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Abstract
This supplemental material provides mathematical details for computing the distance and projection of a point onto a bone,
and the optimization details for bone and joint parameters as they are performed in the FAKIR algorithm. It also provides
additional FAKIR registration results and comparisons between registration obtained through our sequential optimization and
a direct simultaneous optimization.

A. One-bone distance computation

In this appendix, we detail the projection of a point p on a bone
B given an approximation of the oriented normal of point p. In-
stead of using the usual orthogonal projection on the bone, we
constrain the projection p̃ to have a normal coherent with the one
of p. This constraint is helpful when the bone lies far away from
its corresponding point set: the point can then be projected on the
“right side” of the bone. In the following, without loss of general-
ity, let us assume r1 ≤ r2. All the following computations depend
on an angle α defined in Fig. 1 and which can be expressed as
α = arctan |r2−r1|√

‖c1c2‖2−(r2−r1)2
. Let us first compute p? the projec-

tion of p on the oriented line c1c2, and two translations of these
points along this line: p?α at the distance ‖pp?‖ tanα of p? and
p?−α at the distance −‖pp?‖ tanα, as illustrated on Figure 1. Let

τα =
p?

α
−c1

c2−c1
, so that p?α can be expressed as ταc1 +(1−τα)c2. Dif-

ferent cases can occur:

• 0 < τα < 1: the point projects on the cone part of the bone. Let
p̃α be the intersection of segment [p?α p] with the cone. p̃α is the
orthogonal projection of p on the bone. If the normal to p̃α has a
positive scalar product with the normal of p, p̃ = p̃α. Otherwise,
normals are deemed inconsistent and p̃ = p̃−α, i.e. the farthest
intersection of pp?−α with the non-truncated cone. This situation
occurs when the point p is on the wrong side of the bone (i.e. its
normal is inconsistent with the normal of its closest point on the
bone).
• τα < 0 (resp. τα > 1): p̃ is the projection of p on the sphere

centered at c1 (resp. c2) with consistent normal direction, except
if this normal-constrained projection falls within the bone and
not on the envelop. In that case, p is on the wrong side of the
bone, and we set p̃ = p̃−α on the other side of the non-truncated
cone.

In any case, the distance between p and its normal-constrained
projection p̃ vanishes when p is located near the surface of one
bone, with a normal oriented consistently. It may happen that the re-
turned projection does not provide a point belonging to the surface
of the bone: on Figure 1, q̃−α is the normal-constrained projection
of point q, but it is not on the surface of the bone. It corresponds to
a case where the point is very far from the part of the bone which is
coherent with its normal. During the registration process, q̃−α will
attract q on the other side of the bone, so that the projection point
will gradually be replaced by a more consistent one.

p

c1
c2

r1
r2

q

o
h

Figure 1: Various projection cases. p has two possible projections
p̃α and p̃−α depending on the orientation of the normal at p. Point
p? is the projection of p on line c1c2. If the normal at p is oriented
upward p̃ = p̃α. Otherwise, p̃ = p̃−α. The same strategy is used to
project points q and o.

For completeness, let us express unsigned distance d(p) = ‖p−
p̃‖ in the various cases since they will be required in the following
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Levenberg-Marquardt optimization formulations. If τα < 0 (resp.
τα > 1), d(p) = ‖c1 p‖−r1 (resp. d(p) = ‖c2 p‖−r2). If 0≤ τ≤ 1:

d(p) =

{
‖pp?α‖− rα(p) if n p̃ ·np > 0
‖pp?−α‖+ r−α(p) if n p̃ ·np ≤ 0

(1)

Since the radius of the cone varies linearly along line c1c2:

rα(p) =‖p̃α p?α‖= (1− τα(p))r1 + τα(p)r2

r−α(p) =‖ ˜p−α p?−α‖= (1− τ−α(p))r1 + τ−α(p)r2
(2)

with: τα(p) =
c1 p?

α
·c1c2

‖c1c2‖2 and τ−α(p) =
c1 p?−α

·c1c2

‖c1c2‖2 . Furthermore
‖pp?α‖ = ‖pp?−α‖ = ‖pp?‖/cosα. Hence, for each bone, we first
compute the α angle, then, for each point p, we compute its projec-
tion p? on c1c2 and the corresponding τα(p) yielding r±α(p) and
p̃±α.

