
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020
J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Efficient 2D Simulation on Moving 3D Surfaces

D. Morgenroth1 , S.Reinhardt1,2, D. Weiskopf2 , and B. Eberhardt1

1Media University Stuttgart, Germany
2Visualization Research Center, University of Stuttgart, Germany

Input Simulation Scalar Field

Surface Simulation Rendering

Figure 1: Water polluted with oil is poured into a cup. We simulate the oil film on top of the existing fluid simulation. The velocity and mass
are taken from the existing animation. On the left is the coarse input simulation. In the upper half of the middle image is the resulting scalar
field. The lower half shows the result of our method. Our high-resolution 2D simulation adds convincing visual details to the coarse input
simulation. The right image displays the final rendering that needs the fine details from our surface simulation to generate the high-resolution
thin-film interference effects.

Abstract
We present a method to simulate fluid flow on evolving surfaces, e.g., an oil film on a water surface. Given an animated
surface (e.g., extracted from a particle-based fluid simulation) in three-dimensional space, we add a second simulation on this
base animation. In general, we solve a partial differential equation (PDE) on a level set surface obtained from the animated
input surface. The properties of the input surface are transferred to a sparse volume data structure that is then used for the
simulation. We introduce one-way coupling strategies from input properties to our simulation and we add conservation of mass
and momentum to existing methods that solve a PDE in a narrow-band using the Closest Point Method. In this way, we efficiently
compute high-resolution 2D simulations on coarse input surfaces. Our approach helps visual effects creators easily integrate a
workflow to simulate material flow on evolving surfaces into their existing production pipeline.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

In typical workflows for generating digital visual effects, a team of
VFX artists iteratively refines a given sequence until they achieve
good quality. Going from rough storyboards over blocked anima-
tion to the final shot with many layers of physical simulations, each
shot passes through the VFX pipeline, where domain specialists
add new effects and details. With physical simulations, often an
effect is finished and approved before secondary effects are lay-
ered on top of it. For example, after simulating the fluid flow of a
water surface, secondary effects like splashes and foam [TFK∗03]
[IAAT12] are added on top of this “basic” water simulation, which
we will call “base animation”. In this context, we propose a method
to add secondary effects on top of the base animation by solving a

PDE on the surface. As an example, we simulate a thin-film 2D
fluid simulation on top of a possibly precomputed, bulk fluid simu-
lation as shown in Fig. 1. We employ a one-way coupling to trans-
fer momentum and mass from the 3D fluid simulation to the sur-
face simulation. We base our coupling on physical derivations and
provide them with plausible parameters to control its effects. This
coupling allows us to iterate on the secondary effects with a consis-
tent high-resolution 2D simulation on top of the unchanged coarse
3D input simulation.

The goal is to solve a partial differential equation (PDE) on a
moving 2-manifold. The approach can be used to address differ-
ent types of problems that require solving PDEs like fluid flow,
reaction-diffusion texture synthesis, or 2D wave equations. Fig. 2

© 2020 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1111/cgf.14098

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-4152-755X
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0001-6428-4610

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

Figure 2: The seven steps of our method as a flow chart. The steps are placed in order of execution from left to right. After the input of the
external data (Step 1), the data is transferred to the narrow-band (Step 2 and 3). Next, the surface is evolved (Step 4) and the outer process
is coupled with the inner dynamics (Step 5), before solving the set of PDEs on the surface (Step 6). Finally, the fields are advected (Step 7).

depicts the steps of our approach. We start with a moving surface
as input geometry. After converting the input data into a distance
field and transferring values into a narrow-band grid around the
surface, we introduce quantities from the input 3D simulation into
our surface domain in a coupling step where the strength of the
coupling can be driven by parameters. Then, we use the Closest
Point Method (CPM) to embed the 2-manifold in the 3D space of
the moving surface and solve 2D PDEs in a 3D narrow-band.

With our method, we can model secondary effects very effi-
ciently, and we evaluate our approach by simulating a variety of
effects such as pouring an oil film into water, simulating reaction-
diffusion on a water surface, or the surfactants in a heated soap
bubble. The source code is available on GitHub [MRWE20b].

2. Related Work

Secondary effects can be simulated on top of the base animation in
two different ways. The first way is to directly integrate them into
the simulation, for example, bubbles in foam [TSS∗07], [CPPK07],
or [IBAT11]. Here, the secondary effects are two-way coupled with
the main fluid. Modeling the secondary effects in such a way does
not allow for post-processing of existing simulations and anima-
tions without the need to re-simulate. To address this problem, we
decouple the surface simulation from the input simulation. Further-
more, this decoupling allows us to use a higher resolution on the
surface simulation and add fine details on top of coarse inputs.

The second way to add additional effects like splashes, bubbles,
and foam is to simulate them with the main fluid but not to exert
forces back onto the main simulation, e.g., [TFK∗03], [KLKK12],
or [IAAT12]. Splashes and bubbles need true 3D solvers as they
extend into, or out of, the surface. Foam only lives on the surface
and can be rendered [ADAT13] by tagging surface particles of the
original simulation or by moving texture patches with the surface
[GDP16]. In contrast, we are interested in effects that are limited

to the 2D surface, but we want to simulate a finer resolution on the
surface than the original 3D fluid simulation offers.

Solving PDEs on 2-manifolds has been addressed earlier.
Some solutions are designed for special cases of geometry, e.g.,
spheres [HH16]. Instead, we are interested in a generic solution.
Stam [Sta03] simulated fluid flows on static Catmull-Clark sur-
faces or Shi et al. [SY04] and Vantzos et al. [AVW∗15] on static
triangle meshes. Azencot et al. [AWO∗14] model fluids on trian-
gle surfaces using their vorticity by a time-varying scalar function.
Ruuth et al. [RM08] proposed the Closest Point Method (CPM)
to calculate PDEs on surfaces. This was applied by Macdonald et
al. [MMR13] to calculate reaction-diffusion terms on surfaces de-
rived from point clouds. CPM on static surfaces can be calculated
in real time [AMT∗12]. The theory for solving PDEs on evolv-
ing surfaces is explained by Xu and Zhao [XZ03]. Examples are
the simulation of soap film on bubbles [ISN∗20] where the PDE is
solved on a triangle mesh, or computing the flow within a soap bub-
ble on a staggered spherical grid [HIK∗20]. On evolving surfaces,
Mercier et al. [MBT∗15] solved a PDE in a 3D narrow-band grid
using the CPM to enhance the original simulation with additional
turbulence. Closest to our approach is the Semi-Lagrangian Clos-
est Point Method [AW13]. In comparison to existing CPM-based
methods, we add equations for conservation of mass. This allows
us to correctly adapt scalar values when the surface area changes.
We also adjust vector quantities to account for surface changes.
Furthermore, we model a one-way coupling using mass and mo-
mentum transfer to create a plausible linkage between the evolution
of the input surface and the behavior of the resulting 2D simulation.

