
Pacific Graphics 2020
E. Eisemann, A. Jacobson, and F.-L Zhang
(Guest Editors)

Volume 39 (2020), Number 7

Automatic Band-Limited Approximation of Shaders Using
Mean-Variance Statistics in Clamped Domain

Supplemental Material

Shi Li1, Rui Wang1†, Yuchi Huo1, Wenting Zheng1, Wei Hua2,1, Hujun Bao1

1 State Key Lab of CAD&CG, Zhejiang University, 2Zhejiang Lab

1. Derivation of Mean-Variance Statistics for Example Code

The Example Codes in Figure 1 (original paper) contain two func-
tions, x1 =−x2 and x2 = exp(x1). We assume that X ∼ N(µX ,σ

2
X),

µX1 and σ
2
X1 can be computed through Equation 1 and 2:

µX1 =
∫ ∞
−∞
−x2G(µX ,σ

2
X)dx =−(µ2

X +σ
2
X) (1)

σ
2
X1 =

∫ ∞
−∞

x4G(µX ,σ
2
X)dx−µX1 ∗µX1 = 4µ2

X σ
2
X +2σ

4
X (2)

Subsequently, we assume X1 ∼ N(µX1,σ
2
X1). With the similar

process, we compute µX2 with µX1 and σ
2
X1 as follows:

µX2 =
∫ ∞
−∞

exp(x)G(µX1,σ
2
X1)dx = exp(µX1 +

1
2

σ
2
X1) (3)

Finally, the smoothed output is µX2 = exp(−µ2
X−σ

2
X +2µ2

X σ
2
X +

σ
4
X).

2. A Proof of the Probability Density Function Approximation
for a Single Composition

Let us consider f (x) is a composition of functions f1 and f2 as
f (x) = f2(f1(x)). We then break the composition into two sub-
parts, x1 = f1(x0) and x2 = f2(x1), and derive the approximation
from these two sub-parts. For the variable X1 where the current do-
main is [xo

0a,x
o
0b], mean (µX1) and variance (σ2

X1
) could be obtained

through Equation 3 and 4 in the paper. If a probability density
function p(X1) for the variable X1 in the current domain satisfies

the following equations:
∫ xo

0b
xo

0a
p(X1)dX1 = 1,

∫ xo
0b

xo
0a

X1 p(X1)dX1 =

µX1 ,
∫ xo

0b
xo

0a
X1

2 p(X1)dX1 = µX1 +σ
2
X1

, then the composition rules still
hold when σ→ 0.

A second-order Taylor expansion is introduced to estimate
f2(X1) around the mean of the variable X1:

f2(X1) ≈ f2(µX1) +∇ f2(µX1)(X1 − µX1) +
1
2!∇

2 f2(µX1)(X1 −
µX1)

2

Then f 2(X1) could be computed as:∫ xo
0b

xo
0a

f2(X1)p(X1)dX1 ≈
∫ xo

0b

xo
0a

f2(µX1)p(X1)dX1+∫ xo
0b

xo
0a

∇ f2(µX1)(X1−µX1)p(X1)dX1+∫ xo
0b

xo
0a

1
2!
∇2 f2(µX1)(X1−µX1)

2 p(X1)dX1

= f2(X1)+
1
2!

σ
2
X1∇

2 f2(X1)

(4)

With Equation 4, it can be concluded that it is accurate up to the
second-order in the assumption of a second-order Taylor expan-
sion.

µX1 = f1(µ)+
1
2

σ
2∇2 f1(µ)

σ
2
X1 = σ

2(∇2 f1)
2

µX2 = f (µ)+
1
2

σ
2(∇2 f2(∇ f1)

2

+∇ f2∇2 f1)+O(σ4)

(5)

Subsequently, f (µ,σ2) = f (µ) + 1
2 σ

2(∇2 f2(∇ f1)
2 +

∇ f2∇2 f1). Therefore, the new probability density function
also supports second order approximation for a single compo-
sition. As shown in Figure 1, Gaussian kernel, box kernel and
tent kernel in the current domain are used in the y = exp(−x2),
y = sin(x2), y = exp(−2x2) where σ

2
X = 0.25. The results verify

that the Gaussian function gives a closer approximation to the
ground truth for small σX . The box kernel may produce more
errors but provide a closed-form expression.

