A Pixel-Based Framework for Data-Driven Clothing: Appendices

A. Cloth/Body Texture Space

It is important to note that that we do not assume a one-
to-one mapping between the cloth texture coordinates and
the body texture coordinates; rather, we need only a map-
ping from the cloth texture space to the body texture space
(invertibility is not required). This allows for the ability to
handle more complex real-life clothing such as the collars
of shirts and jackets, which would naturally be embedded to
the shoulder/chest areas on the body causing them to over-
lap with other parts of the same garment (and/or other gar-
ments). See for example Figure 1.

Figure 1: Collars such as this one are more naturally associ-
ated with the chest than the neck. Our approach can handle
such a non-invertible many-to-one mapping from the cloth
texture space to the body texture space.

B. Image Editing

Our pixel-based cloth framework enables convenient
shape modification via image editing. Since the displace-
ment maps represent offsets from the locations of the em-
bedded cloth pixels on the skinned body surface, we can
achieve easy and rather intuitive control by manipulating
their RGB values in the image space. For example, adjust-
ing the brightness of the texture coordinates channels (red
and green) induces shifting of the cloth shape, whereas ad-
justing the normal directions channel (blue) leads to shrink-
ing or inflation. Moreover, one can add features to the cloth
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shape by painting in image space, especially using a blue
brush that changes the offset values in the normal direc-
tions. Furthermore, one can transfer features from another
cloth image by selective image blending, e.g., adding wrin-
kle lines. See Figure 2 for a set of modified cloth shapes
resulting from image editing operations.

C. Cage and Patch Based Cloth

Given a cloth mesh, we can create a wire “cage” that de-
fines a support structure for its overall shape, e.g., by trac-
ing its intrinsic seams, characteristic body loops (e.g., chest,
waist, hip, arms), etc. See Figure 3a. The cage structure
conveniently divides the cloth surface into patches bound
by boundary curves, and this cage and patch based compu-
tational structure affords a hierarchical data-driven frame-
work where different specialized methods can be applied at
each level. Note that the same cage structure is also defined
on the body surface to facilitate correspondences, see Fig-
ure 3b.

(a) Cage structure defined
on a T-shirt mesh.

(b) Corresponding cage
defined on the body.

Figure 3: The cage is defined on the cloth mesh and the
body surface as a lower-dimensional support structure.

To obtain the shape of the cage when the clothing is
dressed on a person, one can interpolate from a set of sparse
marker/characteristic key points. That is, given the loca-
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Figure 2: Various image editing operations applied to a given cloth image (top row) and their corresponding modified cloth
shapes (bottom row). Note that although the wrinkle lines blended into the image in the last column are hard to see, the

resulting wrinkles are clearly visible.



tions of the key points, one can reconstruct the cage. This
can be represented as a constrained optimization problem
to find a smooth curve that passes through the constraint
points. Specifically, one can interpolate the points with
a piecewise cubic spline curve while attempting to pre-
serve the geodesic lengths between each pair of neighbor-
ing points. Alternatively, one could train a neural network
to learn to recover the cage from the sparse points.

One can use the reconstructed cage as a boundary condi-
tion to fill in the surface patches using a variety of methods.
In particular, one can build a blendshapes basis for each
patch and select blendshape weights based on the shape of
the boundary cage. A cage vertex’s basis function can be
computed, for example, by solving a Poisson equation on
the patch interior with boundary conditions identically zero
except at that vertex where the boundary condition is set to
unity. Then, any perturbation of the cage can be carried to
its interior. For example, given the offsets of the cage from
its position on the skinned body in texture and normal co-
ordinates, one can evaluate the basis functions to quickly
compute offsets for the interior of the patch.

For a simple illustration, the boundary perturbation in
Figure 4a is extended to the patch interior using the Pois-
son equation basis functions to obtain the result shown in
Figure 4b. To achieve more interesting deformations, one
could use anisotropic Poisson equations to construct the ba-
sis functions. Figure 4c shows the boundary perturbation in
Figure 4a evaluated using anisotropic basis functions. Also,
see Figures 5, 6, and 7. One could also create basis func-
tions via quasistatic simulations.
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Figure 4: An input boundary perturbation (a) can be used
in a blendshape basis to obtain interior patch deformations:
isotropic (b), anisotropic (c).

(a) boundary condition (b) patch shape

Figure 5: Two small perturbations on the boundary yields
two folds coming together.
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(a) boundary condition (b) patch shape

Figure 6: A sine wave perturbation on the boundary yields
smooth wrinkles.
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(a) boundary condition (b) patch shape

Figure 7: An S-shaped boundary yields an overturning wave
shape.