B. Optimization for one bone

Let us assume that c1 (Fig. 1) is fixed and let us optimize for
the pose and intrinsic parameters of bone B. In a local refer-
ence frame centered at c1 with x-axis aligned with c1c2, c1 has
coordinates (0,0,0) and c2 has initial coordinates (l,0,0). The
rotation of the bone can be parameterized by a rotation of an-
gle θ1 around the y-axis followed by a rotation of angle θ2
around the z-axis. The one-bone energy is invariant by rotation
around the x-axis. After the double rotation, c2 has coordinates
(l cosθ2 cosθ1, l sinθ2, l cosθ2 sinθ1). Let us call (x,y,z) the coor-
dinates of point p in this local coordinate system and express d(p)
with respect to parameters θθθ = (θ1,θ2),l and rrr = (r1,r2). We have:

tanα =
r2− r1√

l2− (r2− r1)2
,cosα =

√
l2− (r2− r1)2

l

‖c1 p‖2 = x2 + y2 + z2

‖c1 p?‖= xcosθ2 cosθ1 + ysinθ2 + zcosθ2 sinθ1

‖p?p‖2 = x2+y2+z2−(xcosθ2 cosθ1+ysinθ2+zcosθ2 sinθ1)
2

‖p?p?α‖= ‖p?p‖ tanα

‖p?α p‖= ‖p?p‖
cosα

τ±α(p) =
‖c1 p?‖±‖p?p?α‖

l

‖c2 p‖2 =(x− l cosθ2 cosθ1)
2+(y− l sinθ2)

2+(z− l cosθ2 sinθ1)
2

The one-bone energy function is (dropping the k subscript for
simplicity):

E(P,B(l,r),θθθ) = ∑
p∈P

d(p)2 (3)

The optimization is performed on three set of parameters in turn:
angles θθθ, bone length l and bone radii rrr.

the optimization for bone B with respect to θθθ writes:

θ̂θθ≡ argmin
θθθ

E(P,B(l,r),θθθ) = argmin
θθθ

∑
p∈P

d(p,θθθ)2 (4)

Following the Levenberg-Marquardt algorithm, at each iteration,
parameter θθθ is replaced by a new estimate θθθ+δθθθ, computed as:

argmin
θθθ

E(P,B(l,r),θθθ)≈ argmin
δθθθ

E(P,B(l,r),θθθ+δθθθ) (5)

which is computed by taking:

∂E(P,B(l,r),θθθ+δθθθ)

∂δθθθ
= 0

We finally get δθθθ:

δθθθ =−[JT J +λdiag(JT J)]−1JT g(θθθ)

where J = [J1,J2], Ji1 =
∂d(pi)

∂θ1
and Ji2 =

∂d(pi))
∂θ2

and g(θ) is a
column vector whose entries are d(p,θθθ) for each point p. λ is a
damping factor set to 0.01 initially and adapting it throughout iter-
ations.

In the following, we assume 0 < τα(p) < 1 and np̃ · np > 0. In
this case, p projects on p̃α and d(p) = ‖pp?α‖−rα(p) with rα(p) =

(1− τα(p))r1 + τα(p)r2, and τα(p) = ‖c1 p?
α
‖

l . Hence:

∂d(p)
∂θ1

=
1

cosα

∂‖p?p‖
∂θ1

+(r2− r1)
1
l
(

∂‖c1 p?‖
∂θ1

+ tanα
∂‖p?p‖

∂θ1
)

(6)

∂d(p)
∂θ2

=
1

cosα

∂‖p?p‖
∂θ2

+(r2− r1)
1
l
(

∂‖c1 p?‖
∂θ2

+ tanα
∂‖p?p‖

∂θ2
)

(7)

The full expression for the derivatives can be easily derived
given the expressions for ‖p?α p‖, ‖c1 p?‖, ‖p?p‖ above. The cases
τα(p)< 0, τα(p)> 1 or n p̃ ·np < 0 can be computed similarly.

