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Abstract
To estimate appearance parameters, traditional SVBRDF acquisition methods require multiple input images to be captured with
various angles of light and camera, followed by a post-processing step. For this reason, subjects have been limited to static scenes,
or a multiview system is required to capture dynamic objects. In this paper, we propose a simultaneous acquisition method of
SVBRDFand shape allowing us to capture thematerial appearance of deformable objects inmotion using a single RGBD camera.
To do so, we progressively integrate photometric samples of surfaces in motion in a volumetric data structure with a deformation
graph. Then, building upon recent advances of fusion-based methods, we estimate SVBRDF parameters in motion. We make
use of a conventional RGBD camera that consists of the colour and infrared cameras with active infrared illumination. The
colour camera is used for capturing diffuse properties, and the infrared camera-illumination module is employed for estimating
specular properties by means of active illumination. Our joint optimization yields complete material appearance parameters.
We demonstrate the effectiveness of our method with extensive evaluation on both synthetic and real data that include various
deformable objects of specular and diffuse appearance.
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1. Introduction

Capturing material appearance has been a long-lasting research
problem in computer graphics. Many specialized hardware systems
and software have been proposed to capture appearance parame-
ters, which can be used for photorealistic rendering of real-world
objects [DRS10]. Besides the cost of building a specialized hard-
ware setup, a long process of material acquisition is required. It be-
gins with capturing various photometric observation samples with
diverse angles of light and camera, resulting in hundreds of im-
ages [GHP*08, HLZ10, NLW*16, TFG*13, SSWK13, FHW*11,
TAL*07, LWS*13]. The process is then followed by heavy com-
putational processes that include calibration, registration, inverse
rendering and so on, often resulting in computation taking numer-
ous hours.

In addition to the system-building cost and the long hours of pro-
cessing, the entire input images with different angles of light and
camera should be captured in advance to be processed all together
for the optimization process of inverse rendering. This setup forces
the captured object to be static. If the object moves with motion or

is deformed into a different shape, the registration and geometric
relationship of input images are broken so that the entire input im-
ages should be recaptured from scratch to estimate appearance pa-
rameters. The state-of-the-art material appearance acquisition tech-
niques assume that a target object is both rigid and static. Neither
deformation nor motion has been allowed in traditional acquisition
methods. To address the aforementioned drawbacks of the existing
solutions, we were motivated to capture the material appearance of
a dynamic object in motion like a person or any deformable object
such as cloth.

Acquiring the appearance of dynamic objects has been achieved
by developing a specialized multiview video system [TAL*07,
FHW*11, LWS*13]. However, these systems are limited to captur-
ing subjects placed within the multiple light-camera stage. Also,
these systems are significantly more expensive than practical acqui-
sition methods. In contrast, we were motivated to devise a practical
acquisition solution without requiring any specialized hardware
setup, such as a mechanical gantry with two robotic arms or a mul-
tiview camera-light stage. To this end, we decided to make use of
a conventional RGBD camera for our acquisition setup, following

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

480

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8375-6449
https://orcid.org/0000-0002-2784-4241
https://orcid.org/0000-0002-1822-1501
https://orcid.org/0000-0002-5078-4005


H. Ha et al. / Progressive Acquisition of SVBRDF and Shape in Motion 481

Figure 1: (a) We provide the first-ever method to simultaneously estimate the SVBRDF, shape and motion of dynamic objects using a single
RGBD camera. (b)–(e) We obtain both diffuse and specular appearance with our novel joint optimization scheme, based on our hierarchical
data structure, which allows us to render captured scenes under novel view and light conditions. Refer to the supplemental video for more
results.

the trend of state-of-the-art practical techniques [AWL15,
RPG16, HSL*17, RRFG17, WZ15, WWZ16, PNS18,
NLGK18].

The conventional RGBD camera that we used in this work is a
Kinect 2 sensor that consists of two camera modules: a colour imag-
ing module is an ordinary colour camera to capture red, green and
blue colours of objects, and a time-of-flight (TOF) imaging module
is an infrared camera to capture the depth information with active il-
lumination of an infrared light module. We utilize the colour camera
for capturing diffuse properties and use the pair of the infrared cam-
era and the infrared illumination module to estimate specular prop-
erties.

