
DOI: 10.1111/cgf.14197 COMPUTER GRAPHICS forum
Volume 40 (2021), number 1 pp. 410–423

SketchZooms: Deep Multi-view Descriptors for Matching Line
Drawings

Pablo Navarro,1,2,3 J. Ignacio Orlando,3,4 Claudio Delrieux3,5 and Emmanuel Iarussi3,6

1Instituto Patagónico de Ciencias Sociales y Humanas, CENPAT, Puerto Madryn, Argentina
2Departamento de Informática, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina

3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
4Instituto Pladema, UNICEN, Tandil, Argentina

5Departamento de Ing. Eléctrica y Computadoras, Universidad Nacional del Sur (UNS), Bahia Blanca, Argentina
6Universidad Tecnológica Nacional (UTN FRBA), Buenos Aires, Argentina

Abstract
Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly
challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes.
In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent
deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object
of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end,
we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-
based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which
are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of
correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven
effective in sketches. Code, data and further resources will be publicly released by the time of publication.

Keywords: image and video processing, 2D morphing, image and video processing, image databases, image and video
processing
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1. Introduction

Humans excel at perceiving 3D objects from line drawings [Her20].
Therefore, freehand sketches are still the preferred way for artists
and designers to express and communicate shape without requiring
to construct the intended object. Unlike humans, computers strug-
gle to interpret a 2D sketch as a highly condensed abstraction of our
3D world. For instance, the straightforward task of finding corre-
spondences between a pair of images or an image and a 3D model
has been an important problem in Computer Graphics and Vision
for decades. In comparison with photographs, dealing with sketches
is even more challenging [ADN*17], since line drawings lack key
shape cues like shading and texture, projections are imprecise, and
shapes are often composed by several sketchy lines (Figure 1). Con-
sequently, when a target object is viewed from different angles, tra-
ditional image descriptors fail to map similar points close together

in the descriptor space. Furthermore, recent studies show that even
advanced deep networks lack the ability to generalize to sketches
when originally trained to perform perceptual tasks over photo col-
lections [LOVH19].

To date, finding local sketch correspondences with deep learn-
ing techniques is an unexplored research topic. This is likely be-
cause learning meaningful and consistent features using such high
capacity models requires a large dataset of complex line draw-
ings, paired semantically at a dense, pixel-wise level. To overcome
this difficulty, our key contribution is a vast collection of synthetic
sketches, distributed in several semantic categories. This massive
dataset serves to compute local sketch descriptors that can deal
with significant image changes. In our setup, a query point is rep-
resented by a set of 2D zooms captured from the point’s immedi-
ate neighbourhood, resulting in multiple zoomed versions of the

© 2021 The Authors Computer Graphics Forum © 2021 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

410

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-2180-449X
https://orcid.org/0000-0001-9734-5571
https://orcid.org/0000-0002-2727-8374
https://orcid.org/0000-0001-7438-9299


P. Navarro et al. / SketchZooms 411

Figure 1: Unlike photographs, typical design sketches lack shad-
ing, texture and lines are often rough and incomplete.

Figure 2: The multi-view neural network embeds similar points on
sketches close to one another in descriptor space despite the sig-
nificant changes in viewport and shape. By training on a dataset of
part-based registered 3Dmodels rendered as sketches, SketchZooms
is able to generalize to different rendering styles, incorporating the
semantics from an object category.

corresponding point. The main goal is to capture the domain seman-
tics and object part characteristics despite the heterogeneous nature
of hand-drawn images (see Figure 2). Our hypothesis is that learn-
ing from such a large database may result in a general model that
overcomes the covariate shift between artificial and real sketches.

Although the available literature provides descriptors which are
robust to shape variation and affine distortions, to the best of our
knowledge this is the first attempt to cope with part semantics and
3D viewport changes in sketches. To this avail, we evaluate and
compare SketchZooms against well-known state-of-the-art tech-
niques extensively used in line drawings’ applications. Furthermore,
the generalization ability of our framework is assessed by evaluat-
ing the proposed approach using the OpenSketch image collection,
[GSH*19] rendered by designers in different styles and viewports.
Taking advantage of co-registered images in OpenSketch, with-
out any prior fine-tuning, we compute quantitative metrics along
with the qualitative results (Section 5). Experiments show that this
approach is able to deal with significant changes in style, shape
and viewport, generalizing well to non-synthetic inputs. Finally, we
demonstrate the usefulness of our descriptors for graphics applica-
tions such as sketch-based shape retrieval and image morphing.

In summary, our contributions are:

• The first approach applying deep learning to the problem of find-
ing local image correspondences between design sketches.

• A massive co-registered synthetic line drawing dataset rendered
from 3D shapes, which allows our trained models to generalize
to designer sketches, even from unseen object categories.

• A comprehensive evaluation and comparison with respect to
other methods commonly applied to find correspondences in line
drawings, including a perceptual study against human-established
matchings.

2. Related Work

Finding image descriptors that effectively represent image data is a
classic problem in Computer Graphics and Vision. A comprehen-
sive summary of the relevant literature is out of the scope of this
paper. Instead, we focus on descriptors involving line drawings, ei-
ther for registration or retrieval tasks on images and 3D models. We
avoid general natural image descriptors like SIFT Low99] which
has been shown ineffective to cope with sparse stroke orientations in
sketches ERB*12]. We briefly classify them into two main groups:
hand-crafted and learned descriptors.