C. Optimization for a joint between two consecutive bones

Let us consider the geometric optimization of the center of the joint
between two bones by optimizing the two-bones energy with re-
spect to the lengths lk and lk+1. Each length is optimized in turn,
with a side-effect on the value of the other length. The two-bones
energy can be expressed as a function of lk:

E(k,k+1)(lk) = ∑
p∈Pk

‖p̃k− p‖2 + ∑
p∈Pk+1

‖ p̃k+1− p‖2 (8)

Following the Levenberg-Marquardt algorithm, at each iteration,
each parameter lk is replaced by a new estimate lk +δl:

argmin
lk

E(k,k+1)(lk)≈ argmin
δl

E(k,k+1)(lk +δl) (9)
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Ck Bk

(a) Rotate Bk ∪ Bk+1

Ck Bk

(b) Refine length lk of Bk

Ck Bk

(c) Refine length lk+1 of Bk+1

Ck Bk

(d) Refine radius rk+1

Figure 2: Pairwise Optimization. With fixed extremities ck and
ck+2, the pair of bones Bk and Bk+1 is first rotated around axis
ckck+2 in order to minimize the two-bones energy. Then the lengths
of the bones Bk and Bk+1 and their common radius rk+1 are opti-
mized successively. After these updates, the point-to-bone assign-
ment is recomputed. As the process is repeated the distances are
more accurate since the point-to-bone assignment becomes more
meaningful.

By setting ∂E(k,k+1)(lk+δl)
∂δl = 0, we get:

δl =−
∑p∈Pk

dk
∂dk
∂lk

+∑p∈Pk+1
dk+1

∂dk+1
∂lk

∑p∈Pk
( ∂dk

∂lk
)2 +∑p∈Pk+1

( ∂dk+1
∂lk

)2
(10)

where dk = ‖p− p̃k‖ and dk+1 = ‖p− p̃k+1‖ are expressed as func-
tions of lk.

Let us detail the expression of dk with respect to lk: during the
pairwise optimization ck and ck+2 remain fixed (Figure 2). Let ck
be the origin of a local reference frame with the x-axis aligned with
ckck+1. In this frame, the coordinates write ck(0,0,0), ck+1(lk,0,0)
and ck+2(x2,y2,z2) while a point P has coordinates (x,y,z). Then
ck+1ck+2 = (x2− lk,y2,z2), ck+1 p = (x− lk,y,z).

Let us assume that p projects on p̃α (the case p̃−α can be de-
duced with minor changes). Using the same notation as in Figure
1 and appendix B, recall that dk = ‖p− p̃k‖ = ‖pp?α‖ − rα(p).
Since when optimizing lk the orthogonal projection on ckck+1 does
not change, ‖pp?‖ remains the same. However both α and rα(p)
change. Since rα(p) = (1− τα(p))rk + τα(p)rk+1 with τα(p) =
‖ck p?

α
‖

lk , we get:

∂dk
∂lk

=−‖pp?‖
cos2 α

∂cosα

∂lk
− (rk+1− rk)

∂τα(p)
∂lk

(11)

Simple geometric considerations give cosα =

√
1− (rk+1−rk)2

l2
k

,

τα(p) = ‖ck p?‖+‖pp?‖ tan α

lk and tanα = rk+1−rk√
l2
k−(rk+1−rk)2

, whose dif-

ferentiation with respect to lk is easy.

One must also express distances dk+1 as functions of lk. In that
case, the projection on bone Bk+1 is slightly different, since the po-
sition of point ck+1 changes with lk. The formulas are only slightly
modified by it, but this time ‖pp?‖ also depends on lk. We get:

∂lk+1
∂lk

=
1

cosα

∂‖pp?‖
∂lk

− ‖pp?‖
cos2 α

∂cosα

∂lk
− (rk+2− rk+1)

∂τα

∂lk
(12)

The full expression for the derivatives can be easily computed
using the following formulas:

cosα =

√
1− (rk+2− rk+1)2

(x2− lk)2 + y2
2 + z2

2

τα(p) =

√
(x− lk)2 + y2 + z2

(x2− lk)2 + y2
2 + z2

2

‖ck+1 p?‖= ck+1 p · ck+1ck+2
‖ck+1ck+2‖

=
(x− lk)(x2− lk)+ yy2 + zz2

(x2− lk)2 + y2
2 + z2

2

Plugging all the derivatives in Equation 10 yields δl, and lk can
be updated as l̂k = lk +δl. This impacts the position of ck+1, whose
new position is computed as ĉk+1 = ck + l̂k

ckck+1
ckck+1

, and lk+1 is re-
computed as : lk+1 = ‖ĉk+1ck+2‖.