3. Modeling PDEs on Evolving Surfaces

In this section, we describe the fundamentals of our method and
how we model the physics on the surface. We additionally describe
the different physical phenomena that we model as secondary ef-
fects on the surface.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

28

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

3.1. Overview

Consider an evolving surface M. Such a surface can result from a
finite-difference or Smoothed Particle Hydrodynamics (SPH) sim-
ulation, a keyframe animation, or any time-dependent process. On
M, we define another process (e.g., the simulation of a substance)
with a set of PDEs and couple it to the base animation M results
from. Therefore, the overall system is divided into three aspects:

• Evolution of the surface M:
Due to the surface evolution, the space on which we model the
dynamic process is altered. In this step, we account for this fact,
i.e., how quantities evolve alongside the surface.
• Coupling:

This aspect determines how the base animation affects the one
on the surface.
• Modeling the dynamics on the surface:

This step accounts for the secondary dynamic process and how it
is modeled on the surface, i.e., how a set of PDEs can be solved
on the surface.

An example of such a process could be a drop of ink on a plastic
sheet moving in space. The first aspect (evolution of the surface)
describes how the ink is transported in space when the plastic sheet
is moving in normal direction. The second aspect (coupling) ac-
counts for the movement of the plastic sheet in tangential direction,
i.e., the acceleration of the ink due to friction forces, and the third
aspect (the dynamic process on the surface) is concerned with the
fluid behavior of the ink itself.

3.2. Evolution of the Surface

To model such a dynamic process on an evolving surface M ⊂ R3,
we need to define scalar as well as vector-valued quantities on it.
To this end, we attach scalar quantities a(p, t) ∈ R and vectorial
quantities v := v(p, t) ∈ TpM to every point p ∈M, where TpM de-
notes the tangent space at point p defined by the surface normal
n := n(p, t) and t denotes a certain point in time. Typical quantities
would be, e.g., mass density and velocity for fluid flow on the sur-
face. The velocity field u := u(p, t) defines how the surface evolves,
i.e., how M(t0 +∆t) results from M(t0), where ∆t ∈ R>0. For con-
venience, we will write M instead of M(t0) and M′ for M(t0 +∆t).
In the following, the surface evolution characterized by u will be
referred to as the outer process and the one on the surface will be
called inner dynamics.

We construct a map O that describes the evolution of quantities
due to the outer process. To this end, we define the spaceM:

M=
⋃

p∈M
{p}×R×TpM . (1)

The quantities needed for the inner dynamics can now be described
as elements ofM. Without loss of generality, we consider only one
scalar and one vectorial quantity attached to point p. It is possible
to map an arbitrary number of quantities to p in the same way.
The map O relates elements fromM to elements in spaceM′ =⋃

p′∈M′{p′}×R×Tp′M′:

O :M→M′ :

p
a
v

 7→
p′

a′

v′

 . (2)

Figure 3: The map O relates p ∈ M and p′ ∈ M′ and also maps
tangent space TpM into Tp′M′.

An illustration of O can be found in Fig. 3.

We divide the influence of the outer process defined by u in nor-
mal un and tangential ut components. The tangential component is
used to model friction between the outer and inner dynamics and
discussed in Section 3.3. For now, we assume that the dynamics are
coupled without friction and, therefore, ut does not affect the inner
dynamics, i.e., m ∈M is only altered by un.

The rate of change DO
Dt that a point p experiences from to action

of O is then defined by ũn := k un, where DO
Dt denotes the material

derivative and k ∈ R has to be chosen in such a way that p′ ∈ M′

holds. The motion of point p is directly governed by DOp
Dt , in par-

ticular its velocity is ũn and, hence, DOp
Dt = ũn.

A scalar quantity a is advected alongside the point p. We distin-
guish between two types of scalar quantities: intensive and exten-
sive ones [Red70]. An extensive property is a global property (e.g.,
mass or volume). Such a property is only advected alongside p and
not changed, i.e., DOa

Dt = 0. In contrast, if a describes an intensive
physical property, such as density, we demand that

0 =
DO
Dt

∫
M(t)

a(p, t)dM(p, t) (3)

holds true, where dM(p, t) are infinitesimal surface elements at po-
sition p on the surface M at time t. In the following, we will skip t
and p for convenience. Eq. 3 ensures that the total amount of such
a quantity does not change if no phenomena like mass transfer or
chemical reactions are present. In this case, the rate of change of an
intensive quantity a is given by

DOa
Dt

=−a(∇· (ũn)TpM) , (4)

where uTpM = (I−nnT)u is the velocity projected onto the tangent
space TpM at point p. This means that, if the surface diverges, the
concentration of a decreases, and vice versa. A detailed derivation
is provided in Appendix A.

When advecting a vectorial quantity v, we demand that v′ ∈
Tp′M′ holds after applying O. This can be ensured by considering
v to be a small linear material line element subjected to the veloc-
ity field ũn. Its rate of change is the difference of the velocities at
the two ends of the element and can be described by DOv

Dt =∇ũnv.
In our model, the vector field v describes the velocity of the inner
dynamics. As the directions of the velocities are constrained by the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

29

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

Figure 4: The map O transforms velocity vector v to vector v′.
First, v is advected to the point p′. Next, it is projected back into
Tp′M′ and scaled to conserve momentum.

surface evolution, the total momentum will be altered and, there-
fore, cannot be conserved. We can only ensure that the sum of the
absolute values does not change, i.e., we can enforce that

0 =
DO
Dt

∫
M
‖av‖dM (5)

will hold. Eq. 5 leads to

DO ‖v‖
Dt

= 0 . (6)

Hence, we need to adjust DOv
Dt , so that the length of v is con-

served. Using first-order Taylor expansion, the change of the length
can be computed by v · ∇ũnv v

‖v‖2 . A detailed derivation can be
found in Appendix B. This term is then subtracted to adhere Eq. 6.
Metaphorically, this means that v is advected and rotated back onto
the surface. An illustration of the advection of a vectorial quantity
is given in Fig. 4.

If a is an intensive property, the combined material derivative of
the map O then reads as

DO
Dt

O =

 ũn
−a(∇· (ũn)TpM)

∇ũnv−v ·∇ũnv v
‖v‖2

 . (7)

Note that DO
Dt a denotes the rate of change of a quantity a induced

by the operator O and DO
Dt O denotes the combined material deriva-

tive of O.