3. Renormalized Adaptive Kernels for Box Function and Tent
Function

At first, an analytic expression for compactly support kernels can
be directly obtained from Equation 5 - 7 in the paper, such as box
functions or tent functions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

(a) y = exp(−x2) (b) y = sin(x2) (c) y = exp(−2x2)

Figure 1: Comparison of approximation the convolution of different simple function compositions with box kernels, tent kernels and Gaus-
sian kernels in clamped domain, gt-integral used the trapezoidal integration method to calculate the convolution.

For a box function with mean (µY) and variance (σY), the origin
probability density function is shown as:

fY (y) =

0 y < µY −

√
3σY

1
2
√

3σY
µY −

√
3σY ≤ y≤ µY +

√
3σY

0 y > µY +
√

3σY

(6)

The renormalized box kernel in the clamped domain [ao,bo] can
be shown as follows:

fY (y) =

0 ao ≤ y < µY −Y1

Y2

Y 2
1 +Y1Y2

µY −Y1 ≤ y < µY

Y1

Y 2
2 +Y1Y2

µY ≤ y < µY +Y2

0 µY +Y2 ≤ y≤ bo

(7)

where Y1 and Y2 are related with the clamped domain. They must
meet Y1Y2 = 3σ

2
Y and [µY −Y1,µY +Y2] must be in the clamped

domain [ao,bo]. Therefore, Y1, Y2 should be computed as follows:

Y1 = max{min{(µY −ao),
√

3σY },
3σ

2
Y

Y2
} (8)

Y2 = max{min{(bo−µY),
√

3σY },
3σ

2
Y

Y1
} (9)

For a tent function with mean (µY) and variance (σY), the origin
probability density function is shown as:

fY (y) =

0 y < µY −
√

6σY

1
6σ2

Y
(x−µY +

√
6σY) µY −

√
6σY ≤ y < µY

− 1
6σ2

Y
(x−µY −

√
6σY) µY ≤ y < µY +

√
6σY

0 y > µY +
√

6σY

(10)

The renormalized tent kernel in the clamped domain [ao,bo] is
computed as follows:

fY (y) =

0 ao ≤ y < µY −Y 3
2Y4

Y3Y3(Y4 +Y3)
(x−µY +Y3) µY −Y3 ≤ y < µY

− 2Y3
Y4Y4(Y4 +Y3)

(x−µY −Y4) µY ≤ y < µY +Y4

0 µY +Y4 ≤ y≤ bo

(11)
where Y3 and Y4 are related with the clamped domain. They must
meet Y3Y4 = 6σ

2
Y and [µY −Y3,µY +Y4] must be in the clamped

domain [ao,bo]. Therefore, Y3, Y4 could be computed as follows:

Y3 = max{min{(µY −ao),
√

6σY },
6σ

2
Y

Y4
} (12)

Y4 = max{min{(bo−µY),
√

6σY },
6σ

2
Y

Y3
} (13)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

Algorithm 1 Automatically genarate a band-limted shader variant
Input:
1: The set of nodes for shaders, Nn;
2: The chosen rule for each node, Rn;

Output:
3: A band-limted shader variant, newshader;
4:
5: procedure RULE(R,Node)
6: PreNode = node->prenode;
7: switch R do
8: case 0
9: str = Node.name + "_mean = " + OutputMeanFunString(Node.funname, Node.domain, PreNode.mean, PreNode.var) + ";\n"

10: str += Node’s name + "_var = " + OutputVarFunString(Node.funname, Node.domain, PreNode.mean, PreNode.var)+ " - " +
Node.name + "_mean *" + Node.name + "_mean;\n"

11: return str
12: case 1
13: str = Node.name + "_mean = " + OutputMeanFunString(Node.funname, Node.domain, PreNode.mean, PreNode.var) + ";\n"
14: str += Node’s name + "_var = " + OutputVarFunString(Node.funname, Node.domain, PreNode.mean, PreNode.var)+ " - " +