Hand-crafted descriptors consist on applying custom transforma-
tions over some input data in order to obtain a suitable global or local
representation. Many applications working with raster input employ
pixel-based descriptors. For instance, ShapeContext BMP02] is a
well known descriptor that captures the point distribution on a given
neighbourhood, which was proven effective for corresponding fea-
ture points in sketches [CCT*09, IBT13]. Combined with cycle con-
sistency methods like FlowWeb [ZJLYE15], some authors boosted
ShapeContext performance and benefited from the availability of
multiple similar sketches [ADN*17]. In the context of vector graph-
ics, several authors proposed to quantify stroke similarity in order
to generate in-between frames for character animation [WNS*10,
XWSY15], auto-complete line drawings repetitions [XCW14], se-
lection and grouping [XFAT12, NSS*12] and sketch beautifica-
tion [LWH15, LRS18]. As the number of available 3D models
and images steadily increases, effective methods for searching on
databases have emerged. Using non-photorealistic rendering meth-
ods, meshes are transformed into sketches and search engines com-
pute image descriptors that summarize global properties, such as
contour histograms [PLR05], stroke similarity distance [SXY*11],
Fourier transform [SI07], diffusion tensor fields [YSSK10] and bag-
of-features models [ERB*12].

Learned descriptors gained popularity with the recent success of
deep neural networks [LBH15]. Most applications involving line
drawings, like Sketch Me That Shoe [YLS*16, SYS*17], target the
problem of computing global descriptors for sketch-based image re-
trieval. Similarly, Qi et al. [QSZL16] and Bui et al. [BRPC17] pro-
posed to train siamese networks that pulls feature vectors closer for
sketch-image input pairs labelled as similar, and push them away
if irrelevant. Zhu et al. [ZXF16] constructed pyramid cross-domain
neural networks to map sketch and 3D shape low-level representa-
tions onto an unified feature space. Other authors investigated how
to learn cross-modal representations that surpass sketch images and
3D shapes, incorporating text labels, descriptions, and even depth
maps [TD16, CAV*16, ZRBL17]. Other learned descriptors ap-
plications include sketch classification and recognition [YYS*15,
ZLZ*16]. Like Yu et al. [YYS*15], all these methods target global
features that can discriminate high level characteristics in sketches a
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single representation for an entire shape), our goal is to compute ac-
curate pixel-wise descriptors that capture part semantics along with
local and global contexts to perform local matching.

In the context of learning local semantic descriptors for pho-
tographs, a common strategy consists on training siamese ar-
chitectures with pairs or triplets of corresponding and non-
corresponding patches. Most of these methods [HLJ*15, ZK15,
SSTF*15, CGSC16, KBCR16, TFW17] learn representations for
natural image patches such that patches depicting the same under-
lying surface pattern tend to have similar representations. In con-
trast, we aim to learn a deep learning model able to assign simi-
lar descriptors to geometrically but also semantically similar points
across different objects. Moreover, instead of a descriptor for a sin-
gle image patch, our method learns a complex representation for a
3D surface point (depicted as a sketch) by exploiting the informa-
tion from different views and multiple scales. Other proposals such
as [KMH*17] learn a convolutional descriptor using self-similarity,
called fully convolutional self-similarity (FCSS), and combine the
learned descriptors with the proposal flow framework [HCSP16].
These approaches to learning semantic correspondences [ZKA*16]
or semantic descriptors [HRH*17] generally perform better than tra-
ditional hand-crafted ones. However, since limited training data is
available for semantic correspondence in photographs, these region-
based methods rely on weakly-supervised feature learning schemes,
leveraging correspondence consistency between object locations
provided in existing image datasets. This makes them vulnerable to
changes in orientation and projection distortion, and also to shape
variation as commonly seen in line drawings, where the number and
style of strokes may change significantly while the semantics of the
parts are preserved.

Learned descriptors require adequate training datasets. The high
diversity in style and the difficulty to automate sketch annota-
tion makes it hard to compile massive line drawing datasets.
Eitz et al. [EHA12] introduced a dataset of 20,000 sketches span-
ning 250 categories. Similarly, The Sketchy Database [SBHH16]
ask crowd workers to sketch photographic objects sampled from
125 categories and acquired 75,471 sketches, compiling the first
large-scale collection of sketch-photo pairs. Recently, Quick,
Draw! [HE17] released an open source collection composed by
50 million doodles across 345 categories drawn by players of an
online game. Nevertheless, the skills and style disparities of contrib-
utors to these datasets makes them unsuitable for our goal. Instead,
we target design sketches that are drawn following approximately a
particular set of rules [ES11]. Similar to Wang et al. [WKL15], we
exploit shape collections augmented with semantic part-based cor-
respondences data to synthesize sketches with NPR techniques. The
registered 3D models naturally provide us with 2D/3D alignment, a
crucial ingredient to learn our multidimensional features.

3. Multi-view Sketch Data

Shape collection. As with recent work targeting sketches and ma-
chine learning [DAI*17, HKYM16, SDY*18], we generated syn-
thetic line drawings based on semantically corresponded 3D shapes.
From the ShapeNetCore dataset [YKC*16] we selected models in
16 categories: airplane (1000), bag (152), cap (110), car (1000),
chair (1000), earphone (138), guitar (1000), knife (784), lamp
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Figure 3: Visualization of images in our dataset. Given a collection
of almost 10,000 3D models distributed in 16 object categories, we
rendered line drawings from three predefined angles and three dif-
ferent distances to the target surface point.

(1000), laptop (890), motorbike (404), mug (368), pistol (550),
rocket (132), skateboard (304) and table (1000). The 3D models
were augmented with correspondences files that provide a list of
10,000 randomly sampled surface matching points for every possi-
ble pair of shapes within each category. Correspondences are com-
puted with a part-based registration algorithm that performs a non-
rigid alignment of all pairs of segments with the same label over two
target shapes as proposed in [HKC*18].