Moreover, one can use this cage structure as an inter-
mediary for designing and dressing garments onto the body
leveraging the correspondence to body curves shown in Fig-
ure 3.

D. Dataset Generation

This section aims to provide more details on the dataset
generation process.

D.1. Body Modeling

The initially acquired mesh from scanning is manually
remeshed to a quad mesh, and then rigged to the skeleton
shown in Figure 8.
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Figure 8: Skeleton structure, bone name, and axis orienta-
tion definition.



D.2. Intentionally Modified Body Shapes

In order to demonstrate the resilience of our network
predictions to errors due to an incorrect assumption of the
underlying body shape, we manually sculpted the scanned
body and generated a number of intentionally incorrect
body shapes. With the normal body shape designated 0 and
the manually sculpted body shape designated 1, we create
a shape change parameter that ranges from —1 to 2 as seen
in Figure 9. The plot shows data points for 7 of our tri-
als: the points at zero represent the original body shape,
and the other 6 pairs of points represent the results obtained
by training the network on the correct cloth shapes using
incorrect unclothed body shape assumptions.
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Figure 9: Training and generalization average per-vertex
prediction errors (top plot) of models trained on offsets
computed from different underlying body shapes (bottom
row). As the body shape deviates from the true body shape
(0 on the x-axis), the performance of the trained models stay
roughly constant.

Also, note that the two versions of skinning with artifacts
used in the paper were created on the original rigged body
by manually painting weights of upper arm on the torso,
and painting weights of upper arm on both the torso and the
opposite arm, respectively.

Figure 10 shows that the CNN can predict the correct
cloth shape even when the unclothed shapes are so erro-
neous that they penetrate the clothing.
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Figure 10: Left: predicted T-shirt on a body that has been
modified to be too thick. Right: Left: predicted T-shirt on
a body that has skinning artifact on the upper arm. In these

cases, the network merely predicts offsets in the negative
normal direction.

D.3. Pose Sampling

While one could sample from an empirical distribution
learned from motion capture data (e.g., [ 1), we prefer an
alternative sampling scheme in order to better cover the en-
tire space of possible poses that can affect the T-shirt shape.
Since we only focus on the T-shirt interaction with the hu-
man body, we define the skeleton structure only for the up-
per body, as shown in Figure 8. We fix the position and
rotation for the hip (root) joint, since we are mainly inter-
ested in static poses as a first step. We set the joint limits
according to [ ], where each joint angle has both a
positive limit and a negative limit for each rotation axis rel-
ative to the rest T-pose. For the bones on the vertical cen-
ter line in Figure 8 (lower back, spine, spinel, neck, and
neckl), we sample the rotation angles for each axis from a
mixture of two half-normal distributions, each accounting
for one direction of the rotation. Since we don’t have such
a strong prior for shoulder and arm bones, their x-axis ro-
tation angles (azimuth) are uniformly sampled first, their z-
axis rotation angles (altitude) are then uniformly sampled in
the transformed space of the sine function, and finally their
y-axis rotation angles are also uniformly sampled. The rota-
tions are applied in the order of x, z, and y. Finally, a simple
pruning procedure is applied to remove poses with severe
nonphysical self-penetrations. This is accomplished by se-
lecting 106 vertices from both arm parts as shown in Fig-
ure 11 and testing if any of these vertices is inside the torso.
The distributions of the sampled joint angles are shown in
Figure 12.

Figure 11: The body is segmented into three overlapping
parts (left arm, right arm, and torso). The vertices selected
for collision detection are shown as light gray dots.
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Figure 12: Plots of joint angle distributions in our dataset.
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D.4. T-shirt Mesh Generation

To obtain the T-shirt mesh in its rest state, we cut up
a T-shirt along its seam lines, scan in the 2D pieces, and
then digitally stitch them back together, see Figure 13 Al-
though we try to cut the clothing into pieces such that each
piece is as flat as possible to approximate flat design pat-
terns, this may not always be achievable and the flattened
versions thus obtained would not be in their intrinsic rest
states leading to errors in the simulation input and distor-
tions in the vertex UV map. However, such issues would
be largely alleviated if one could obtain the original flat pat-
terns from fashion designers.

Figure 13: Illustration of the garment mesh generation pro-
cess. Left: a T-shirt is cut into pieces. Middle: the pieces
are scanned. Right: the digitally stitched T-shirt mesh.