3.3. Coupling

So far we assumed that the outer process influences the inner dy-
namics solely in normal direction. Next, we discuss how the tan-
gential part ut = u− un will influence the inner dynamics. This
implies that friction-less coupling is modeled, i.e., matter slides on
the surface and no adhesion is present. We model adhesive forces
to reduce the relative velocities vrel = v−ut between the outer pro-
cess and inner dynamics as

Dcv
Dt

=−s1vrel , (8)

where s1 is a user-defined coefficient and Dc
Dt denotes the rate of

change induced by coupling effects. Similar to Section 3.2, we
could also consider v to be a small linear material line element
exposed to the velocity ut and its rate of change would then read

as
(
∇TpMut

)
v, where∇TpM is defined as∇TpM = (I−nnT)∇. We

combine both views and model the total rate of change of v caused
by coupling effects as

Dcv
Dt

=−s1vrel + s2
(
∇TpMut

)
v . (9)

The outer process induces sinks and sources to the inner dynam-
ics modeled on the surface. Therefore, we model transfer of in-
tensive physical quantities (e.g., density) from the outer process to
inner dynamics via sinks and sources on the surface. Inspired by
Fick’s laws of diffusion, we want that the concentration aout from
the outer process and the concentration a of the inner dynamics
will align. In other words, the concentration of a substance on the
surface will be changed by

Dca
Dt

=−s3arel , (10)

to reduce the concentration difference arel = a− aout. The speed
of the reduction is determined by the factor s3. If only sources are
modeled, the concentration difference is restricted to negative val-
ues, i.e., arel ≤ 0. Sinks are modeled by restricting arel ≥ 0.

3.4. Modeling the Dynamics on the Surface

After discussing the surface evolution and coupling, we describe
how dynamics on the surface can be modeled. To describe such a
process we use a set of PDEs, e.g.,

Dsv
Dt

= F1 (t,a,v,∂1a,∂2a, ...,∂1v,∂2v, ...) and (11)

Dsa
Dt

= F2 (t,a,v,∂1a,∂2a, ...,∂1v,∂2v, ...) , (12)

where the functions F1 and F2 characterize the phenomena mod-

eled on the surface. The term ∂i :=
{

∂
|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

: |α|= i
}

de-

notes the set of all partial derivatives of the order i, with α being
a multi-index. For example, if fluid flow is modeled, F1 describes
the momentum conservation and F2 the mass conservation of the
Navier-Stokes equations.

To solve Eqs. 11 and 12 on the surface, we only allow for tan-
gential deviations. To this end, we solve them locally in the corre-
sponding tangent spaces TpM. This implies that, instead of using
the ordinary spatial derivations, we project them onto the surface,
e.g., the operator∇ is replaced by∇TpM . The governing equations
for our model are then given by:

Dv
Dt

=
DOv
Dt

+
Dcv
Dt

+
Dsv
Dt

and (13)

Da
Dt

=
DOa
Dt

+
Dca
Dt

+
Dsa
Dt

. (14)

While the outer process is ignored in Equations 11 and 12, it is
included in Equations 13 and 14, i.e., they govern the overall dy-
namics on the surface.

Next, we describe different physical phenomena that we use in
this paper to show the versatility of our model.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

30

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

Figure 5: A rotating sphere where we couple the velocity of the in-
ternal simulation with the velocity of the sphere. Details are added
with artificial vorticity and coupling noise. Simulation resolution is
207 × 207 × 207.

3.5. Examples

We model different physical phenomena on the surface and, there-
fore, employ different sets of equations.

Fluid Flow. One application of our model is the simulation of fluid
flow on an evolving surface. Figs. 5, 7, and 8b show examples of
such a flow. The surface rotates and, due to friction forces, the fluid
on the surface starts to move. To model viscous fluid flow on the
surface we use the Navier-Stokes momentum equation:

Dsv
Dt

=− 1
ρ
∇TpMP+ν∇2

TpMv+ 1
ρ

Fb , (15)

where v is the fluid’s velocity, ν the viscosity constant, P is the
pressure, and Fb are body forces (e.g., gravity).

The evolution of density ρ is modeled by using the general con-
tinuity equation:

Dsρ

Dt
= σ−ρ(∇TpM ·v) , (16)

where σ is the rate of generation of the substance per unit volume,
i.e., it is used to model sinks (σ < 0) or sources (σ > 0). We model
incompressible fluid flow on the surface and only allow for density
changes due to surface divergence, i.e., we set F2(ρ,v) = 0. As a
result, Eq. 16 simplifies to a volume conservation law:

∇TpM ·v =
σ

ρ
. (17)

If no sinks or sources are present (i.e., s3 = 0), Eq. 16 simplifies to
∇TpM ·v = 0. Note that if the outer process is divergence-free, i.e.,
∇·u = 0, we obtain an incompressible flow because D ρ

Dt = 0.

Buoyancy-induced Flow. Fig. 6 shows a static hemisphere. Some
areas on the surface are heated, others cooled by outer tempera-
ture constraints. We model temperature transfer according to Eq. 10
and, therefore, the fluid on the surface changes its temperature. Nat-
ural convection arises due to temperature differences in the fluid.

Such buoyancy-driven flow can be modeled using the so-called

Figure 6: Thermal convection on a hemisphere. The temperature
is color-coded, where the temperature rises from blue over white
to red. Some areas are heated and others are cooled. Due to these
temperature differences, buoyancy-driven flow arises. Simulation
resolution is 207 × 107 × 207.

Boussinesq approximation [Bou97]. The Boussinesq approxima-
tion assumes incompressible flow and that variations of density
only occur due to temperature differences: ρ = ρ0−βρ0(T −T0),
where β is the coefficient of thermal expansion, T0 the reference
temperature, and ρ0 the reference density. We assume an ideal gas
and, therefore, β = 1

T0
. If we assume gravity as the only body-force

present, Eq. 15 becomes

Dsv
Dt

=− 1
ρ
∇TpMP+ν∇2

TpMv+
(

1− TT0

)
g , (18)

with g being the gravitational constant. To model changes in the
temperature field we use the convection-diffusion equation:

DsT
Dt

= µd∇2
TpMT , (19)

where we assume a constant diffusion coefficient µd .

Reaction-diffusion. Reaction-diffusion is commonly used to
model chemical reactions of one or more substances (e.g., a sub-
stance is transformed into another due to chemical reactions) and
the diffusion of the substance(s) in space. Fig. 8a shows such a pro-
cess. Two chemical substances diffuse and react with each other. In
this example, we model a two-component reaction-diffusion pro-
cess given by

Ds f1
Dt

= R1(f1, f2)+µd1∇
2
TpM f1 and (20)

Ds f2
Dt

= R2(f1, f2)+µd2∇
2
TpM f2 . (21)

The functions R1 and R2 are the reaction terms and characterize the
system.

We use the Gray Scott Model [GS84] to define the reaction
terms, i.e., to model how different morphogens react:

R1(f1, f2) =− f1 f 2
2 +β(1− f1) , (22)

R2(f1, f2) = f1 f 2
2 − (β+ γ) f2 , (23)

To generate the example illustrated in Fig. 8a, we set the parameters
to β = 0.03, γ = 0.06, µd1 = 0.1, and µd2 = 0.1.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

31

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

Figure 7: Fluid flow simulation on top of a FLIP fluid riverbed sim-
ulation. Performing a surface simulation of a color-band demon-
strates that we can add fine-scaled details. The split screen shows
the input fluid simulation on the left and the added surface flow on
the right.