Synthetic line drawings. While previous data-driven methods in
sketching employ simple models such as Canny edges [1987] or
image-space contours from [ST90], we adopted Apparent Ridges
from [JDA07], a good approximation to artists lines as shown
in Where do people draw lines? [CGL*12]. Apparent Ridges’ lines
approximate meaningful shape cues commonly drawn by humans to
convey 3D objects. Apart from rendering style, viewport selection
is crucial to convey shape in sketches. Literature in design recom-
mends to adopt specific viewports in order to reduce the sketch am-
biguity and simultaneously show most of the target shape [ES11].
Most 3D reconstruction algorithms from sketch images rely on as-
sumptions like parallelism, orthogonality, and symmetry [CSE*16].
Following these guidelines, we selected a set of orthographic views
to render from 3D models. We used a total of two accidental (object-
aligned) views: front, right side and a single isometric angle, also
called informative view: front-right (see Figure 3). Left sides were
omitted since we assume that the objects are symmetric with respect
to the front view (see Section 6). To capture images, we centred an
orthographic camera on each sample point, and shoot it from three
different constant distances and three distinct viewports (successive
zooms at 1.0x, 1.5x and 2x). Occluded points were discarded by
comparing z-buffer data with camera-to-target point distance. Ren-
dering all the sampled surface points for each model would have
been very computationally expensive. On the other hand, discarding
some models from each category would not have been a good op-
tion, since the diversity of shapes favours generalization. For these
reasons, we decided to randomly sub-sample surface points on each
model, so that we only use a fraction of them. For every model
in our dataset, we randomly choose and render 70 corresponding
points to other models within its category. To increase diversity, we
randomly select the sub-sampled points differently for each model.
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In total, our dataset consists of 538,000 images in a resolution of
512×512 pixels. Each image has been augmented with the informa-
tion needed to retrieve all other corresponding points in the dataset.
It took approximately 15 days to complete the rendering stage on a
PC equipped with an NVIDIA Titan Xp GPU and an Intel i7 pro-
cessor. For the sake of reproducibility and to encourage further re-
search, we aim to publicly release it by the time of publication.

4. Learning Multi-View Descriptors for Line Drawings

4.1. Proposed approach

Backbone architecture. Our proposed approach relies on a backbone
convolutional neural network (CNN) that is responsible for learning
and computing descriptors for each given input. We choose a CNN
inspired by the standard AlexNet [KSH12], which comprises five
convolutional layers, followed by ReLU non-linearities and max
pooling (see supplemental material for details). Nevertheless, our
method is sufficiently general to incorporate any other backbone
architecture. In Section 5.4, we show SketchZooms performance
when using other state of the art networks like VGG19 [SZ14]
and ResNet-18 [HZRS16]. A key insight in our approach consists
of aggregating local surface information across multiple zooms.
Therefore, we modified all the aforementioned architectures to in-
corporate a pooling layer that aggregates the descriptors Yz,p, z ∈ Z
generated for each of the three input zooms Xz,p into a single one
Yp = max

z
(Yz,p). The aggregation is performed on an element-wise

maximum operation across the input zooms.

Loss function. A key component in our approach is the learning
mechanism for tuning the network parameters. We adopted a triplet
loss [SKP15] motivated by the fact that distances gain richer seman-
tics when put into context, and the anchor point added by the triplet
loss better shapes the embedding by exploiting this relativistic ap-
proach [WMSK17]. We strive for an embedding from a set of sketch
image zooms Xz,p centred on a point p, into a descriptor Yp ∈ R

d

(d = 128 in our setup). Triplet loss minimizes the distance between
an anchor Ya and a corresponding (also called positive) point de-
scriptor Yc. Simultaneously, it maximizes the distance between the
anchor and a non-corresponding (negative) point descriptorYn. For-
mally, we want:

D2(Ya,Yc) + α < D2(Ya,Yn), (1)

where D stands for the Euclidean distance between descriptors, and
α is a margin enforced between positive and negative pairs (α = 1
in our implementation). Formulating Equation 1 as an optimization
problem over the network parameters w, we have:

L(w) =
N∑
i

max
(
D2

(
Ya
i ,Yc

i

) − D2
(
Ya
i ,Yn

i

) + α, 0
)
, (2)

where N is the cardinality of the triplets training set.

Naively using all triplets is highly inefficient since the more the
training progresses, the more triplets are going to satisfy Equation 1,
making training slower over time. Therefore, we adopted an alter-

native approach in which we adaptively select semi-hard triplets on
each training step satisfying:

{
D2 (Ya,Yc) < D2 (Ya,Yn) ,

D2 (Ya,Yn) < D2 (Ya,Yc) + α,

)
(3)

meaning that we look for training samples {Ya,Yc,Yn} lying inside
the semi-hard margin area delimited by α. For the sake of notation,
we refer to triplets using descriptor notation symbol Y . In practice,
we compute {Ya,Yc,Yn} from input images using the last network
training state. We build useful triplets on the fly for each training
minibatch by testing whether their descriptors infringe Equation 3.
In our setup, we cluster individual samples in groupsG to be sequen-
tially used during each training epoch. To build a minibatch, we ran-
domly sample positive pairs from G of the form [Ya

i ,Yc
j ], i, j ∈ G.

From construction, our dataset allows to easily obtain these corre-
sponding pairs since they are exhaustively listed in custom files. We
then test the semi-hard conditions over a random number s of nega-
tive samples [Ya

i ,Yn
k ], i, k, ∈ G. We experimented with several val-

ues for s and found s = 5 to minimize the time spent in random
search while still providing good triplets for training.

4.2. Experimental setup

We experimentally evaluated multiple aspects of our approach: (i)
we tested SketchZooms on a number of hand-drawn images from the
OpenSketch dataset [GSH*19] to assess the generalization power of
the network to unseen shape categories and styles, (ii) we examined
the ability of our learned embeddings to properly distribute descrip-
tors in the feature space, (iii) we computed correspondence accuracy
metrics to evaluate matching performance in the image space, (iv)
we performed a perceptual study to assess the semantic aspects of
our features and (v) we compare the performance on the aforemen-
tioned metrics against other correspondences methods, with empha-
sis on those commonly applied to line drawings.