The two-bones energy Ek,k+1 is then optimized with respect to
lk+1. This optimization is symmetric to the lk case above and can be
easily adapted. Finally, the optimization of the radius of the com-
mon joint and rotation angle around axis ckck+2 are done in a sim-
ilar manner.

D. Importance of the optimization order for registering a
chain of bones.

During our optimization process our approach takes advantage of
the articulated property of our model by processing bones in a spe-
cific order. Here, we run an experiment to illustrate that the order
in which the optimizations are made is crucial.

To do so, we replace our iterations of sequential optimizations
followed by point to bone reassignment by iterations of simulta-
neous parameter optimizations followed by point reassignment. At
each iteration, the positions of all the joints are simultaneously op-
timized by minimizing their two-bone energies as if the adjacent
joints remained fixed. The free joints at the extremities are also op-
timized at the same time by minimizing their one-bone energy as
if their non free joint remaining fixed. However the parameter and
pose change is not applied right away after each optimization but
simultaneously once all updates have been computed.

If this optimization is run after our forward step (which is useful
to bring each bone close to relevant data), it takes 43 iterations to
converge, against 9 iterations only with our approach (See Figure 3
for an illustration of the stages). On the contrary, if the simultane-
ous optimization is run directly from the initial position, the method
fails to converge. Figure 4 shows the result after 50 simultaneous
optimizations steps.
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Figure 3: Simultaneous Optimization for a chain of bones applied after the first Fakir forward pass. From left to right: initial position (after
our forward step), position after 10 iterations, position after 35 iterations, position after convergence (43 iterations).

(a) Initial position for a simul-
taneous optimization

(b) Position after 50 iterations

Figure 4: Simultaneous Optimization for a chain of bones applied
directly from the initial position.

Figure 5: From left to right: Aphrodite statue, registration result
without the normal-constrained projection, registration result with
our normal-constrained projection

E. Importance of the normal-constrained projection

In this section we demonstrate that the normal-constrained projec-
tion both improves the result of the registration and the computation
time. It is especially true in the case of the Aphrodite statue (Figure
5). Indeed, for this statue, the arms cling to the body which leads to
wrong assignment of points when no normal information is used,
yielding an unrealistic statue pose. The normal-constrained projec-
tion, on the contrary, permits to recover a good pose of the arms.
Furthermore, it takes 16.9s and 2 iterations for the algorithm us-
ing normal-constrained projection, against 32.8s and 8 iterations –
to converge to a wrong registration – otherwise (number of points:
38954). On simpler cases, like the Dancing Faun (see the main pa-
per for a rendering of the shape), both methods manage to converge
to the correct registration, but the computation time and number
of iterations are still lower for the normal-constrained projection
(8.7s, 6 iterations) than for the simple orthogonal projection (10.4s,
10 iterations).

Figure 6: From left to right: the Dancer with Crotales statue, initial-
ization position at bounding box center of point cloud, automatic
registration result.

Figure 7: A failure case for automatic initialization. From left to
right: the Victoria from TOSCA data set, initialization position at
bounding box center of point cloud, automatic registration result.

F. Automatic initialization test

Our attempt to automatically initialize FAKIR by placing the pelvis
in the center of the bounding box is effective for many statues. The
Figure 6 illustrates that this works with a vertically oriented statue,
while the Figure 7 shows a failure result, due to the fact that the cen-
ter of the bounding box does not give any information about the ori-
entation of the body. Thus the chains of bones are not aligned with
the appropriate points, which leads to a local minimum. An im-
proved version using principal component analysis of the points to
initialize the orientation of the pelvis and adding loose constraints
on the length of the bones could improve the registration.

G. Additional registration results

We show on Figures 8 and 9 four additional results, including one
with a missing part (the arm) and some garments which do not
hinder the registration. The Goddess Parvati and the Gorilla show
the good performance of FAKIR on data which do not have realistic
human proportions, while still using the standard human skeleton
presented in the paper.
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Figure 8: Additional statue registration results. Top-left: Wounded Amazon (Rome, 150 A.D., Nye Carlsberg Glyptotek, Copenhagen, Den-
mark); Top-right: Age of Bronze (Auguste Rodin), top-right; Bottom: The Goddess Parvati (South India, Circa 1200 A.C.). For each result,
we show the initial point set, overlay of the data and the registered model, and the registered model alone.

Figure 9: Additional result on the Gorilla from the TOSCA dataset (initial point set; overlay of the data and the registered model; registered
model alone).
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