Node.name + "_mean *" + Node.name + "_mean;\n"
15: str += "Rule1(" + Node.name + "_mean," + Node.name + "_var," + Node.range + ");\n"
16: return str
17: case 2
18: str = Node.name + "_mean = " + OutputRule2String(Node.funname, Node.domain, PreNode.mean, PreNode.var) + ";\n"
19: str += Node’s name + "_var = " + "1.0 / (" + Node.funname + "_p(" + Node.name + "_mean + ") * "+ Node.funname + "_p("

+ Node.name + "_mean)*2*PI;\n"
20: str += Node’s name + "_var = " + Node’s name + "_var *" + Node’s name + "_var;\n"
21: return str
22: case 3
23: str += "delta_0 =" + Node.function + "(Node.mean)" + ";\n"
24: str += "delta_1 =" Diff(Node) + ";\n"
25: str += "delta_2 =" Diff_2(Node) + ";\n"
26: str += Node.name + "_mean = Rule3(delta_0, delta_1, delta_2," + Node.domain + PreNode.mean + PreNode.var + ");\n"
27: str += "delta_3 = delta_0 * delta_0;\n"
28: str += "delta_4 = 2 * delta_0 * delta_1;\n"
29: str += "delta_5 = 2 * delta_1 * delta_1 + 2 * delta_0 * delta_2;\n"
30: str += Node’s name + "_var = Rule3(delta_3, delta_4, delta_5," + Node.domain + PreNode.mean + PreNode.var + ");\n"
31: return str
32: end procedure
33:
34: procedure GENERATESHADERCODE()
35: newshader = template header codes
36: for i = 0; i < n; i++ do
37: str = RULE(Ri, Ni)
38: newshader += str
39: end for
40: newshader += template return codes
41: return newshader
42: end procedure

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

4. Automatically genarate a band-limted shader variant

An algorithm with more details to generate one shader variant is
shown in Algorithm 1. With the AST of the shader and one rule,
we generate expressions of the mean and variance for each node in
order. After the shader variant is generated, we estimate the quality
and performance of this variant.

4.1. A Simple Shader Example

Listing 1 shows the example shader code to implement the function
f (x) = exp(−x2), "pow_2" is a square function.

1 float main(float x){
2 float x1 = pow_2(x);
3 float x2 = -x1;
4 float x3 = exp(x2);
5 return x3;
6 }

Listing 1: Original Shader Program.

The following three subsections provide three code snippets after
applying three rules on the example code, which are generated by
Algorithm 1 with one rule. The case i (i = 1,2,3) in Algorithm
1 produces the code snippets with the chosen Rule #i(i = 1,2,3)
respectively.

4.2. Rule #1 Example Code

Listing 2 describes that we apply Rule #1 to the first function
x1 = pow_2(x). Our approximation takes the domain and range
into consideration. At first, we compute the domain and range of
each node, containing in the autogenerated codes. Then function
"OutputMeanFunString" and "OutputVarFunString" in Line 9 and
10 of Algorithm 1 output code snippets about how to calculate
mean and variance, which are depicted as red lines in Listing 2. We
will add a suffix "_cov" or "_cov2" to each name of atomic function
to represent the convolution of f (x) and f 2(x) with a probability
density function of the variable x.

For example, the "pow_2" function will be output "pow_2_cov"
and "pow_2_cov2" to calculate the convolution. The first two pa-
rameters in each convolution function are the mean and variance
of the input variable x, the last four parameters denote the clamped
domain, we use two flags to show infinity. All the convolution of
atomic functions have been implemented in the header file.

1 float main(float x_mean, float x_var){
2 float x1_mean = pow_2_cov(x_mean, x_var,

true, 0.0, true, 0.0);
3 float x1_var = pow_2_cov2(x_mean, x_var, true,
4 0.0, true, 0.0) - x1_mean * x1_mean;
5 Rule1(x1_mean, x1_var, false, 0, true, 0);
6 float x2_mean = -x1_mean;
7 float x2_var = x1_var;
8 float x3_mean = exp_cov(x3_mean, x3_var, true,

0.0, false, 0.0);
9 return x3_mean;

10 }

Listing 2: Rule #1 Shader Program.