Metrics. We report quantitative results using two standard met-
rics. First, we tested our embedding space using cumulative match
characteristic (CMC), a standard quality measure for image corre-
spondences [KLR15, WN04]. This metric captures the proximity
between points inside the embedding space by computing distances
over descriptor pairs on two target sketches: given a point on one of
the input images, a list of corresponding candidate matchings on the
other image is retrieved; then, candidates are ranked using a prox-
imity measure, e.g. the Euclidean distance in descriptor space. We
also evaluated the accuracy of our descriptors on the image space us-
ing the correspondence accuracy (CAcc) from [KLM*13], over our
set of test samples. This metric evaluates the accuracy of predicted
correspondences with respect to the ground truth by registering all
L2 distances between retrieved matching points and ground truths.
We report the percentage of matchings below normalized euclidean
distance (5% of image side (512 pixels)).

Competing descriptors. We compare our method against state-
of-the-art descriptors commonly used for local sketch match-
ing tasks, including the radial histograms from ShapeContext
[BMP02] and the GALIF descriptor, based on Gabor filters by
Eitz et al. [ERB*12]. We additionally consider a hand-crafted de-
scriptor consisting on principal component analysis (PCA) over a
small neighbourhood of pixels surrounding the target point. We also
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compared SketchZooms against deep learned features. In particular,
we considered MatchNet [HLJ*15], a patch-based descriptor tar-
geting natural images, and the multiview architecture from Huang.
et al. [HKC*18] to compute local 3D shape descriptors. The latter is
closely related to our work, although it relies on a contrastive instead
of a triplet loss, and does not apply our hard samples mining strat-
egy during training. To the best of our knowledge, no deep learning
based approaches have been introduced specifically for local sketch
matching tasks. For all the aforementioned methods, we used the
official and freely available implementations when possible, or re-
implemented them otherwise. Importantly, for a fair comparison, all
deep learning-based methods backbones were adapted to work with
AlexNet and retrained with our synthetic sketch dataset.

Data augmentation and training details. We computed local de-
scriptors from a set of zoomed sketch views Z (three in our setup)
centred on the point of interest p. The network learns rotational in-
variant descriptors by randomly rotating input images between 0 and
360 degrees with equal probability. To keep the descriptor robust to
different resolutions, we downsampled the input image size by 30%
and 60% with a probability of 0.2. To diminish sensitivity to the
camera-target point distance, we added noise during training to the
zoom parameter by sampling camera displacements from a normal
distribution (with μ = 0 and σ 2 = 0.3, where 0.3 means 30% size
increment w.r.t. the original image size). Since some views are more
densely populated than others, we restrict our training minibatches
to have the same number of samples from each view in order to
avoid bias. Also, since each object class has a different total number
of images, we restricted each batch to equally balance the amount
of images from each category. Our data augmentation choices were
iterative, and empirically guided by results obtained during the ex-
perimentation stage using a validation set.

The network architecture was implemented with PyTorch and
trained on NVIDIA Titan Xp GPUs. We first initialize the con-
volutional layers using AlexNet weights trained on the ImageNet
dataset, as provided in Pytorch. The learning rate was set to l =
10−5 and the network was trained for 185 epochs. We optimize the
objective in Equation 2 using Adam optimization [KB14] (β1 =
0.9, β2 = 0.999) and a batch size of 64 triplets. We did not use
batch normalization layers or dropout in addition to those already
into AlexNet (dropout p = 0.5 on layer fc6).

5. Results

5.1. OpenSketch benchmark

In order to evaluate our learned features, we conducted a series of
comprehensive comparisons against other methods when applied to
hand-drawn design sketches. We relied on OpenSketch [GSH*19],
a dataset of product design sketches containing more than 400 im-
ages representing 12 man-made objects drawn by 7 to 15 product
designers of varying expertise. These design sketches are drawn in
a variety of styles and from very different viewports. In addition,
all images are augmented with a series of corresponding points de-
rived from registered 3D models and manually annotated by design-
ers. Importantly, none of the 12 OpenSketch object categories match
those in our training dataset: bumps, hairdryer, mixer, potato chip,
tubes, waffle iron, flange, house, mouse, shampoo bottle, vacuum

cleaner and wobble surface. This is a key factor to assess the de-
scriptors’ generalization power, particularly those which are learned
from our synthetic training data. Since each line drawing in the
dataset has several layers at different progress stages, we filtered
them and kept the latest version of the sketch (called presentation
sketch). Additionally, since sketches drawn from observation tend
to be aligned with the horizontal axis, we altered them by apply-
ing a random rotation of ±90◦ to each image before computing
the descriptors. In this way, we effectively evaluate each method’s
ability to build rotation invariant descriptors. The correspondences
between all image pairs were computed using the Euclidean dis-
tance in descriptor space, and choosing the closest target point on
each case.

Figure 4 shows the retrieved matchings on image pairs from
different artists in the dataset for all evaluated methods. Overall,
our approach was able to successfully exploit the features learned
from the synthetic training set when working with hand-drawn im-
ages. We quantitatively evaluated descriptors on this benchmark
by computing the correspondences among all possible pairs of im-
ages within each category, a total of 66,320 corresponding points.
Table 1 reports the performance of the evaluated descriptors over
five retrieved matches for the CMC and below 5% normalized Eu-
clidean distance for the CAcc. We further illustrate these metrics in
Figure 5. Our descriptors outperformed the competing methods in
both evaluated metrics and across all object categories. According
to the reported metrics, we observed that our learned descriptors
outperform the rest, including the patch-based learned descriptors
of MatchNet[HLJ*15] and the multi-view architecture of Huang
et al. [HKC*18]. Also, SketchZooms performed better than the
hand-engineered local descriptors traditionally used for correspond-
ing line drawings, namely ShapeContext [BMP02] and GALIF
[EHA12]. Following these results, we believe that our method can
successfully embed semantically similar feature points in descrip-
tor space closer than other methods, while being stable to changes in
view, decorations, and style. Moreover, despite the fact that testing
categories differ from those used for training, our method can still
exploit 3D shape cues to produce fairly general local descriptors that
perform favourably compared to general hand-crafted alternatives.

