, we present a rank that theoretically measures the av-
erage evenness of points on each axis. However, the fact is that
performing a mutual search and accounting for all possible length
are both conducive to a complexity of O(n’) as well as possessing
little achievability. In addition, the criterion for pairwise optimiza-
tion is based on the same idea, where the computation will be more
violent. We seek a faster realization of the criterion.

Simplifying the mutual search. The naive exhaustive search for
the mutual minimum distance of a full lattice is identical to search-
ing the toroidal minimum distance to the origin of a non-zero value
[Dam09] due to the regular structure

dmin (L:n) =

o i = min Ixi—xoll . (14)
When the sequence is incomplete, the second equal sign in Eq. 14
does not establish, since the incomplete sequence of points does
not have a regular structure, and the minimal distance to the origin
may not equal to that to the other points. However, this distance is
always slightly greater (or equal) to the mutual minimal distance of
all points

<i<n

0<i<j<n

1s)
which is an upper bound and fast estimation of the mutual minimal
distance.

Reusing existing information. As a side effect, Eq. 15 does not
account for the mutuality, such that computing the estimation for n
points requires simply comparing the length of the n'™ vector to the
current minimum value of previous n — 1 vectors. In this context,
the computational cost in Eq. 12 is reduced to O(n).

Proposition. In practice, using the above simplification technique,
the preliminary components produced by Eq. 12 are often not per-
ceived as the candidates of the best quality of average distribution.
This is because shorter sequences display more evident distribu-
tion defects. Longer sequences should be less weighted. We opt for
making the weighting similar to the Sobol” and van der Corput se-
quences that are optimal at the length of the sequence being to the
power of 2 [OG18]

r/(g07gb7"') =

log, n P 5 1/(log,n—1)
1T 2"/'. min Y min (x;x, 1 —xix) ,
m=1 I<i<am /3 '

a,b,---€{l,...,s} (16)

where x is the lattice point set created from generator vector g =
(84,8, -..) and [ is the argument length of 7.

Initializing g. Given all possible candidates components ¢ =
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s
. s . s 2
x| < P = 1 —x:
min [|x; — x| 1?}211”’(’ x| ]m;n \/};lmm(x,,k7 X,,k)

(cq,-- .,cn/z) =(1,3,...,n—1), gis initialized to the largest s com-
ponents of ¢ sorted descendingly by rank , as shown in Alg. 1

Algorithm 1 Initialize g

> Initialize all candidates
> Sort by rank

e+ (1,3, ,n—1)
2: sort(e,r’ (¢;) > 1/ (c;))
3: fori< 1tosdo

4: gi < ¢

5: end for

> Retrieve the first s candidates

4.3. The swapping strategy with the higher-dimensional
optimization

The two-dimensional example. First we provide the example of
the 2-D case, which assists the readers to understand the more
complicated multidimensional cases. The basic idea is that, for a
given set of components g = (gj,...,8x) initialized using crite-
rion ¥/, we repeatedly swap gy; with g; where j € {2i+1,... 2k
and r'(gzl-_l,gj) has the maximum value for i = 1,...,2"!. The
pairing of every two components is thus locally optimized via the
greedy approach.

Multidimensional cases. The higher-dimensional swapping strat-
egy can be generalized from the 2-D example with the following
steps:

1. /' (gpi_1,g) fori=1,... 2T s repeatedly maximized using
the scheme as discussed above;

2. Every 2-D subset in step 1 is regarded as a whole (preserv-
ing the internal order), and the same scheme to maximize
r'(g4,~_3,g4,~_2,g4,~_] 7g4,‘) fori= 1, e ,2k72 is used;

.

k-2. Every (k—2)-D subset in step k — 3 is regarded as a whole to
maximize rl(gzk—z(l‘_l)+l7...,gzk—z) fori=1,2.

The algorithm is interpreted in Fig. 8. The complexity of the whole
framework is O(ns).

1

C — 1
I D OB
| -8 s

. globally
optimal

2 components

Figure 8: An intuitive interpretation of the swapping strategy. The
color blocks indicate the preliminary components to permute. The
numbers labelled on the arrows are the order of swapping.
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5. Results

In this section, we perform a series of experiments to verify the
effectiveness of our vector search framework and the performance
of our rank-1 lattices.

Offline search cost for the generator vector. We present the
measured computational time for searching the generator vector by
comparing our framework with the CBC algorithm. As expected,
in Fig. 9, given the total number of points n = 4096, the compu-
tational time increased quadratically with dimensionality s for our
method. The fixed cost of approximately 0.4 sec (which is evident
at s < 16) was due to sorting of the preliminary candidates. In con-
trast to this, the CBC algorithm failed to terminate in an acceptable
time when s > 16.

Variances in different stages. In Fig. 10, we demonstrate the vari-
ance convergence corresponding to each stage in our framework
rendering the Cornell Box scene, namely before pairwise swapping
(labelled "Preliminary"), after performing the 2-D optimization as
discussed in Sec. 3.2.1 (labelled "2-D Opt."), and completing the
full framework (labelled "Full Framework"). Again, as expected,
the 2-D optimization was conducive to a major improvement in
quality, and the full optimization precipitated a coherent conver-
gence curve even superior to the Sobol” sequence.