Listing 3 shows a numerical method that achieves function
"Rule1" in Line 4 of the Listing 2. The purpose of this method is to
renormalize x1_mean and x1_var in the clamp domain. The func-
tion "norm" gives the result calculated by Equation 8 in the full
paper, "UpdateMeanVar" and "UpdateStep" is to update the mean,
variance and steps in each iteration. Moreover, we can precompute
and store the renormalized values into a lookup table to improve
performance.

1 void Rule1(float& mean, float& var, bool leftflag
, float leftdomain, bool rightflag, float
rightdomain){

2 float oldmean = mean, oldvar = var, newmean =
mean, newvar = var;

3 float stepmean, stepvar;
4 float value = norm(newmean, newvar, oldmean,

oldvar, leftflag, leftdomain, rightflag,
rightdomain);

5 for (int iter = 0; iter < 5; iter++){
6 UpdateMeanVar(newmean, newvar, stepmean,

stepvar);
7 float tmpvalue = norm(newmean, newvar, oldmean

, oldvar, leftflag, leftdomain, rightflag,
rightdomain);

8 if(tmpvalue > vaule){
9 value = tmpvalue, mean=newmean, var=newvar;}

10 else{
11 UpdateStep(stepmean, stepvar);
12 }
13 }
14 }

Listing 3: Implementation of Function "Rule1"

Listing 4 provides an implementation about the convolution of
"exp" function with a Gaussian kernel. We have implemented the
convolution of all atomic functions.

1 float exp_cov(float mean, doube var, bool
leftflag, float leftdomain, bool rightflag,
float rightdomain){

2 float ret = 0.0;
3 if (leftflag && rightflag)
4 {return exp(mean + 0.5 * var);}
5 else if (leftflag)
6 {ret = (0.5 * exp(mean + 0.5 * var) - 0.5 * exp(

mean + 0.5 * var) * erf((mean + var -
rightdomain) / sqrt(2 * var)));}

7 else if (rightflag)
8 {ret = (0.5 * exp(mean + 0.5 * var) + 0.5 * exp(

mean + 0.5 * var) * erf((mean + var -
leftdomain) / sqrt(2 * var)));}

9 else
10 {ret = (-0.5 * exp(mean + 0.5 * var) * erf((mean

+ var - rightdomain) / sqrt(2 * var)) + 0.5

* exp(mean + 0.5 * var) * erf((mean + var -
leftdomain) / sqrt(2 * var)));}

11 return ret;
12 }

Listing 4: Convolution of exp function with Gaussian function in
the clamped domain.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

4.3. Rule #2 Example Code

Listing 5 denotes that we apply Rule #2 to the first function x1 =
pow_2(x). The domain and range are the same as Rule #1. But
we add two new functions to describe Equation 11 and 12 in the
paper. The function "OutputRule2String" in Line 18 of Algorithm
1 generates blue code snippets shown in Listing 5.

1 float main(float x_mean, float x_var){
2 float x1_mean = Rule2("pow_2", x_mean, x_var,
3 true, 0.0,true, 0.0);
4 float x1_var = 1.0 / (pow_2_p(x1_mean, x_mean,

x_var) * pow_2_p(x1_mean, x_mean, x_var) * 2

* PI);
5 x1_var = x1_var * x1_var;
6 float x2_mean = -x1_mean;
7 float x2_var = x1_var;
8 float x3_mean = exp_cov(x2_mean, x2_var, true,

0.0, false, 0.0);
9 return x3_mean;

10 }

Listing 5: Rule #2 Shader Program.

Listing 6 provides parts of implementations about function
"Rule2" in Line 2 and "pow_2_p" in Line 4 of Listing 5.