5.2. Perceptual study

Humans possess an extraordinary ability to resolve semantic cor-
respondences in multi-view scenarios thanks to their previously-
acquired 3D knowledge about the world. We conducted a perceptual
study to comprehensively assess the relationship between the se-
mantics captured by our descriptors from synthetic data and the de-
cisions made by humans when performing the same matching task
on artificial sketches. Each of the 10 study volunteers was presented
with m = 4 points on a synthetic sketch image (origin), and was in-
structed to findm corresponding points on a target image. We used a
total of 40 random image pairs from our synthetic dataset distributed
in four categories: bag, chair, earphone and mug. Points on the origin
images were randomly selected from a larger list of feature points
computed over all the study images using the corner detector Good
Features to Track [ST93]. For the target points, we used blue noise
sampling to distribute 200 candidate points across the image. We did
not show any of these candidates to the study participants. Instead,
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Figure 4: Pair-wise sparse correspondences on OpenSketch data. Images have been randomly rotated between ±90◦ before computing the
descriptors. Columns show origin and target images, corresponded using different local descriptors. For each image pair, we highlighted
five points distributed in different areas of the image. The grey dots show the remaining sampled points for which matches were obtained
in order to compute metrics in Table 1. Only Euclidean distance in feature space has been considered to determine these correspondences.
Overall, our learned descriptors manage to identify similar underlying local shapes, despite the extreme differences in style, hatching, shadows,
construction lines and camera positions.

and similar to the approach adopted by BestBuddies [ALS*18], we
registered mouse clicks over targets, and fitted 2D Gaussian dis-
tributions over the coordinates annotated by the users. Overall, we
observe all participants consistently corresponded points on target
images within specific regions. After the subjects sessions, we re-
trieved matchings among origin and target images by selecting the
closest points in the Euclidean space for all compared methods. We

then defined a similarity measure by evaluating the average fitted
probability density function on the top five retrieved matches for
each query point. Higher similarity scores are then assigned to re-
gions where the consensus among users and the automatically re-
trieved points is strong, and vice-versa. We averaged the scores for
all the points within each object category and summarized the re-
sults in Table 2.
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Table 1: Cumulative match characteristic (percentage of correct matches obtained in the top five rank), and correspondence accuracy (percentage of matchings
below 5% of the image width in Euclidean space w.r.t. ground truth) on all evaluated methods over OpenSketch dataset. In total, our test samples consist of
66,320 corresponding points.

mixer tubes wobble surface hairdryer vacuum cleaner mouse

CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc

[BMP02] 42.51% 20.24% 44.79% 19.56% 38.15% 20.64% 49.62% 22.58% 31.11% 10.98% 62.74% 21.35%
[ERB*12] 24.55% 11.99% 30.87% 9.97% 35.84% 17.36% 32.85% 13.30% 27.68% 10.47% 55.94% 13.27%
[HLJ*15] 41.78% 18.51% 48.41% 19.90% 36.89% 18.29% 45.33% 19.66% 34.85% 12.78% 60.72% 19.48%
[HKC*18] 40.20% 16.72% 49.39% 16.29% 33.63% 16.32% 42.87% 18.30% 35.95% 11.85% 60.55% 17.87%
PCA 20.46% 9.73% 30.63% 9.52% 30.95% 16.92% 26.84% 10.46% 26.43% 9.88% 49.65% 11.13%
SketchZooms 62.67% 37.28% 66.44% 31.90% 50.70% 31.49% 57.71% 31.65% 49.07% 24.39% 71.36% 27.86%

bumps potato chip shampoo botle waffle iron flange house

CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc

[BMP02] 40.16% 21.02% 58.75% 26.49% 65.26% 28.90% 19.16% 9.47% 46.87% 18.12% 48.04% 17.55%
[ERB*12] 32.07% 12.28% 45.32% 14.16% 44.43% 16.31% 15.68% 7.28% 29.55% 10.79% 39.30% 11.84%
[HLJ*15] 39.65% 18.39% 60.72% 24.20% 63.25% 23.80% 19.06% 10.99% 40.21% 16.54% 44.33% 14.79%
[HKC*18] 36.63% 15.90% 55.16% 19.27% 62.03% 23.73% 18.62% 10.34% 38.81% 13.29% 40.88% 11.55%
PCA 30.94% 14.35% 43.98% 12.58% 38.78% 15.76% 14.14% 7.67% 23.23% 7.73% 26.55% 6.57%
SketchZooms 45.98% 25.40% 66.63% 30.27% 70.08% 34.73% 23.66% 13.59% 52.15% 24.93% 51.80% 21.93%

Table 2: Perceptual study metrics.

bag chair earphone mug

[BMP02] 0.023±0.013 0.024±0.008 0.021±0.011 0.022±0.010
[ERB*12] 0.005±0.003 0.006±0.004 0.009±0.006 0.008±0.004
[HLJ*15] 0.014±0.010 0.019±0.005 0.016±0.006 0.018±0.010
[HKC*18] 0.011±0.005 0.015±0.008 0.014±0.003 0.013±0.007
PCA 0.003±0.002 0.006±0.004 0.006±0.003 0.004±0.004
SketchZooms 0.025±0.007 0.025±0.009 0.024±0.009 0.024±0.012

Figure 6 illustrates matchings computed with each local descrip-
tor and the areas where the subjects consensus was stronger. When
the participants had to disambiguate between points with identical
semantics in symmetric views of an object (Figure 6 II, III and IX),
most of them decided to choose those on the same relative position
with respect to its counterpart in the origin image. SketchZooms
descriptors often find multiple semantically similar candidates on
both sides of the vertical symmetry plane (such in rows II, III and
IV from Figure 6). This aspect of our descriptors make them more
robust to arbitrary rotations and reflections, as shown in Section 5.1.
An extended discussion about symmetry is presented in Section 6.