D.S. Skinning the T-shirt

To shrink wrap the T-shirt onto the body, we first de-
fine the cage structure on both the body and the T-shirt
as shown in Figure 3, and then compute displacements
on the T-shirt cage vertices that would morph them to the
body cage; these displacement values are used as bound-
ary conditions to solve a set of Poisson equations (see e.g.
[AHLG" 13, CBE"15]) for displacements on T-shirt interior
vertices. A level set is built for the body for collision de-
tection [BMFO3], and any T-shirt vertices that are inside the
body are detected and pushed out to their closest points on
the body surface.

Since the morphed T-shirt mesh can exhibit rather large
and non-uniform distortion, we run a simulation using a
mass-spring system to reduce distortion and achieve a bet-
ter set of barycentric embedding weights for the T-shirt ver-
tices, see Figure 14. This is done in an iterative manner.
At each step, while constraining the T-shirt mesh to stay on
the body surface, for each vertex v we compute the aver-
age ratio &, = (1/deg(v)) > (o) (I/1.) of the current
edge length [, to the rest edge length [, over its incident
edges F(v). Then for each edge e with endpoints a and b,
its target edge length is set to (1/2)(aq + ap)le. This pro-
cess essentially tries to equalize the amount of distortion for
the edges incident to the same vertex, and is repeated until
convergence.

Figure 14: Shrink wrapping a T-shirt mesh onto a body in
the rest pose. Left: shrink wrapped T-shirt mesh obtained
by solving a Poisson equation that uses a guide “cage” (in
blue) as a boundary condition to morph the T-shirt mesh
onto the body. Middle: this initial version has area distor-
tion, where red indicates stretching and blue indicates com-
pression. Right: after simulation, the distortion has been
reduced and more uniformly spread out so that the cloth
pixels can be embedded at better locations. Note that since
the T-shirt is constrained to be on the body surface, distor-
tion is not fully eliminated.

D.6. Simulation

To make our simulation robust to skinning artifacts that
lead to cloth self-interpenetrations especially in the armpit
regions, we decompose the body into three parts: the left
arm, the right arm, and the torso (see Figure 11), and as-
sociate each cloth mesh vertex with one body part as its
primary collision body.

After the simulation, we run a post-processing step to
remove shapes with large distortion. Specifically, if the area
of any triangle in a sample compresses by more than 75% or
expands by more than 100%, then we discard that sample.
Figure 15 shows that the amount of face area distortion is
moderate (left), and the amount of self-interpenetrations is
very small (right) in the dataset. Figure 16 shows that the
cleaned dataset contains a similar distribution of poses as
the original one. In line with Section B and Figure 2, one
could also use image analysis on the cloth images in order
to identify and prune samples that are deemed undesirable.

(a) Front and back average (b) Front and back per-
face area distortion, measured face  self-interpenetrations,
as the ratio of the current area measured as the fraction
to the rest area minus one. Red of  samples with  self-
= 40%, white = 0, blue = - interpenetrations. Blue = O,
40%. yellow = 8%.

Figure 15: Mesh statistics of the simulated T-shirts.
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Figure 16: Visualization of selected joint angle histograms
from the dataset. Red and blue lines represent the original
and the filtered dataset respectively.

This leads to a total of 20,011 samples that we use to
train and evaluate our models. We create a separate UV
map for the front side and the back side of the T-shirt.

D.7. Patches

There are 28 patches on the front and the back side of
the T-shirt (14 each). Whereas we train on 256 x 256 cloth
images for the whole T-shirt, for each patch we make a
160 x 160 crop from a higher resolution 512 x 512 cloth im-
age centered at the center of its axis-aligned bounding box.
The cropped patch contains 16 pixels outside of the patch to
capture the surrounding context, and the loss is computed
on this enlarged patch.

E. Networks
E.1. CNN Architecture Details

For predicting cloth images of the whole T-shirt, we start
with the 90 dimensional input pose parameters and first ap-
ply transpose convolution followed by ReLLU activation to
obtain an initial 8 X 8 x 384 dimensional feature map. Then
we successively apply groups of transpose convolution (fil-
ter size 4 x 4 and stride 2), batch normalization, and ReL.U
activation until we reach the output resolution of 256 x 256.
Each time the spatial resolution doubles and the number of
channels halves. Finally, a convolution layer (filter size 3 x 3
and stride 1) brings the number of channels to 6. The net-
work contains 3.79 million parameters.