4. Connecting to the Base Animation

In this section, we describe how we apply the model from Section 3
to create a simulation system. Our method can be divided into seven
steps, as illustrated in Fig. 2. We start with a coarse input (Fig. 2,
Step 1), e.g., a fluid simulation. Then, we create a signed distance
field from this simulation (Fig. 2, Step 2) and write the simulation
properties such as velocity, density, or color into 3D fields that are
laid out in a narrow-band grid, which is our generic input format
(Fig. 2, Step 3). We bring quantities from the outer process into
our surface domain in a coupling step and compensate for the sur-
face evolution as described in Section 4.4 (Fig. 2, Step 4 and 5).
Then, we simulate 2D details to enhance the coarse input by solv-
ing a PDE in the 2D surface space (Fig. 2, Step 6) that results in a
velocity field that advects all grids in the last step (Fig. 2, Step 7).

To solve a PDE on a surface we use the Closest Point Method
(CPM) [RM08] calculated in a 3D narrow-band. The main idea of
the CPM is that if the values of a field are constant along the normal
of the surface, many equations calculated in this 3D field are the
same as if they were calculated in the tangent spaces of the surface.
Section 4.3 describes the process of converting 3D fields into fields
that have constant values along the surface normal.

We implemented our method where each part is interchangeable
using a system of modules that change data flowing through the
system. In the following, we will describe each step in detail.

4.1. Data Input

The first step implements data input and is able to process a variety
of base animation types. In our examples, we consider keyframe
animation (Fig. 5), SPH particle simulation (Fig. 12 and 8a), and
fluid implicit particle (FLIP) simulation (Fig. 7). The only require-
ment for an input is that we can convert the surface geometry data
into a signed distance field and that values for the surface velocity
can be generated on the surface.

(a) Reaction-diffusion

(b) Fluid flow

Figure 8: With our approach, we can model different behaviors on
the same input data. The upper image shows a reaction-diffusion
simulation on top of a dam break SPH simulation. The lower image
shows a fluid flow on top of the same input simulation. Simulation
resolution is 199 × 50 × 169.

4.2. Convert to Signed Distance Field

For converting polygon meshes to signed distance fields, several
methods are available, e.g., [SGGM06], [XB14], or [KDBB17]. A
special case arises when we convert particle systems to distance
fields. Inside the fluid, there are particles everywhere. Here, the
distance field obtained by these methods is not usable since we
need the distance to the surface and not to the nearest particle.
For particle-based simulations, we can either transform the sim-
ulation to a polygon mesh first or go directly from particles to
signed distance fields by defining an implicit surface from the par-
ticles [ZB05] and then take the distance to this implicit surface.

4.3. Create Narrow-Band Grid

We create a narrow-band around the surfaces to capture the veloc-
ity, density, and other properties of the flow from the nearest surface
point. We only fill cells near the surface based on the distance field.
Cells that a farther away than a certain threshold are left empty,
as illustrated in Fig. 9. We keep track of two velocity fields, the
internal velocity field (denoted as v in Section 3) and the external
velocity field (denoted as u). We write the velocity of the incoming
surface into the external velocity grid. Depending on the use case,
we either initialize the internal velocity grid with a snapshot of the
external velocity (for example, Fig. 12), or we create a custom ini-
tialization routine to define the initial internal velocity, for example,
by initializing with vanishing velocity (Fig. 5). We also keep track
of the scalar properties that we use in our simulation, e.g., the con-
centration of substances for the reaction-diffusion example.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

32

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

Figure 9: The distance field is stored in a narrow-band around the
surface. In the same way, velocity and scalar fields are stored in a
sparse data structure.

To use the CPM our inputs must be narrow-band grids where
the values are constant along the normal direction of the surface.
Using an integer look-up grid that stores the cell coordinates of the
closest point of the surface in each grid cell, we can fill in a grid
with values from the closest surface point. We refer to this step as
the CPM extension. Here, we extend the values near the surface
along the normal direction. The CPM extension is our final step in
the narrow-band creation phase.

4.4. Surface Evolution

Before we use the velocities or scalar values like color or density in
a PDE, we first execute the correction steps for density and velocity,
as described in Section 3.

For mass conservation, we have to solve Eq. 4. As a building
block for this calculation, we need a module that implements the
operator∇· (ũn)TpM . This operator will calculate a scalar value for
the divergence of the velocity field but with respect to the tangent
space of a surface defined by the gradient of the input distance field.
The result is then applied to the scalar fields that need correction.
The interesting part of this divergence calculation is that we use
the original 3D velocities for the divergence operator. We need to
take the velocities of adjacent cells into account but projected to
the surface normal of the current grid value, not the normals of the
respective neighbor cells. An example to better understand the dif-
ference is the one of a growing sphere. Although the 2D velocities
in surface space are zero at each point, the divergence is not. To get
correct 2D divergence where a growing sphere causes sinks, and a
shrinking sphere creates sources in the mass conservation equation,
we have to project the velocities of neighbor cells using the normal
of the current cell.

For the conservation of momentum, the “Project Vector” module
alters the velocities based on the surface tangent. Given a source
vector grid and a distance field gradient, this module will project
the input vectors onto the surface by subtracting the normal vector
component from the gradient field. There is an option to maintain
the length from the input vector, which resembles rotating the vec-
tor down onto the surface, as shown in Fig. 4. To apply Eq. 9, we
add a module to calculate the jacobian of a velocity field and use
it to change the velocities of a second velocity field. Both modules
are applied to the velocity field for the internal velocity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

0.5

1.0

1.5

2.0

M
ea

n
D

en
si

ty

Simulation
Analytic

Figure 10: Simulated density on a growing and shrinking sphere
compared to the analytic solution. With our simulation, we can re-
produce the analytical result. The numerical diffusion is negligible.

After the values are adapted based on the surface evolution, we
couple them to the values from the underlying simulation.

4.5. Coupling of Dynamics

For coupling the velocities, we send the velocity grids to a module
that applies Eq. 9 to the inner velocity. The parameters for s1 and
s2 are exposed to the user. We implemented functionality to add
noise, viscosity, and vorticity to the inner velocity. These parame-
ters allow us to improve the coupling with additional details, as can
be seen in Fig. 5.

By coupling scalar values from the initial 3D simulation to the
2D space using Eq. 10, we can model mass transfer. The user can
choose the parameter s3 to drive how much the outer process in-
fluences the values in the 2D simulation. A value of 0 would only
initialize the 2D simulation, and from then on, the 2D simulation
would be independent.