Correspondences obtained with our descriptors are closer to hot
areas than those produced with other methods. ShapeContext also
produced accurate descriptors for these images. However, this is
contradictory with the performance previously observed on the
OpenSketch benchmark. We believe this difference is likely due to
ShapeContext lacking a learning strategy, which renders a method
unable to generalize to more complex, realistic sketch data such as
OpenSketch. ShapeContext is a hand-crafted descriptor designed to
correspond shape outlines that look similar and clean, like the syn-

thetic sketches used in the study. When corresponding hand-drawn
images with severe projection distortions, multiple rough strokes
and shading, ShapeContext fails to recognize the underlying simi-
lar local shapes (Figure 4). The full set of images from subjects data
is available as supplementary material.

5.3. Triplet vs. contrastive loss

Similar to our approach, the work by Huang et al. [HKC*18] re-
lies on a multi-view architecture to learn descriptors for 3D mod-
els, trained using a contrastive loss, and random minibatches built
during the learning phase without using any sampling heuristic. On
the other hand, our work relies on a triplet loss function and uses a
custom training schedule that can potentially benefit other applica-
tion dealing with unbalanced sets of views. In order to empirically
compare these two approaches, we trained an adaptation of the ap-
proach of Huang et al. to this specific problem, keeping all training
hyperparameters and the aforementioned data augmentation strate-
gies to avoid mixing effects in the evaluations. SketchZooms per-
formed better on all testing categories (Table 1), with average CMC
= 55.52% (SketchZooms) over CMC = 42.89% ([HKC*18]), and
CAcc = 27.95% (SketchZooms) over CAcc = 17.68% ([HKC*18]).
These experiments support our hypothesis that a combined training
strategy based on a triplet loss and a smart data sampling procedure
is of paramount importance in order to improve results with respect
to basic contrastive losses and random samplings. Additionally, re-
sults indicate that multi-view convolutional neural network architec-
tures can learn meaningful semantic descriptors in contexts where
the texture image information is very scarce and ambiguous, like
line drawings.
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Figure 5: Top: Cumulative match characteristic plots for the eval-
uated descriptors on the test dataset for mixer, tubes, wobble sur-
face, hairdryer, vacuum cleaner and mouse categories. y-axis ac-
counts for the percentage of matchings retrieved below the raking
position indicated on x. Bottom: Correspondence accuracy curves,
where x-axis shows normalized Euclidean distance error, and y-axis
accounts for the matching percentage of retrieval below the error
margin indicated on x.

5.4. Architecture alternatives

We further investigated the effect of adopting other network ar-
chitecture as backbones in our pipeline. Therefore, we trained
our framework using two alternative architectures, namely VGG19
[SZ14] (133,387,752 total parameters) and ResNet-18 [HZRS16]
(11,242,176 total parameters). Both models were fine-tuned from
ImageNet weights using the same hyperparameter settings as
AlexNet (40,796,610 total parameters), with the only exception of
the batch size for VGG19, which had to be reduced by half due to
the large memory requirements of the network. Table 3 summarizes
the performance over the OpenSketch benchmark data. Overall, we
found a slight improvement on the evaluated metrics across most ob-
ject categories when using VGG19 architecture. We believe this is
likely due to the well-known properties of VGG19 as a feature ex-
tractor, observed in multiple different applications [SRASC14]. It
must be noticed, however, that these advantages come at the cost of
a much slower training due to the significant amount of parameters
on this network, most of them originated in the last series of fully

II

III

IV

V

I

probability density 

VII

VI

VIII

IX

0.07

Origin SketchZooms PCA [BMP02] [ERB*12] [HLJ*15] [HKC*18]

Figure 6: Perceptual study. On each row, the first column shows the
origin image together with the four sampled points shown to partici-
pants of the study. All other columns show the top five retrieved cor-
respondences computed with each local descriptor among a total
of 200 target points. The heatmaps underneath show the probability
density distribution of the subjects clicks. The remaining image data
from the study is available as supplementary material.

connected layers. ResNet-18, on the other hand, performed much
more poorly in our experiments, probably due to the lack of a stack
of fully connected layers and the usage of global average pooling.

6. Robustness and Limitations

We now discuss the overall behavior of our method under challeng-
ing scenarios and its main limitations.

Robustness to sketchiness. Adopting Apparent Ridges as our
dataset rendering engine allowed our method to be robust to typical
drawings’ sketchiness. Synthetic images rendered with this method
often contain wiggly lines and several other imperfections. Our ex-
perimental setup allowed us to evaluate SketchZooms ability to deal
with very different drawing styles (Figure 4, V and VII), even with
overlayed construction lines and shadows (Figure 4, IX and XI).
However, extremely rough drawings, with an excessive amount of
construction lines or extreme lighting can harm the performance of
our descriptors (i.e. cross-hatched areas in houses from Figure 7).