In this work, we propose a progressive estimation of the spatially
varying bidirectional reflectance distribution function (SVBRDF)
and the shape of a deformable object in motion using a single RGBD
camera. As we are using a depth camera, we can estimate the shape
and motion vectors of the target object simultaneously while esti-
mating appearance. We introduce a novel architecture to progres-
sively integrate photometric observation samples in motion in a vol-
umetric structure through a deformation graph. Existing works us-
ing a single camera can capture SVBRDFs of static objects based on
a hierarchical data structure that consists of multiple clusters of sim-
ilar appearance. To the best of our knowledge, none of these meth-
ods can acquire SVBRDF and surface geometry with motion simul-
taneously. Our method estimates not only geometry with motion but
also SVBRDFs.

In addition, the traditional material acquisition meth-
ods [GHP*08, HLZ10, NLW*16, TFG*13, SSWK13, FHW*11,
TAL*07, LWS*13] require several hours to capture input images
of rigid objects. Our novel inverse rendering framework allows us
to estimate SVBRDF parameters and shape information progres-
sively in interactive time as we build our framework by combining
the recent advances of fusion-based methods [NFS15, IZN*16,
GXY*17] and the practical inverse rendering technique that cap-
tures SVBRDF with active illumination [NLGK18, WZ15]. Our
progressive acquisition approach does not need to wait for several
hours to capture input images. From an application perspective,
it does not force the target object to be static until all of the input
images are captured. Our method can progressively update both
appearance and shape parameters simultaneously. Processing each
frame takes less than a half second with a single GPU to estimate

every parameter from photometric samples accumulated through
motion vectors.

In summary, our method is the first to bridge the gap between
SVBRDF acquisition of rigid objects and fusion-based dynamic
scanning of diffuse colours, allowing for simultaneous acquisition
of SVBRDF and shape in motion. Our main contributions are sum-
marized as follows:

• an architecture to accumulate photometric samples of a dynamic
object in a volumetric structure through a deformation graph of
motion,

• a joint optimization framework that can estimate SVBRDF, shape
and motion simultaneously, and

• a progressive appearance computation framework for inverse ren-
dering.

2. Related Work

Appearance Acquisition of Static Objects. Traditionally, mate-
rial appearance of static objects has been effectively acquired with
specialized hardware systems that consist of multiple lights or cam-
eras [GHP*08, HLZ10, TFG*13, SSWK13, GCHS10, NLW*16,
RRFG17, BJTK18]. However, the building cost of such systems
is too high to make the acquisition process not available for ca-
sual users to have access to this acquisition process. To resolve
this issue, practical methods using a single camera have been in-
troduced [AWL15, RPG16, HSL*17, RRFG17, WZ15, WWZ16,
SWK19, PNS18, NLGK18]. These methods can capture material
appearance by inferring diffuse and specular appearance parame-
ters frommultiple observations with different view/light angles. Al-
though being effective for appearance and shape estimation, these
methods are limited to capturing static objects, meaning objects
without any motion. In contrast, we extend the target objects of ap-
pearance acquisition to dynamic objects through a joint estimation
of appearance, shape and motion.

Multi-Camera Acquisition of Dynamic Objects. To capture the
geometry and appearance of dynamic objects, various specialized
multi-camera systems have been proposed. Most previous sys-
tems only target diffuse appearance, neglecting specular appear-
ance [WVT12, DKD*16, DDF*17, XSH*19]. There have been few
attempts to estimate the complete appearance of diffuse and specular
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Figure 2: For each frame, our method takes inputs of RGB, IR and depth images from a conventional RGBD sensor (Kinect 2), in addition
to the static environment map (only captured once at the calibration stage). (a) We first estimate motion fields and scene geometry with
consideration of SVBRDF. (b) Specular parameters are then estimated by exploiting the hierarchical data structure. (c) Given the specular
estimates, residual observation is fitted to the diffuse component, resulting in the diffuse albedo estimates. This framework runs in an online
manner, producing geometry, motion and SVBRDF per frame as output.

components simultaneously [FHW*11, TAL*07, LWS*13]. How-
ever, these multiview methods require very expensive acquisition
systems with multiple cameras and lights. They are also offline
methods with high computational costs. In contrast, our method pro-
gressively estimates diffuse/specular parameters, geometry and mo-
tion in an onlinemanner using a singleRGBD camera, which makes
them more practical.

