Steffen Wiewel, Byungsoo Kim, Vinicius C. Azevedo, Barbara Solenthaler, Nils Thuerey / Latent Space Subdivision

Supplemental Document for
Latent Space Subdivision:
Stable and Controllable Time Predictions
for Fluid Flow

Appendix A: Evaluation
Prediction Window Size

The prediction window w describes the count of consecutive time
steps that are taken as input by the temporal prediction network. In
our comparison we tested window sizes ranging from 2 over 3 up
to 4 consecutive input steps. The results in terms of PSNR values
are displayed in Table 5 and Table 6.

Table 6: Prediction window
w comparison VelDen

Table 5: Prediction window
w comparison Vel

w PSNRu PSNRp w PSNRu PSNRp
4 2967 17.04 4 2998 1824
3 2979 16.87 3 2952 17.84

2 30.28 17.66 2 29.11 17.12

It becomes apparent that the prediction-only approach (VelDen)
benefits from a larger input window, whereas the Vel approach with
reinjected external information performs best with a smaller input
window.

Latent Space Split Percentage

We evaluated the impact of the latent space split percentage on
three of our datasets. Therefore, we trained multiple models with
different split percentages on the individual datasets. The compar-
ison for our moving smoke scene is shown in Table 7 and Table 8.
The latter are the results of the prediction-only evaluation (denoted
VelDen), whereas the first table presents the results of our reinjected
density approach (denoted Vel). In this experiment all split versions
are outperformed by the No-Split version in the prediction-only
setup with PSNR values of 29.71 and 18.03 for velocity and den-
sity, respectively.

Table 8: LS split compari-

Table 7: LS split compari- son VelDen; moving smoke

son Vel; moving smoke

LSSplit PSNRu PSNRp

LS Split PSNRu PSNR p -
No-Split 29.71 18.03

0.33 28.07 15.84
0.33 28.49 16.63

0.5 29.28 16.49
0.5 29.06 17.38

0.66 30.28 17.66

0.66 29.11 17.12

Table 9: LS split compari-
son Vel; rotating cup

LS Split PSNRu PSNRp

0.33 36.67 28.46
0.5 36.66 29.22
0.66 38.52 29.73

Table 11: LS split compar-
ison Vel; rotating and mov-
ing cup

Table 10: LS split compari-
son VelDen; rotating cup

LS Split PSNRz PSNR p

No-Split ~ 37.90 22.68
0.33 37.52 25.01
0.5 36.77 25.13
0.66 37.57 25.32

Table 12: LS split compar-
ison VelDen; rotating and
moving cup

LS Split PSNRu PSNR p LS Split PSNRu PSNRp

0.33 35.67 25.10 0.33 37.89 26.45
0.5 36.94 26.59 0.5 37.30 26.16
0.66 36.50 26.25 0.66 37.56 26.14

Table 13: No-Split and LSS
comparison; rotating cup;
100 time steps

LSSplit Type PSNRu PSNRp

No-Split VelDen 37.90 22.68
0.66 (ours) VelDen 37.57 25.32

0.66 (ours) Vel 38.52 29.73

In contrast, the networks trained on the rotating cup dataset behave
different as shown in Table 9 and Table 10. The classic No-Split
version is outperformed by all other split versions in terms of den-
sity PSNR values in the prediction-only (VelDen) setup. In the rein-
jected density evaluation (Vel), the benefit of latent space splitting
becomes even more apparent when comparing the PSNR values
of velocity, 38.52 and density, 29.73 of the 0.66 network with the
velocity PSNR of 37.90 and density PSNR 22.68 of the No-Split
version.

No-Split vs. Latent Space Subdivision

In this section we present additional results for our rotating cup
dataset. See the main document for a long-term comparison of No-
Split vs. LSS for our more complicated moving and rotating cup
dataset. In Table 13 we compare the temporal prediction perfor-
mance of a No-Split version and our 0.66 LSS version over a time
horizon of 100 simulation steps. Our LSS 0.66 version with a den-
sity PSNR value of 29.73 clearly outperforms the No-Split version
with a density PSNR value of 22.68.

Generalization

Additionally, we show in Figure 15 that our method recovers from
the removal of smoke in a certain sink-region and is capable of
predicting the fluid motion.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Steffen Wiewel, Byungsoo Kim, Vinicius C. Azevedo, Barbara Solenthaler, Nils Thuerey / Latent Space Subdivision

i
Prediction | {k
only Wi !

Reinjection
(ours)

?

GT

Figure 15: An sink is placed in the upper right of our moving smoke scene. This was unseen during training. The prediction by our
proposed method remains stable and realistic. In the second row density reinjection was applied. In the top row no external information

was injected. Thus, the sink can’t be processed by the network.