Symmetry. Most man-made objects are symmetric with respect
to at least one plane in 3D space. Our features are strongly biased
by the image semantic information, and sometimes can mismatch
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Table 3: Ablation study metrics for the OpenSketch benchmark. Cumulative match characteristic (top five rank) and correspondence accuracy for normalized
Euclidean distance at 5% on all evaluated backbone architectures.

mixer tubes wobble surface hairdryer vacuum cleaner mouse

CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc

ResNet-18 60.98% 33.83% 63.99% 29.89% 47.89% 29.97% 51.43% 27.27% 45.25% 20.85% 68.82% 23.82%
VGG-19 63.95% 37.15% 69.66% 36.16% 49.60% 30.92% 57.91% 31.59% 48.62% 23.11% 72.68% 27.58%
AlexNet 62.67% 37.28% 66.44% 31.90% 50.70% 31.49% 57.71% 31.65% 49.07% 24.39% 71.36% 27.86%

bumps potato chip shampoo botle waffle iron flange house

CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc CMC CAcc

ResNet-18 43.16% 21.54% 65.64% 28.20% 71.36% 32.95% 23.40% 13.52% 51.44% 21.54% 51.32% 19.32%
VGG-19 44.97% 25.43% 71.08% 32.92% 72.10% 34.17% 24.49% 14.65% 52.73% 23.57% 55.76% 24.26%
AlexNet 45.98% 25.40% 66.63% 30.27% 70.08% 34.73% 23.66% 13.59% 52.15% 24.93% 51.80% 21.93%

Figure 7: SketchZooms dense correspondences on line drawings
from different styles (from top to bottom: cartoons, fashion, manga
and architectural sketches). Colours indicate distance to target
point (green cross) in feature space. For each line drawing, between
400 and 1000 points were randomly sampled and corresponded us-
ing Euclidean distance.

on symmetric points on the target sketch (see Figure 6). Symme-
try mismatches happen more often when trying to correspond ex-
treme viewports, like the side and front of two target objects. For
all results reported in this paper, we used the Euclidean distance
in feature space to retrieve correspondences and compute metrics.

However, simultaneously matching several points can help disam-
biguate these symmetries, -i.e. combinatorial optimization methods
like the Hungarian algorithm [Kuh55] can help refine more coherent
matchings than using a simple strategy of matching closer points in
descriptor space. An interesting future research direction is to ex-
plore ways to incorporate orientation tags in the training phase or to
involve users actively in refining correspondences on the fly.

Zoom and rotation sensitivity. As mentioned in Section 4, in order
to compute a descriptor for a given image point, we need to succes-
sively crop three zoomed images surrounding it. These images are
aggregated and transformed by the SketchZooms network to pro-
duce a descriptor of the point. We pick the zoom parameter value in
order to include some information of the strokes composing the tar-
get image, since providing three empty images to the network would
produce undesired outputs. In particular, for all results presented in
this paper we fixed zoomed images sides to be 10%, 20% and 40%
of the total image length (512 pixels in our experiments). In general,
OpenSketch images are relatively on the same scale, occupying at
least two thirds of the total width and aligned with the horizontal im-
age plane. To assess the effect of different zooms and rotations, we
performed a controlled study where the testing images were zoomed
in or out at different scales before computing the descriptors. In par-
ticular, we segmented the objects from OpenSketch images and re-
scaled them randomly at different maximum sizes ±10%, ±20%
and ±40%. We measured size as the maximum distance among all
pairs of stroke pixels for each image. We also generated versions of
the dataset where images were randomly rotated up to ±45◦, ±90◦,
and ±180◦. Then, we computed the evaluated metrics on all possible
corresponding pairs within each category. Table 4 summarizes the
results. While SketchZooms performance is not greatly affected by
these parameters, zooming too much can lead to cases in which the
three cropped images have any stroke information, while zooming
too little could miss details, degrading the output descriptor quality.

Generalization to unseen line drawing styles. Finally, we show
the capability of SketchZooms to perform on images significantly
different than the ones used for training. We selected pairs of
sketches from the Yan et al. [YVG20] public dataset and com-
puted dense correspondences. Figure 7 shows exemplary outputs of
corresponding points in cartoons, manga, fashion and architectural
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Table 4: Descriptors performance under random zoom and rotations up to the values indicated in top rows for each table. Cumulative match characteristic is
reported for the top five rank and correspondence accuracy for normalized Euclidean distance at 5% of the image width.

±10% ±20% ±40%

max. zoom CMC CAcc CMC CAcc CMC CAcc

[BMP02] 46.69% 20.44% 44.85% 19.38% 44.73% 20.38%
[ERB*12] 34.31% 12.61% 33.75% 12.31% 34.02% 13.17%
[HLJ*15] 45.42% 18.67% 44.16% 17.56% 43.18% 18.07%
[HKC*18] 43.04% 16.82% 41.68% 15.94% 42.43% 16.95%
PCA 30.09% 11.07% 30.43% 10.91% 30.21% 11.93%
SketchZooms 55.39% 27.52 53.97% 26.69% 52.93% 26.78%

±45◦ ±90◦ ±180◦

max. rotation CMC CAcc CMC CAcc CMC CAcc

[BMP02] 51.53% 24.79% 45.60% 19.74% 38.06% 15.10%
[ERB*12] 36.79% 14.27% 34.51% 12.42% 31.58% 10.97%
[HLJ*15] 49.37% 21.22% 44.51% 18.11% 35.83% 16.66%
[HKC*18] 54.78% 17.39% 42.89% 15.95% 34.91% 12.52%
PCA 30.23% 11.32% 30.21% 11.03% 30.19% 10.90%
SketchZooms 59.38% 31.14% 55.69% 27.95% 44.58% 20.72%

sketches. Overall, our learned features produced plausible match-
ings. Importantly, the distance field in feature space reveals a smooth
embedding, where semantically and geometrically similar points are
close to each other. This smoothness does not appear to be signif-
icantly altered by the rough shading variation and other disconti-
nuities in the images. Even if none of these sketch categories were
used to train our model, our highly diverse synthetic dataset used
for training ensured a regularization effect, allowing generalization
to unseen styles.