4.6. Solve PDE and Advect

As mentioned, we are operating on 3D grids where values do not
change along the normal direction. The CPM allows us to solve
PDEs in the surface space using these grids. We implemented dif-
ferent sets of PDEs that can all be solved using our new modules.
The modules work in 3D, but we specifically designed them for
the fields that result from the CPM extension. Due to the CPM, the
gradient naturally operates in surface direction, but the divergence,
curl, and Jacobian have to be changed: When applying them, we
use the projected version as described in Section 3, i.e., the input
vector is projected onto the surface.

To simulate fluid flow on the surface, we solve Eq. 15.
Here, we use the projected divergence operator ∇ · (ũn)TpM . The
“Divergence-Free” module will remove divergence with respect to
the tangent space of a surface and take the divergence of the surface
evolution into account. For the buoyancy-induced flow, we scaled
the gravity depending on temperature as described in Eq. 18 and
added a diffusion module for temperature diffusion. To simulate
reaction-diffusion for the example shown in Fig. 8a we wrote a
module to implement Equations 20–23. As a last step, we advect
all fields using Eq. 13, i.e., with the resulting velocities.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

33

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

4.7. Implementation

Our modular approach can be easily implemented with existing
frameworks like the SideFX™Houdini software package, which
is widely used for VFX creation and offers an integration of
the OpenVDB libraries [MLJ∗13] as a sparse volume represen-
tation for the calculations. We separated our algorithm into in-
dependent modules and implemented them as a separate opera-
tors, to be used in Houdini’s simulation node graph framework.
The OpenVDB framework offers a data structure, the OpenVDB
grid, to create narrow-bands. All subsequent calculations employ
this structure and only spend computation time where needed. Our
“CPM Extension” module is the central block to build CPM so-
lutions in Houdini. Here, we implemented a nearest-neighbor in-
terpolation as suggested by Kim et al. [KTT13], but also box and
quadratic interpolation. To generate the SPH base simulations, we
used divergence-free SPH [BK15] with consistent Shepard interpo-
lation [RKEW19]. For more details about SPH, we refer the reader
to the SPH tutorial by Koschier et al. [KBST19]. When simulating
fluid flow, we used vorticity confinement [FSJ01].

5. Results

5.1. Versatility and Simulation Quality

To show the versatility of our method, we modeled different phys-
ical phenomena as described in Section 3.5, and tested them on a
variety of scenarios. We chose base animations with different char-
acteristics, from static (Fig. 6) to hand-animated meshes (Fig. 5),
from coarse-scale SPH-based fluid simulations, including sudden
changes in topology (Fig. 8), to high-resolution multi-phase SPH
simulations (Fig. 12). In all of the above situations, we were able
to add a fine-scale secondary simulation on top of these surfaces,
revealing fine-scale details as promised.

With our approach, we can add effects onto the surface of the
simulation. Simulating a second fluid flow on the surface enables
one to add another phenomena on top of an existing simulation. As
shown in the oil film example (Fig. 12), the effect of oil spreading
on the surface is achieved by simulating a second, fine-scale fluid
flow on the surface, which is just added to the base-simulation. As
mentioned, the level of detail of the secondary simulation can be
chosen independently and increasing the simulation resolution of
the underlying SPH simulation would not have the same effect. In-
stead, we would just have a scalar field with higher resolution, like
the one shown in Fig. 12b, but would not have simulated the laws
of the secondary flow. Also, due to the modeled mass transfer, the
oil particles that emerge from below the surface can contribute to
our 2D simulation. This coupling introduces significantly more de-
tails than just a plain simulation on the surface itself. The amount of
detail added is significant even for low-resolution base animations,
and it can be further improved (Fig. 12c to 12d) by increasing the
resolution. Fig. 8a presents a reaction-diffusion of two chemicals
simulated on top of a coarse dam break simulation. This example
illustrates that we can simulate not only a second flow equation on
the surface but any kind of desired physical phenomena that can be
described by a set of PDEs.

In the buoyancy-induced flow example (Fig. 6), we simulate
thermal convection and demonstrate emergence of isolated vortices

0.0
1

0.0
19

0.0
28

0.0
37

0.0
46

0.0
55

0.0
65

0.0
74

0.0
83

Gridsize

0.000

0.025

0.050

0.075

0.100

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Figure 11: The mean error for different grid sizes. The smaller the
grid cells, the closer the values are to the analytic solution.

on a static surface, replicating the physical experimental setup by
Seychelles et al. [SABK08]. The setup consists of a static hemi-
sphere on a heating plate giving rise to thermal convection. We
were able to create fine detailed vortex structures using the Boussi-
nesq approximation.

A hand-animated sphere with a periodically oscillating radius
was used to test our approach on mass conservation. The mean
density per surfactant was calculated and plotted as a function over
time as a graph (Fig. 10). In this example, it is possible to analyt-
ically calculate the density change that is needed to ensure mass
conservation and compare it with our simulated result. As shown
in Fig. 10, we can reproduce the analytical solution over time. The
small loss in density can be attributed to numerical diffusion and is
negligible in this case. To test the accuracy depending on the grid
resolution, we simulated this scenario with different grid resolu-
tions. As can be seen in Fig. 11, our mass conservation approach
works as expected and the simulation converges to the analytical
solution using finer grid resolutions. Further investigations on the
convergence order is left for future work.

We refer the reader to the accompanying video to watch some of
the examples in motion. Supplementary material discusses the vec-
tor length conservation experiment. Moreover, we provide a pre-
compiled version of our plugin for Houdini with two sample scenes
for testing on Zenodo [MRWE20a].

5.2. Performance

The performance was measured for every operator individually
with the rotating sphere example (Fig. 5). The grid resolution has
the most significant impact on the computation time, but also the
width of the narrow-band profoundly influences the performance.
For the rotating sphere example, the overall computation time per
frame with 5 substeps was 28s. The soap film example from Fig. 12
took approximately 28s per frame with 2 substeps. The measure-
ments were taken on a notebook with an Intel(R) Core i7-6700K
CPU and a NVidia GeForce GTX 1070. The simulation of the
underlying fluid is not included in the measurements. As can be
seen in Fig. 13, most of the computation time for a single task is
spent in the “Divergence Free” operator. This node uses the Open-
VDBs Poisson solver with a maximum of 100 iterations to obtain
a divergence-free vector field. Second most computation time is

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

34

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

(a) Source SPH particles (b) Original scalar field derived from
particle attributes

(c) 2D simulation with grid resolution
of 0.05

(d) 2D simulation with grid resolution
of 0.02

Figure 12: Pouring polluted water into a bowl. The fine-grained simulation enhances the underlying SPH simulation. Our mass transfer
even captures oil particles that emerge from under the surface. Different resolutions can be generated independent from the input resolution.
This allows iterative refinement of parameters as needed in typical VFX production workflows.