We use the same network architecture for all 28 patches.
We start with the 90 dimensional input pose parameters, and
first apply a linear layer to obtain a 5 x 5 x 512 dimensional
feature map. Then similar to the network for the whole T-
shirt, we successively apply groups of transpose convolu-
tion (filter size 4 x 4 and stride 2), batch normalization,
and ReLU activation until we reach the target resolution of
160 x 160. Again, a final convolution layer (filter size 3 x 3
and stride 1) brings the number of channels to 3. The net-
work contains 3.96 million parameters.

E.2. Quantitative Comparison of Loss Functions

Table 1 compares the errors from our convolutional de-
coder network trained with different loss terms on our train-
ing set and test set. The weight on the loss on normal vec-
tors is set to 0.01.

Table 1: Average per-vertex position error (in cm) and unit
normal vector error (cosine distance) of our convolutional
decoder network trained with different loss functions. L;
and L refer to the loss function used on the Cartesian grid
pixels. N refers to normal loss.

Loss Training Error Generalization Error
Vertex | Normal | Vertex Normal
Ly 0.33 0.020 0.44 0.027
Lo 0.35 0.017 0.47 0.028
Lo +N | 037 0.0075 0.51 0.029

E.3. Fully Connected Networks

We illustrate that our cloth pixel framework provides for
offset functions that can be approximated via a lower di-
mensional PCA basis, and that a fully connected network
can be trained and subsequently generalized to predict cloth
shapes. Furthermore, we compare functions of offsets rep-
resented in different spaces, as well as functions of positions
in the root joint frame. See Table 2 and Figure 17.

Table 2: Average per-vertex position error (in cm) of the
fully connected network trained with and without PCA in
different spaces. “Off. Loc.” refers to offsets represented in
local tangent-bitangent-normal frames. “Off. Root.” refers
to offsets represented in the root joint frame. “Pos. Root.”
refers to positions in the root frame.

Model Training | Generalization
Error Error

Off. Loc. Direct 0.65 0.67

Off. Loc. 128 PC 0.50 0.55

Off. Root. Direct 0.69 0.72

Off. Root. 128 PC 0.53 0.58

Pos. Root. Direct 0.63 0.68

Pos. Root. 128 PC 0.58 0.65

We train a fully connected network with two hidden lay-
ers each with 256 units and ReLU activation for all the
functions. The networks trained to predict PCA coeffi-
cients indeed have better visual quality and deliver better
training and generalization errors compared to the networks
trained to directly predict per-vertex values. Our experi-
ments also show that ReL.U activation leads to faster con-
vergence and similar results compared to the Tanh activa-
tion used in [ ].
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Figure 17: Comparison of fully connected network predic-
tions and errors from models trained on different functions
defined on our cloth pixels.

F. Neckties

Similar to the T-shirt dataset, we generate 9,999 poses
by randomly sampling rotation angles on 4 joints along the
center line (lower back, spine, neck, and neckl), i.e., our
input pose parameters are only 36 dimensional. The dataset
is divided into a training set of 7,999 poses, a regulariza-
tion set of 1,000 poses, and a test set of 1,000 poses. In
this example, we use one UV map for the entire mesh, and
since the necktie has a much narrower UV map in the tex-
ture space, we modify our network architecture to predict a
rectangular image with aspect ratio 1 : 4 and size 64 x 256
containing 3 channels. L, loss is used for the Cartesian grid
pixels. The weight on the normal loss is set to 0.1. We fur-
ther add an L, loss term on the edge lengths with weight
0.1 to ensure a smooth boundary:

1
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where we compute a predicted edge length [?? for each
edge e using the predicted grid pixel values IP¢ (also by
first interpolating them back to cloth pixels and adding
these per-vertex offsets to their embedded locations to ob-
tain predicted vertex positions) and compare to the ground
truth edge lengths [9*. N, is the number of edges in the
mesh. We represent the offsets dx in the root joint frame,
ie., (Ax, Ay, Az), instead of the local tangent-bitangent-
normal frames (Aw,Awv,An). This is more natural for
the neckties, because unlike the T-shirts, they have a much
larger range of displacements from the body surface while
also exhibiting few high frequency wrinkles.

Since the neckties contain less high frequency variation
and the output image size is smaller, a smaller network is

used to learn the necktie images. Starting from the 36 di-
mensional input pose parameters, we first apply a linear
layer with 128 hidden units and then apply another linear
layer to obtain a 8 X 8 x 64 dimensional feature map. Af-
ter that, we successively apply groups of transpose convo-
lution, batch normalization, and ReLLU activation as above
until we reach the target resolution of 64 x 256. Then, a
final convolution layer (filter size 3 x 3 and stride 1) brings
the number of channels to 3. The network contains 2.16
million parameters.
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