7. Applications

Image morphing for shape exploration. Inspired by the recent work
of Arora et al. [ADN*17], we implemented an image morphing al-
gorithm based on the image mapping obtained from the Sketch-
Zooms features. The goal is to allow exploration of the contin-
uous design space between two sketches while smoothing views
and shape transitions. We start by computing motion paths be-
tween sparse SketchZooms corresponding points, and then interpo-
late them into dense smooth trajectories. We sample k = 10 cor-
respondences evenly distributed over the input-target pair. Then,
we compute a Delaunay triangulation of the image space using the
sampled points as input. For each triangle, we estimate an affine
transformation that maps both triangulations on a number of steps
s = 50. We implemented a non-linear alpha blending function to
reduce ghosting effects for a pixel p at a step s defined as:

αp(s) = 1

2
+ 1

2
tanh

(
s − δ(p)

ρ(p)

)
, (4)

where δ and ρ are linear functions of the pixel confidence score to
keep the sigmoid outputs in the [0,1] interval. This blending func-
tion ensures that well matched regions smoothly transition into other
images, while regions with poor matching disappear quickly from
the image (Figure 8).

Figure 8: Image morphing sequences using SketchZooms descrip-
tors for corresponding two target sketches. A non-linear alpha
blending map was computed from point distances in the Sketch-
Zooms feature space.

Part segmentation. Sketch segmentation has been addressed
before as an instance of colourization [SDC09] and simplifica-
tion [NSS*12, LRS18]. Segmentation can be used for different ap-
plications, like adding depth information to line drawings or ap-
plying global illumination effects [SSJ*10, SKČ*14]. Similarly,
SketchZooms’ features can be used to perform automatic seman-
tic layering and colouring, since painting has much in common
with image segmentation. Specifically, we first manually segmented
hand-drawn images from the headphone category (10 in our test ap-
plication). Then, we computed SketchZooms’ features for a subset
of 2D points on every sketch using blue noise sampling, and used
them to train a C-SVM classifier which learns to predict labels from
our descriptors. Formally, we solve for:

minw,b,ζ
1

2
wTw +C

n∑
i=1

ζi

subject to yi
(
wTφ(xi) + b

) ≥ 1 − ζi
ζi ≥ 0, i = 1, . . . , n

, (5)
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headband earpads

Figure 9: SketchZooms features re-purposed for semantic segmen-
tation. Labels can be used to decompose sketches into different lay-
ers or as pixel-wise semantic tags for colouring.

Query sketch Retrieved 3D models and orientations 

Figure 10: Results from our 3D shape search engine. Even though
the searched models had no ground truth correspondence on the
model database, our algorithm returned plausible shapes. Our fea-
tures additionally provide information about the sketch view, allow-
ing to automatically orient models to the query sketch.

whereC is the capacity constant (set toC = 1), w is the vector of co-
efficients, and ζi represents parameters for handling non-separable
data. The index i labels the n training cases (n = 2 in our setup).
Figure 9 shows the semantic segmentations obtained with our clas-
sifier.

Sketch-based 3D shape retrieval. As shown in Section 2, much of
the work on image features for sketches was proposed in the con-
text of 3D retrieval applications. In order to test the potential of our
features in this task, we implemented a 3D model search engine
based on our local descriptors. We computed SketchZooms descrip-
tors for 70 random point samples over the synthetic line drawings of
70 earphone models (4900 points in total distributed among 3 dif-
ferent viewports). At searching time, we sample 1000 points from
query sketches using blue noise sampling, and retrieve the candi-
date model list using L2 distance w.r.t. query points. This simple
strategy retrieves similar models in the database (Figure 10). Addi-
tionally, our search engine can accurately determine which camera
viewport best matches the query sketch in order to consistently ori-
ent 3D models, demonstrating the capability of our feature vectors
to encode viewport information.

8. Conclusions

We presented SketchZooms, a learnable image descriptor for cor-
responding sketches. To the best of our knowledge, SketchZooms
is the first data-driven approach that automatically learns semanti-
cally coherent descriptors to match sketches in a multi-view context.
Aiming this with deep neural networks was unfeasible before due
to data limitation, as massively collecting sketches from artists and
designers is extremely challenging. We have put together a vast col-
lection of synthetic line drawings from four human-made objects
categories and camera viewports commonly adopted by designers.
This dataset can be easily extended with our pipeline as more 3D
models become available. More importantly, our learned features
were able to generalize to sketches in the wild directly from the
synthetic data.

Our results offer interesting future directions of research. Apart
from the already mentioned applications, like 3D part segmenta-
tion, semantic morphing and sketch-based retrieval, more technical
research venues are also raised by this proposal. It is relevant to
investigate whether other viewport configurations are possible
without introducing much ambiguity into the descriptor space.
Also, recent approaches have proposed to use semi-supervised
hand-drawn images to improve network performance [SSII18].
Investigating whether explicit treatment of domain shifts can
boost performance on our hand-drawn data set is an interesting
future direction to explore. Finally, a deep study on how humans
perform matching tasks on the sketch image domain would be very
beneficial to build more accurate descriptors.
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Sỳ kora D., Dingliana J., Collins S.: Lazybrush: Flexible paint-
ing tool for hand-drawn cartoons. Computer Graphics Forum 28
(2009), 599–608.

Su W., Du D., Yang X., Zhou S., Fu H.: Interactive sketch-based
normal map generation with deep neural networks. Proceedings
of the ACM on Computer Graphics and Interactive Techniques 1,
1 (2018), 22.

Shin H., Igarashi T.: Magic canvas: interactive design of
a 3-d scene prototype from freehand sketches. In Proceed-
ings of Graphics Interface 2007 (2007), ACM, pp. 63–
70.
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