Appendix B: Fluid Flow Data

Our work concentrates on single-phase flows, modelled by a
pressure-velocity formulation of the incompressible Navier-Stokes
equations as highlighted in Section 2. Thereby, we apply a clas-
sic NS solver to simulate our smoke flows based on R. Bridson
[Bril5]. In addition to Section 4, more information about the sim-
ulation procedure is provided in the following.

Simulation Setup

The linear system for pressure projection is solved with a conjugate
gradient method. The conjugate gradient (CG) solver accuracy is
set to 1-10™* for our moving smoke dataset, whereas an accuracy
of 11073 is utilized for the moving cup datasets. We generated all
our datasets with a time step of 0.5. Depending on the behavioral
requirements of our different experiments with rising, hot and sink-
ing, cold smoke we use the Boussinesq model with the smoke den-
sity in combination with a gravity constant of (0.0,—4-1073,0.0)
for the moving and rising smoke and (0.0, 1-10~2,0.0) for the ro-
tating cup dataset. To arrive at a more turbulent flow behavior, the
gravity constant was set to (0.0,1-1072,0.0) for our moving and
rotating cup dataset. We do not apply other forces or additional vis-
cosity. We purely rely on numerical diffusion to introduce viscosity
effects.

In combination with the quantities required by our classic NS
setup, namely flow velocity u, pressure p and density p, we also
need a flag grid f, an obstacle velocity field u,,, and the cor-
responding obstacle levelset for our obstacle supporting scenes.
Thereby our density p is passively advected within the flow ve-
locity u.

To handle the obstacle movement accordingly, we calculate the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

obstacle velocity field by evaluating the displacement per mesh ver-
tex of the previous to the current time step and applying the interpo-
lated velocities to the according grid cells of the obstacle velocity
field. Afterwards, the obstacle velocity field values are averaged to
represent a correct discretization.

In Algorithm 1 the simulation procedure of the moving smoke
dataset is shown. For our obstacle datasets the procedure in Algo-
rithm 2 is used, with the prediction algorithm given in Algorithm 3.
Boundary conditions are abbreviated with BC in these algorithm.

Algorithm 1 Moving smoke simulation

1: while r —+7+1 do

2 p < applyInflowSource(p, s)
3 p < advect(p, u)

4: u < advect(u, u)

5 f < setWallBCs(f, u)

6 u < addBuoyancy(p, u, f, g)
7 p < solvePressure(f, u)

8: u < correctVelocity(u, p)

9: end while

Training Datasets

In Figure 16, Figure 17 and Figure 18 multiple simulations con-
tained in our training data set are displayed.

Steffen Wiewel, Byungsoo Kim, Vinicius C. Azevedo, Barbara Solenthaler, Nils Thuerey / Latent Space Subdivision

Algorithm 2 Rotating and moving cup

: while t - r+1 do ‘ ‘ 6 b .J ‘H ‘L‘ it.

p < applyInflowSource(p, s)

p < advect(p, u) ‘ ‘ ‘ 6 0’ 0‘ w .N

u < advect(u, u)
rH

1

2

3

4:

5: U, < computeObstacleVelocity(obstacle', obstacle

6: f « setObstacleFlags(obstacle') Q ‘ ‘ " "" U‘ L“ u;‘
7

8

9

f < setWallBCs(f, u, obstacle', u,ps)
u < addBuoyancy(p, u, f, 8)
: p < solvePressure(f, u)
10: u <+ correctVelocity(u, p)
11: end while

Figure 17: Three example sequences of our rotating cup
dataset. For visualization purposes we display frames 40 to
180 with a step size of 20 for the respective scenes. The cup-
shaped obstacle is highlighted in blue, whereas the smoke
density is shown as black.

Algorithm 3 Rotating and moving cup network prediction Vel

1: while t = ¢+1 do

2: p < applyInflowSource(p, s)

3 p < advect(p, u)

4: u < advect(u, u)

5: u,p,s < computeObstacleVelocity(obstacle', obstacle
6

7

8

9

) w W W W W e[e

f + setObstacleFlags(obstacle')

f — setWallBCs(f, u, obstacle', uyps) N ;e J' 4 w . - \ ‘ . w

&'« encode(it’, p")

(,‘ <_[vel7cden]

10: Ftl predict(é 71,) w .| - » L | ‘ w []
11: ! p' !« decode(@) > p' ! is not used - 18 Th : ; - 1
12: t+l — @ 5 overwrite the velocity with the prediction Figure 18: Three example sequences of our rotating and mov-

ing cup dataset. For visualization purposes we display frames
40 to 180 with a step size of 20 for the respective scenes.
The cup-shaped obstacle is highlighted in blue, whereas the
e n smoke density is shown as black.

1T(j’§’fd 1‘\

.M’f’ \?/ff
‘q¢??ffff3
P {9 27Y

Figure 16: Four example sequences of our moving smoke
dataset. For visualization purposes we display frames 20 to
200 with a step size of 20 for the respective scenes. The
smoke density is shown as black.

13: end while

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