On-line computational speed. In Fig. 11, we compared the com-
putational cost of our lattice to several samplers. We set the sample
count to simulate a sensor of a 1920 x 1080 resolution rendered
at 64 SPP using 16-D quasi-random vectors. Because of the simple
congruential computation, the lattice demonstrated a distinct ascen-
dancy over the compared sequences, which will benefit the overall
render time.

Render performance. We evaluated the real-time render perfor-
mance in game engine Unreal Engine 4 and the offline performance
in PBRT [PJH17a].

The real-time performance was manifested in Fig. 12. We com-
pared the per-sample render time of our lattice with the Sobol’
[Sob67] and Halton [Hal64,0SG12] sequences. The numerical per-
formance differences are labelled with the relative time propor-
tional to our lattice as percentages. We demonstrate two cases,
which are rendering with and without the Bounding Volume Hier-
archy (BVH) acceleration structures [WalO7]. In the first two rows,
we tested two scenes with traditionally defined triangle meshes and
BVH acceleration structures. Our lattice achieved a 2% ~ 7% per-
formance boost. The lower two rows presented the performance in
simpler scenes (and thus without the use of BVH) where the ray
traversed faster and the computational cost mostly fell onto com-
puting the quasi-random sequences. In these scenes, our lattice was
up to multiple times faster than the LDS.

The performance in offline rendering is shown in Fig. 17. We
measured the variance in 3 PBRT’s classic scenes using the Sobol’
sequence and our rank-1 lattice. The statistics of average perfor-

mance (measured by %ﬁ’;l X 100%) are as follows:
avg. path avg. perf. avg. perf.
scene length (full) (crop)
Volkswagen Van 1.434 137.66%  230.19%
Imperial Crown 4.136 96.00% 107.62%
Sportscar 1.502 101.29%  116.33%

lel0 Measured time (sec)

-~ 317 yr
1e8 (predicted)
= 6.5x10%

u CBC Algorithm mOurs

le6 /
fed l747‘ sec /5—45\
100 ! 48 sec
04 12.3 sec I
4 sec
1 I - . - - - - = = I
0.01
le-4 Dimensionality
2 4 8 16 32 64 128 256 512

The CBC algorithm is discribed in [KJ02,LM16]
The time was measured on a CPU Intel Core i7-7700HQ @ 2.80 GHz

Figure 9: Measured computational time for generating lattices of
n = 4096.

16 25 40 63 100 158 251 398 631 1000 1585 2512 328_1

4 —e—Sobol' —=— Preliminary —=—2-D Opt. —=— Full Framework
log, (variance)

Figure 10: Variance in each stage of our framework, compared to
random sampling and the Sobol' sequence.

12 0R3

147.599
Tt 00?1
3 Time (sec)
0 20 40 60 80 100 120 140 160

EQurs ©“Owen ©(0,2)-sequence MHalton mSobol

Halton, Sobol’, (0, 2)-sequence are described in [PYH17b], and Owen scrambled in [Owe98]
The time was measured on a CPU Intel Core 17-7700HQ @ 2.80 GHz (single core)

Figure 11: Cost of generating 1920 x 1080 x 64 16-D samples. Al-
though the (0, 2)-sequence is known for its high efficiency in 2-D,
the high-dimensional shuffling leads to an extra unneglectable ex-
pense.

As shown, our rank-1 lattice achieves an evident performance im-
provement (especially at shorter path lengths), while in the worst
case producing no significant drawbacks.

6. Discussion and conclusion

In this paper, we have demonstrated a proof-of-concept of integra-
tion lattices in solving path integrals and an efficient lattice search
algorithm which, by initializing preliminary components and per-
forming pairwise permutation, achieves arbitrary sample counts

© 2021 The Author(s)
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Figure 12: Average per-sample elapsed time at 512 x 512 resolu-
tion in real-time rendering. The data were collected through the
average of 25600 samples.
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Figure 13: The distribution of the ranks fits a Poisson distribution
very well, with n = 1024.
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and dimensionality. In addition, we investigated the rippling effect
in path integration, and proposed that 2-D optimization is the key
to better convergence of the renderings. In this section, we discuss
several topics of interest and limitations of the present work.

Subject 1: The optimal number of dimension. In our research,
one of the interesting discoveries was that the criterion ranks " of
all possible candidate components distribute as a Poisson distribu-
tion, as shown in Fig. 13. If the dimensionality is not specified,
the instinctive choice of the optimal number of dimension is the
expected value A of the fitted Poisson distribution. Reminiscent of
Assumption 2 in Sec. 4.1 that the dimensionality is a power of 2,
we propose using the 25% best candidates, which is approximately
the expected value.