1 float pow_2_p(float x, float mean, float var)
2 {
3 float ret = 1.0 / sqrt(2 * M_PI * var) * exp(-(

sqrt(x) - mean) * (sqrt(x) - mean) / 2.0 /
var) * 0.5 / sqrt(x);

4 return ret;
5 }
6 float Rule2(std::string functionname, float mean,

float var, bool leftflag, float leftdomain,
bool rightflag, float rightdomain)

7 {
8 switch(functionname)
9 {

10 case exp:
11 {
12 float ret = exp(mean - var);
13 return ret;
14 }
15 case pow_2:
16 {
17 if (mean - 4 * var >= 0)
18 {
19 float ret1 = (mean - sqrt(mean - 4 * var))

/ 2.0;
20 float ret2 = (mean + sqrt(mean - 4 * var))

/ 2.0;
21 ret1 = ret1 * ret1;
22 ret2 = ret2 * ret2;
23 if (pow_2_p(ret1, mean, var) >= pow_2_p(

ret2, mean, var))
24 return ret1;
25 else
26 return ret2;
27 }
28 else
29 {

30 return 0.0;
31 }
32 }
33 ...
34 }
35 }

Listing 6: Implementation of Function "Rule2"

4.4. Rule #3 Example Code

Finally, we apply Rule #3 to the whole function. Chain rules are
introduced to generate the derivative of multiple atomic functions.
The "Diff" and "Diff_2" functions generate blue codes shown in
Listing 7 that describe the first and second-order derivative of func-
tions.

1 float main(float x_mean, float x_var){
2 float t2 = x_mean;
3 float t1 = t2 * t2;
4 float t0 = -t1;
5 float delta_0 = exp(t0);
6 float delta_1 = exp(t0) * (-1) * 2 * t2;
7 float delta_2 = exp(t0) * (-1) * (-1) * 2 * 2
8 * t2 * t2 + exp(t0) * 0 * 2 * t2 + exp(t0) * (-1)
9 * 0 * t2 +exp(t0) * -1 * 2;

10 float x3_mean = Rule3(delta_0, delta_1, delta_2,
x_mean, x_var, true, 0, true, 0);

11 return x3_mean;
12 }

Listing 7: Rule #3 Shader Program.

Listing 8 provides the implementations of the function "Rule3"
in Line 8 of Listing 7, which achieves Equation 17-19 in the full
paper.

1 float Rule3(float delta_0, float delta_1, float
delta_2, float mean, float var, bool leftflag
, float leftdomain, bool rightflag, float
rightdomain)

2 {
3 float a = delta_0 * cov_c(mean, var, leftflag,

leftdomain, rightflag, rightdomain);
4 float ret = 0.0;
5 if (leftflag && rightflag)
6 {
7 float b = 0.0;
8 float c = var;
9 ret = a + delta_1 * b + delta_2 * c;

10 }
11 else if (leftflag)
12 {
13 float b = - sqrt(var / 2 / M_PI) * exp(-(

rightdomain - mean) * (rightdomain - mean) /
2 / var);

14 float c = sqrt(var / 2 / M_PI) * (mean -
rightdomain) * exp(-(rightdomain - mean) * (
rightdomain - mean) / 2 / var) - 0.5 * var *
erf((mean - rightdomain) / sqrt(2 * var)) +
0.5;

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

15 ret = a + delta_1 * b + delta_2 * c;
16 }
17 else if (rightflag)
18 {
19 float b = sqrt(var / 2 / M_PI) * exp(-(leftdomain

- mean) * (leftdomain - mean) / 2 / var);
20 float c = -sqrt(var / 2 / M_PI) * (mean -

leftdomain) * exp(-(leftdomain - mean) * (
leftdomain - mean) / 2 / var) + 0.5 * var *
erf((mean - leftdomain) / sqrt(2 * var)) +
0.5;

21 ret = a + delta_1 * b + delta_2 * c;
22 }
23 else
24 {
25 float b = sqrt(var / 2 / M_PI) * (exp(-(

leftdomain - mean) * (leftdomain - mean) / 2
/ var) - exp(-(rightdomain - mean) * (
rightdomain - mean) / 2 / var));

26 float c = sqrt(var / 2 / M_PI) * (mean -
rightdomain) * exp(-(rightdomain - mean) * (
rightdomain - mean) / 2 / var) - 0.5 * var *
erf((mean - rightdomain) / sqrt(2 * var)) -
sqrt(var / 2 / M_PI) * (mean - leftdomain) *
exp(-(leftdomain - mean) * (leftdomain - mean
) / 2 / var) + 0.5 * var * erf((mean -
leftdomain) / sqrt(2 * var));

27 ret = a + delta_1 * b + delta_2 * c;
28 }
29 return ret;
30 }

Listing 8: Implementation of Function "Rule3".