Narrow Band

PDE

Coupling

Surface Evolution

Advection

Other

Divergence Free

Jacobian

CPM Extension I

CPM Extension II

CPM Extension III

CPM Extension IV
Distance Field

VDB Operations
Vorticity

Adhesive Forces
VDB Operations
Project Vector I
Project Vector II
Display
Compute Outer Velocity
Initial Mesh Generation

Figure 13: The calculation costs of our nodes for the CPM meth-
ods are of the same magnitude as the existing Houdini operators
typically used in simulations.

spent to compute the Jacobian for the coupling step. In third place
is Houdini’s advection operator. All other operators have smaller
computation costs. This shows that the computation time for our
steps is of the magnitude as Houdini’s advection node.

6. Conclusion and Future Work

We presented a method to solve PDEs on evolving surfaces where
we considered the external movement as the driving process.
We derived physically motivated conservation laws and coupling
strategies. We coupled simulations of 3D and 2D space in a way
that allows us to compute high-resolution 2D simulations on coarse
input surfaces efficiently and that exposes physically plausible pa-
rameters to control the strength of the coupling. We demonstrated
that our approach can be used for different types of problems that
require solving PDEs on a surface. We showed how to integrate all
necessary steps into a VFX production environment in a modular
way so that the building blocks can be reused and we provide a
reference implementation as open source. The 2D surface simula-
tion showed to be a usable tool for VFX creation that can add a
big visual difference to scenes. By using the CPM there are some

limitations to our approach. As most CPM implementations, our
method cannot model surfaces with hard edges or high frequencies.
These limitations restrict use-cases to smooth surfaces. So far, we
assume a surface without boundaries. Future research could inte-
grate different boundary conditions. Testing further types of PDEs
to achieve effects like droplet formation or fingering as presented
by Vantzos et al. [AVW∗15] but on moving surfaces is another topic
for future work. Another area of interest is reinjecting 3D fluids
from the surface as a simple form of two-way coupling of the sim-
ulations, e.g., for water droplets.

Acknowledgements

We want to thank Mariusz Wesierski for his help in setting up the
river simulation and his support in all Houdini questions. This work
is partly supported by “Kooperatives Promotionskolleg Digital Me-
dia” at Stuttgart Media University and the University of Stuttgart.

Open access funding enabled and organized by Projekt DEAL.
[Correction added on 26 February 2021, after first online publica-
tion: Projekt Deal funding statement has been added.]

Appendix A: Conservation of Intensive Scalar Quantities

In Section 3.2, we stated that Eq. 4 directly follows from Eq. 3
if a represents an intensive scalar quantity. In the following, we
provide a detailed derivation of this fact. We want to ensure that the
total amount of a does not change if there are no phenomena like
mass transfer or chemical reactions present. As the surface evolves,
the surface density a needs to be adjusted to ensure that the total
amount stays constant. Changing the differentiation and integration
order in Eq. 3 results in

0 =
∫

M

DO
Dt

(adM) =
∫

M

(
DO a
Dt

dM+a
DO dM

Dt

)
. (24)

Since dM evolves, we need to evaluate the term DO dM
Dt .

According to Stone [Sto90], the material derivative of a surface
element can be described by

D
Dt

dM = (∇TpM · ũn)dM , (25)

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

35

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

where ∇TpM = (I−nnT)∇ is the gradient operator projected onto
the tangential space TpM at point p, and ũn is the velocity evolving
the surface. Without loss of generality, we assume that the outer
process is described by u instead of ũn and use D dM

Dt instead of
DO dM

Dt to derive the rate of change of dM. To describe Eq. 25 in
more detail, we first show that the identity

D
Dt

dM = (∇·u)dM− (∇u)T dM (26)

holds for an arbitrary oriented surface element dM = ndM [Bat00].
To this end, we first investigate how volume elements dV and line
elements dl are changed due to the base animation. We consider the
elements to be that small, that they are subject only to pure straining
motion and rigid rotations [Bat00].

The rate of change of the volume element dV is described by

DdV
Dt

=∇·udV . (27)

We assume that the line element dl is linear (and, therefore, can
be described by a vector) and stays approximately straight. Under
these assumptions, its rate of change is simply the difference of the
velocities at the two ends of the element and can be described by

Ddl
Dt

=∇udl . (28)

The volume element dV can also be described by dV = dM · dl.
Inserting dV into Eq. 27 results in:

(∇·u)dM ·dl =∇·udV =
D(dM ·dl)

Dt

= dM · Ddl
Dt

+
DdM

Dt
·dl

= dM · (∇udl)+ DdM
Dt
·dl

= ((∇u)T dM) · dl+ DdM
Dt
·dl . (29)

As Eq. 29 has to hold for arbitrary line elements dl, we obtain
Eq. 26. To get the formulation in Eq. 25 we take the inner-product
of n with Eq. 26 and use the identity nT (∇u)T n = (nnT∇) ·u:

D
Dt

dM =
D
Dt

nT ndM = nT D
Dt

dM

= nT (∇·u)dM−nT (∇u)T dM

= (∇·u)dM− (nnT∇) ·udM

= ((I−nnT)∇) ·udM = (∇TpM ·u)dM . (30)

Inserting Eq. 25 into Eq. 24 results in

0 =
∫

M(t)

(
DOa
Dt

dM+a(∇TpM · ũn)dM
)

=
∫

M(t)

(
DOa
Dt

+a(∇TpM · ũn)

)
dM. (31)

As Eq. 31 holds for an arbitrary surface M, we get

0 =
DOa
Dt

+a(∇TpM · ũn) =
DOa
Dt

+a(∇· (ũn)TpM). (32)

Therefore, the rate of change of a intensive quantity a is defined by

DOa
Dt

=−a(∇· (ũn)TpM). (33)

Appendix B: Length-preserving Evolution of a Vector Field

In Section 3.2, we stated that Eq. 5 is satisfied when setting

DOv
Dt

=∇ũnv−v ·∇ũnv v
‖v‖2 . (34)

To confirm that Eq. 34 results from Eq. 5, we first show that
DO‖v‖

Dt = 0 follows from Eq. 5. To this end, we reformulate the
right-hand side of Eq. 5 using Eq. 4 and Eq. 25:

0 =
DO
Dt

∫
M
‖av‖dM =

DO
Dt

∫
M

a‖v‖dM

=
∫

M

(
DOa
Dt
‖v‖dM+a

DO ‖v‖
Dt

dM+a‖v‖ DOdM
Dt

)
=

∫
M

a
DO ‖v‖

Dt
dM. (35)

This is true for an arbitrary surface M and we obtain:

DO ‖v‖
Dt

= 0. (36)

To achieve this, we evolve v with ∇ũn and compensate length
changes. The change in length of v can be expressed by

v ·∇ũnv
‖v‖

v
‖v‖ , (37)

and we obtain:

DOv
Dt

=∇ũnv− (v ·∇ũnv) v
‖v‖2 . (38)