Subject 2: Constructing per-pixel unique sequences. Unlike
the Halton sequence through radical inversions and the Sobol’ se-
quence through binary matrices, there is no analytical method to
inverse a sampling interval (pixel) to the sample index to generate
per-pixel unique sequence. For example, the "Original" lattice in
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Figure 14: Variance in cosine-filtering an environment cubemap.

Fig. 5 does not even fill all pixels, and the inversion is thus invalid.
We opt for using Cranley-Patterson Rotations [KK02] that use a
random mask to decorrelate the samples between pixels. We adopt
the trending Blue-noise Dithered Sampling (BNDS) [GF16] tech-
nique that achieves better visual fidelity at low sample counts, ad-
dressing the aliasing effect in the Halton and Sobol’ samplers. Since
the rank-1 lattices themselves are in recurrence form, Cranley-
Patterson Rotations have no influence on the convergence of the
estimation.

Subject 3: MMD lattices for non-Lipschitz continuous func-
tions. MMD lattices are very effective in estimating the integration
of Lipschitz continuous functions [KN12,Dam09] . However, many
scholars argue that their effectiveness for non-Lipschitz continuous
functions (especially in high dimensionality) is yet to be validated.
Specifically, path integration is usually discontinuous, e.g., on the
edge of a geometry. When we recursively optimize the lattices, we
eventually obtain MMD-like lattices. Fortunately, their effective-
ness was validated by our experiment results.

Bonus: better sampling efficiency for 2-D integrals. The by-
product of our 2-D optimization is demonstrated in Fig. 14, by ex-
amining the variance of cubemap prefiltering, which is commonly
used for the light probes in real-time game engines [Gre03,Hoo16].
Thanks to the optimized minimum distance, our lattice (n = 4096)
achieves significant advantages over other compared sequences.

Limitation: arbitrary pairing of dimensions. Our lattice does not
support random pairing of dimensions. Since our search algorithm
is based on permutation, making use of the rippling effect to op-
timize the lattices for path integration, randomly choosing the di-
mensions for sampling will result in the lattices falling back to con-
ventional ones, producing unstable convergence curve as in Fig. 2
or an even worse distribution as the "Original" lattice in Fig. 5.

Limitation: odd-dimensional elements in the path integral. In
addition to the previous limitation, our lattice requires skipping one
dimension at each odd-dimensional element (e.g. time for motion
blur and Russian roulette) as shown in Fig. 15. This is because the
odd-dimensional elements prevent the later process sampling from
the optimized 2-D quasi-random vectors.

Limitation: volumetric light transport. Throughout the paper our
core idea relies on optimizing the pairing of dimensions to achieve
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Components Xi1 | Xio | Xiz | Xig | Xis [ Xig | X7 | Xis |
Other samplers pixel aperture |time| lights, BRDF, ...
Our sampler pixel aperture |time| - |[lights, BRDF, ...
pixel | aperture time light normal
(motion blur)
Example
2-D 2-D 1-D multiple 2-D

Figure 15: Allocation of the quasi-random components. Our sam-
pler deliberately skips one quasi-random component at the odd-
dimensional time component.

(a) (0, 2)-sequence (b) Naive lattice (c) Scrambled lattice

Variance: 8.554 x 10~ Variance: 9.426 x 10~3 Variance: 8.888 x 10~>

Figure 16: Random Digit Scrambling resolves the limitation of our
lattice in rendering volumetric light transport.

better path vertex distribution in the 2-D manifold space for regular
meshes. However, it is violated by the volumetric scattering effect,
whose virtual intersections are in 3-D manifold space. In Fig. 16(b),
we show that our naive lattice failed to produce an unbiased re-
sult. To address this, we use Random Digit Scrambling [KK02] to
scramble the sample index i with a random scrambling vector u
whose components are identical at each two dimensions

y — ((Ow-gmodn .o (17

n

where @ is the binary exclusive-or operation. The result using the
scrambled sequence, as shown in Fig. 16(c), achieves unbiased con-
vergence similar to PBRT’s (0, 2)-sequence.

Future work. Despite the promising results achieved by the cur-
rent stage of our work, we sketch a road map of future work.

Other lattice-search strategies. To utilize the optimized rank-1
lattice in path integral estimation, we initialize the preliminary
components by maximizing a lower bound of minimum distance.
However, artifacts exist in arbitrary pairing of dimensions among
the preliminary components. A more robust approach to initialize
them shall solve this problem. Also, the way of pairwise optimiza-
tion is not unique, and there is possibly a better solution than the
greedy approach presented in this paper.

Random Digit Scrambling. In Fig. 16, we have seen a glimpse
of how Random Digit Scrambling cooperates with rank-1 lattices,
which introduces only one exclusive-or operation, preserving the
high efficiency of the computation. It yields a new possible solu-
tion for constructing dimensionally robust integration lattices with

optimal 2-D projections by searching a sequence of optimal scram-
bling keys.

The rippling effect: a possible solution for future design of sam-
pling sequences. As one of our core contributions, the rippling ef-
fect is introduced to the construction of sampling lattices. We look
forward to further investigations in future work to design the state-
of-the-art samplers with more sampling efficiency in path integral
estimation.
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