5. More Results

5.1. Complex Procedural Shaders

We demonstrate our method on fifteen complex procedural shaders,
which were produced by combining 5 base shaders (Checkerboard,
Circles, Color Circles, Quadratic Sine and Zigzag) with 3 choices
for parallax mapping: none, bumps, and ripples. All of them are
from Yang and Barnes’ code [YB18], but we scale the heights of
bumps and ripples about three times.

All shaders are approximated by our method, Yang and Barnes’
adaptive Gaussian approximation [YB18] and an ideal Gaussian
smoothing. The ideal Gaussian smoothing is the convolution of
one shader program with Gaussian function computed by Monte
Carlo integration. It excludes the errors brought by the composi-
tions of intermediate variables, thereby can be regarded as the the-
oretical bound of a smoothed shader with Gaussian function. Re-
sults shown in Figure 2-4 validate that our method manages to pro-
duce better band-limited results than those from Yang and Barnes’
work [YB18].

5.2. Shaders with Textures

To handle shaders with textures, we begin with two simple scenes,
as shown in Figure 5. Both two scenes have a planar geometry but
with different normal maps and normal distribution functions. On

the upper row of Figure 5, we show a bumpy normal map with
Beckmann distribution function, and on the lower row, we show
results computed from a normal hex map with GGX distribution
function. As can be seen, direct sampling fails at producing the cor-
rect effect. LEAN and our method both can provide non-linear fil-
tering on normal maps, but our method can be generally applied on
different distributions, while LEAN is only suitable for Beckmann
distribution. Toksvig’s method [Tok05] can also handle different
distributions, but our method exhibits the best accuracy compared
to the ground truth.

Finally, we test physical-based shading shader with GGX BRDF
model and normal maps in Sponza scene, a "CheckBoard" proce-
dural shader is also applied on the floor. Our method can both be
capable of generating better smoothness of shader programs as well
as handling a broader set of shader programs.

References
[Tok05] TOKSVIG M.: Mipmapping normal maps. journal of graphics

tools 10, 3 (2005), 65–71. 6

[YB18] YANG Y., BARNES C.: Approximate program smoothing using
mean-variance statistics, with application to procedural shader bandlim-
iting. In Computer Graphics Forum (2018), vol. 37, Wiley Online Li-
brary, pp. 443–454. 6, 7, 8, 9

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

Figure 2: Comparison with Direct Sampling, Yang and Barnes [YB18], Our method, Gaussian Ground Truth and Ground Truth under
complex procedural shaders.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

Figure 3: Comparison with Direct Sampling, Yang and Barnes [YB18], Our method, Gaussian Ground Truth and Ground Truth under
complex procedural shaders.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

Figure 4: Comparison with Direct Sampling, Yang and Barnes [YB18], Our method, Gaussian Ground Truth and Ground Truth under
complex procedural shaders.

(a) Direct Sampling (b) LEAN (c) Our method (d) Gound truth

(a) Direct Sampling (b) Toksvig (c) Our method (d) Gound truth

Figure 5: Comparison of shading images of two planar surfaces computed by (a) Direct sampling, (b) LEAN/Toksvig, (c) Our method and
(d) Ground truth using the physical-based shading shaders with normal maps. The upper and low row show the results using a Beckmann
distribution and GGX distribution respectively as normal distribution in BRDF.

(a) Direct Sampling (20.9615) (b) Our method (27.0221) (c) Gound truth (∞)

Figure 6: Comparison of shading images of the Sponza model computed by (a) Direct sampling, (b) Our method and (d) Ground truth under
a physical-based shading shader with GGX BRDF model and normal maps. PSNRs are shown in the bracket.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Shi Li et al. / Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain

(a) Direct Sampling (0.91184) (b) Toksvig (0.94643) (c) Our method (0.963251) (d) Ground Truth (1.0)

Figure 7: Comparison of shading images of the Desert Rose model computed by (a) Direct sampling, (b) Toksvig, (c) Our method and (d)
Ground truth under a physical-based shading shader with GGX BRDF model and normal maps. SSIM values are shown in the bracket.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