This can be shown when writing the derivative as the limit of the
difference quotients. To this end, we use the first-order Taylor ex-
pansion of v with respect to t to define v̂ = v+∆t∇ũnv. Compen-
sating for length changes, v′ := v(t +∆t) can be approximated by:

v′ = v̂− (‖v̂‖−‖v‖) v̂
‖v̂‖ (39)

and the derivative of v is written as:

DOv
Dt

= lim
∆t→0

v′−v
∆t

= lim
∆t→0

1
∆t

(
∆t∇ũnv− (‖v̂‖−‖v‖) v̂

‖v̂‖

)
= lim

∆t→0

(
∇ũnv− 1

∆t

(
1− ‖v‖‖v̂‖

)
v+
(

1− ‖v‖‖v̂‖

)
∇ũnv

)
= lim

∆t→0

(
∇ũnv− ‖v̂‖2−‖v‖2

∆t‖v̂‖(‖v̂‖+‖v‖)v+(
1− ‖v‖‖v̂‖

)
∇ũnv

)
= lim

∆t→0

(
∇ũnv− 2∆tv · (∇ũnv)+∆t2‖∇ũnv‖2

∆t‖v̂‖(‖v̂‖+‖v‖) v+(
1− ‖v‖‖v̂‖

)
∇ũnv

)
= lim

∆t→0

(
∇ũnv− 2v · (∇ũnv)+∆t‖∇ũnv‖2

‖v̂‖(‖v̂‖+‖v‖) v+(
1− ‖v‖‖v̂‖

)
∇ũnv

)
=∇ũnv− v · (∇ũnv)

‖v‖2 v (40)

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

36

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

References

[ADAT13] AKINCI N., DIPPEL A., AKINCI G., TESCHNER M.: Screen
space foam rendering. Journal of WSCG 21, 3 (2013), 173–182. 2

[AMT∗12] AUER S., MACDONALD C., TREIB M., SCHNEIDER J.,
WESTERMANN R.: Real-time fluid effects on surfaces using the clos-
est point method. Computer Graphics Forum 31, 6 (2012), 1909–1923.
doi:10.1111/j.1467-8659.2012.03071.x. 2

[AVW∗15] AZENCOT O., VANTZOS O., WARDETZKY M., RUMPF M.,
BEN-CHEN M.: Functional thin films on surfaces. In Proceedings of the
14th ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion (2015), pp. 137–146. doi:10.1145/2786784.2786793. 2,
9

[AW13] AUER S., WESTERMANN R.: A semi-Lagrangian closest point
method for deforming surfaces. Computer Graphics Forum 32, 7 (2013),
207–214. doi:10.1111/cgf.12228. 2

[AWO∗14] AZENCOT O., WEISSMANN S., OVSJANIKOV M.,
WARDETZKY M., BEN-CHEN M.: Functional fluids on sur-
faces. Computer Graphics Forum 33, 5 (2014), 237–246.
doi:10.1111/cgf.12449. 2

[Bat00] BATCHELOR G. K.: An Introduction to Fluid Dynamics, 8th ed.
Cambridge Mathematical Library. Cambridge University Press, 2000.
doi:10.1017/CBO9780511800955. 10

[BK15] BENDER J., KOSCHIER D.: Divergence-free smoothed par-
ticle hydrodynamics. In Proceedings of the 14th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2015),
pp. 147–155. doi:10.1145/2786784.2786796. 8

[Bou97] BOUSSINESQ J.: Théorie de l’écoulement tourbillonnant et tu-
multueux des liquides dans les lits rectilignes a grande section, 1 ed.
Gauthier-Villars, 1897. 5

[CPPK07] CLEARY P. W., PYO S. H., PRAKASH M., KOO B. K.: Bub-
bling and frothing liquids. ACM Transactions on Graphics 26, 3 (2007),
97:2–97:6. doi:10.1145/1276377.1276499. 2

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation of
smoke. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (2001), pp. 15–22. doi:10.
1145/383259.383260. 8

[GDP16] GAGNON J., DAGENAIS F., PAQUETTE E.: Dynamic lapped
texture for fluid simulations. The Visual Computer 32, 6 (2016), 901–
909. doi:10.1007/s00371-016-1262-8. 2

[GS84] GRAY P., SCOTT S.: Autocatalytic reactions in the isothermal,
continuous stirred tank reactor: Oscillations and instabilities in the sys-
tem a + 2b → 3b; b → c. Chemical Engineering Science 39, 6 (1984),
1087–1097. doi:10.1016/0009-2509(84)87017-7. 5

[HH16] HILL D. J., HENDERSON R. D.: Efficient fluid simulation on
the surface of a sphere. ACM Transactions on Graphics 35, 2 (2016),
16:1–16:9. doi:10.1145/2879177. 2

[HIK∗20] HUANG W., ISERINGHAUSEN J., KNEIPHOF T., QU Z.,
JIANG C., HULLIN M. B.: Chemomechanical simulation of soap film
flow on spherical bubbles. ACM Transactions on Graphics 39, 4 (2020).
doi:10.1145/3386569.3392094. 2

[IAAT12] IHMSEN M., AKINCI N., AKINCI G., TESCHNER M.:
Unified spray, foam and air bubbles for particle-based fluids.
The Visual Computer 28, 6 (2012), 669–677. doi:10.1007/
s00371-012-0697-9. 1, 2

[IBAT11] IHMSEN M., BADER J., AKINCI G., TESCHNER M.: Anima-
tion of air bubbles with SPH. In Proceedings of the International Confer-
ence on Computer Graphics Theory and Applications (2011), pp. 225–
234. doi:10.5220/0003322902250234. 2

[ISN∗20] ISHIDA S., SYNAK P., NARITA F., HACHISUKA T., WOJTAN
C.: A model for soap film dynamics with evolving thickness. ACM
Transactions on Graphics 39, 4 (2020), 31:1–31:11. doi:10.1145/
3386569.3392405. 2

[KBST19] KOSCHIER D., BENDER J., SOLENTHALER B., TESCHNER
M.: Smoothed particle hydrodynamics techniques for the physics based
simulation of fluids and solids. In Eurographics 2019 - Tutorials (2019),
The Eurographics Association. doi:10.2312/egt.20191035. 8

[KDBB17] KOSCHIER D., DEUL C., BRAND M., BENDER J.: An
hp-adaptive discretization algorithm for signed distance field genera-
tion. IEEE Transactions on Visualization and Computer Graphics 23,
10 (2017), 2208–2221. doi:10.1109/TVCG.2017.2730202. 6

[KLKK12] KIM P.-R., LEE H.-Y., KIM J.-H., KIM C.-H.: Con-
trolling shapes of air bubbles in a multi-phase fluid simulation.
The Visual Computer 28, 6 (2012), 597–602. doi:10.1007/
s00371-012-0696-x. 2

[KTT13] KIM T., TESSENDORF J., THUEREY N.: Closest point turbu-
lence for liquid surfaces. ACM Transactions on Graphics 32, 2 (2013),
15:1–15:13. doi:10.1145/2451236.2451241. 8

[MBT∗15] MERCIER O., BEAUCHEMIN C., THUEREY N., KIM T.,
NOWROUZEZAHRAI D.: Surface turbulence for particle-based liquid
simulations. ACM Transactions on Graphics 34, 6 (2015), 202:1–202:10.
doi:10.1145/2816795.2818115. 2

[MLJ∗13] MUSETH K., LAIT J., JOHANSON J., BUDSBERG J., HEN-
DERSON R., ALDEN M., CUCKA P., HILL D., PEARCE A.: Open-
VDB: An open-source data structure and toolkit for high-resolution
volumes. In ACM SIGGRAPH 2013 Courses (2013), pp. 19:1–19:1.
doi:10.1145/2504435.2504454. 8

[MMR13] MACDONALD C. B., MERRIMAN B., RUUTH S. J.: Simple
computation of reaction–diffusion processes on point clouds. Proceed-
ings of the National Academy of Sciences 110, 23 (2013), 9209–9214.
doi:10.1073/pnas.1221408110. 2

[MRWE20a] MORGENROTH D., REINHARDT S., WEISKOPF D.,
EBERHARDT B.: Application and sample scenes for efficient 2D sim-
ulation on moving 3D surfaces, 2020. doi:10.5281/zenodo.
4009208. 8

[MRWE20b] MORGENROTH D., REINHARDT S., WEISKOPF D.,
EBERHARDT B.: Source code for efficient 2D simulation on moving 3D
surfaces. https://github.com/dimo3d/Cappucino, 2020. 2

[Red70] REDLICH O.: Intensive and extensive properties. Journal
of Chemical Education 47, 2 (1970), 154–156. doi:10.1021/
ed047p154.2. 3

[RKEW19] REINHARDT S., KRAKE T., EBERHARDT B., WEISKOPF
D.: Consistent Shepard interpolation for SPH-based fluid animation.
ACM Transaction on Graphics 38, 6 (2019), 189:1–189:11. doi:10.
1145/3355089.3356503. 8

[RM08] RUUTH S. J., MERRIMAN B.: A simple embedding method for
solving partial differential equations on surfaces. Journal of Compu-
tational Physics 227, 3 (2008), 1943–1961. doi:10.1016/j.jcp.
2007.10.009. 2, 6

[SABK08] SEYCHELLES F., AMAROUCHENE Y., BESSAFI M., KEL-
LAY H.: Thermal convection and emergence of isolated vortices in
soap bubbles. Physical Review Letters 100, 14 (2008), 144501. doi:
10.1103/PhysRevLett.100.144501. 8

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R., MANOCHA D.: In-
teractive 3D distance field computation using linear factorization. In Pro-
ceedings of the 2006 Symposium on Interactive 3D Graphics and Games
(2006), pp. 117–124. doi:10.1145/1111411.1111432. 6

[Sta03] STAM J.: Flows on surfaces of arbitrary topology. ACM Transac-
tions on Graphics 22, 3 (2003), 724–731. doi:10.1145/1201775.
882338. 2

[Sto90] STONE H.: A simple derivation of the time-dependent
convective-diffusion equation for surfactant transport along a deforming
interface. Physics of Fluids A: Fluid Dynamics 2, 1 (1990), 111–112.
doi:10.1063/1.857686. 9

[SY04] SHI L., YU Y.: Inviscid and incompressible fluid simulation on
triangle meshes. Computer Animation and Virtual Worlds 15, 3-4 (2004),
173–181. doi:10.1002/cav.19. 2

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

37

https://doi.org/10.1111/j.1467-8659.2012.03071.x
https://doi.org/10.1145/2786784.2786793
https://doi.org/10.1111/cgf.12228
https://doi.org/10.1111/cgf.12449
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1145/1276377.1276499
https://doi.org/10.1145/383259.383260
https://doi.org/10.1145/383259.383260
https://doi.org/10.1007/s00371-016-1262-8
https://doi.org/10.1016/0009-2509(84)87017-7
https://doi.org/10.1145/2879177
https://doi.org/10.1145/3386569.3392094
https://doi.org/10.1007/s00371-012-0697-9
https://doi.org/10.1007/s00371-012-0697-9
https://doi.org/10.5220/0003322902250234
https://doi.org/10.1145/3386569.3392405
https://doi.org/10.1145/3386569.3392405
https://doi.org/10.2312/egt.20191035
https://doi.org/10.1109/TVCG.2017.2730202
https://doi.org/10.1007/s00371-012-0696-x
https://doi.org/10.1007/s00371-012-0696-x
https://doi.org/10.1145/2451236.2451241
https://doi.org/10.1145/2816795.2818115
https://doi.org/10.1145/2504435.2504454
https://doi.org/10.1073/pnas.1221408110
https://doi.org/10.5281/zenodo.4009208
https://doi.org/10.5281/zenodo.4009208
https://github.com/dimo3d/Cappucino
https://doi.org/10.1021/ed047p154.2
https://doi.org/10.1021/ed047p154.2
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.1103/PhysRevLett.100.144501
https://doi.org/10.1103/PhysRevLett.100.144501
https://doi.org/10.1145/1111411.1111432
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1063/1.857686
https://doi.org/10.1002/cav.19

Morgenroth et al. / Efficient 2D Simulation on Moving 3D Surfaces

[TFK∗03] TAKAHASHI T., FUJII H., KUNIMATSU A., HIWADA K.,
SAITO T., TANAKA K., UEKI H.: Realistic animation of fluid with
splash and foam. Computer Graphics Forum 22, 3 (2003), 391–400.
doi:10.1111/1467-8659.00686. 1, 2

[TSS∗07] THUEREY N., SADLO F., SCHIRM S., MÜLLER-FISCHER
M., GROSS M.: Real-time simulations of bubbles and foam within
a shallow water framework. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2007),
pp. 191–198. doi:10.2312/SCA/SCA07/191-198. 2

[XB14] XU H., BARBIČ J.: Signed distance fields for polygon soup
meshes. In Proceedings of Graphics Interface (2014), pp. 35–41. 6

[XZ03] XU J.-J., ZHAO H.-K.: An Eulerian formulation for solv-
ing partial differential equations along a moving interface. Journal
of Scientific Computing 19, 1 (2003), 573–594. doi:10.1023/A:
1025336916176. 2

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM Transac-
tions on Graphics 24, 3 (2005), 965–972. doi:10.1145/1073204.
1073298. 6

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

38

https://doi.org/10.1111/1467-8659.00686
https://doi.org/10.2312/SCA/SCA07/191-198
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1073204.1073298