Single-Camera Acquisition of Dynamic Objects. Although es-
timating the shape and motion of dynamic objects from a single
camera has been extensively studied, estimating appearance simul-
taneously is known to be challenging [NFS15, SBCI17, LZG18,
YGX*17, YZG*18, ZYL*18, YGX*17, YZG*18, ZYL*18,
YZZ*19]. Only a few studies have been attempted to capture dif-
fuse components either in diffuse albedo [GXY*17] or shaded dif-
fuse colours [DDF*17, IZN*16, SBI18]. In addition, there are prac-
tical acquisition methods that allows users to capture appearance
in a simple setup. Lin et al. [LPG19] estimate appearance param-
eters by simply capturing HDR images of an object and a light
probe. Dong et al. [DCP*14] capture SVBRDFs with known ge-
ometry from an input video with motion. The main technical chal-
lenge of simultaneously estimating specular appearance is that
the number of light/view samples in each frame is not sufficient
for appearance estimation. In order to overcome this, we utilize
the active infrared illumination in the TOF camera for estimat-
ing specular parameters and integrate photometric samples into a
hierarchical data structure. This enables us to reconstruct all ap-
pearance parameters, geometry and motion of dynamic objects
simultaneously.

3. Overview

Our method progressively estimates SVBRDF, geometry and mo-
tion of a deformable object in a frame-by-frame manner. Based
on the traditional fusion framework [NFS15, GXY*17], using an
RGBD camera, our method accumulates photometric samples of
the target object in our hierarchical data structure. The data struc-
ture allows us to estimate the full appearance of the object us-
ing a small number of frames. Using the estimated appearance
parameters of the object, our algorithm progressively updates the
appearance information more accurately over time through the
object’s motion vectors. Figure 2 describes the overview of our
method.

Figure 3: (a) Environmental scene illumination in visible RGB
channels is reflected at object surfaces and captured by the colour
camera on the RGBD sensor. Estimating the specular component
from the RGB image (b) is challenging due to lack of the view/light
direction information. In contrast, the point IR illumination of the
depth camera enables effective reconstruction of specular appear-
ance from the IR image (c).

4. Acquisition Setup

In order to make our acquisition system practical, we make use of
two off-the-shelf imaging devices: a conventional RGBD camera
(Kinect 2) and a 360◦ camera (Ricoh Theta). The RGBD camera is
the main device to capture SVBRDF and shape in motion, and the
spherical camera is used to capture the environment illumination of
the scene.

We chose the RGBD camera because the camera consists of the
colour and infrared cameras with active infrared illumination. First,
the colour camera can be used for capturing diffuse colour properties
under the scene ambient illumination. Second, unlike the previous
generation of RGBD cameras (Kinect 1 or PrimeSense), the second
generation of the Kinect sensor includes the TOF camera module to
estimate depth. The camera API allows us to access to raw infrared
image data, time-modulated phase images under active infrared (IR)
illumination, without having spatial modulation artefacts shown in
the previous generation. The clear infrared image data under the
known active illumination can be utilized to estimate view-light-
dependent reflectance property, that is, specular albedo and surface
roughness. As the angle between active infrared illumination and
infrared TOF sensor in the RGB-D camera is approximately 5◦ at
a distance of around 1 m, this could be sufficiently wide to capture
most SVBRDF except the Fresnel effect, as discussed in [NJR15,
NLGK18].
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Table 1: Symbols and notations used in the paper.

Symbol Description

Image t Frame number
u Image pixel
P Pixel domain
P t
D,P t

C Set of visible pixels at the depth camera space and the colour camera space at t
ũD, ũC Corresponding pixel of a rendered image pixel u in the depth and the colour camera space
ũxD Corresponding depth pixel of a voxel x in the depth camera space
Dt , Ct , It Depth, colour and IR image at the frame t
�,Y Chromacity and luminance of the colour image
Ṽt
D, Ñ

t
D Vertex map and normal map of the warped mesh at the depth camera space at t

Ṽt
C , Ñ

t
C Vertex map and normal map of the warped mesh at the colour camera space at t

Vt
D,N

t
D Vertex map and normal map of the depth image at t

Ot
C View direction of Ṽt

C to the colour camera at t

Transformation K, D, C Canonical, depth (IR) and colour camera space
P Perspective projection
Ti Deformation graph transformation matrix at the node i
KD , KC Depth (IR) camera, Colour camera intrinsic matrix
TtK→D Canonical space to depth camera space transformation matrix at t
TtD→K Depth camera space to canonical space transformation matrix at t
TtK→C Canonical space to colour camera space transformation matrix at t
TtD→C Depth camera space to colour camera space transformation matrix at t

Geometry ptK, p̃
t
K, n

t
K , ñ

t
K Point in the canonical space and its warped point and its normal at t

x, xK Voxel and its canonical position
x̃tD , x̃

t
C , ñ

t
D, ñ

t
C Position of a voxel x at the depth camera and the colour camera space and its normal at t

T TSDF structure
dT , ωT Signed distance value and its weight
T t
D , T t

C Set of visible voxel at the depth space and the colour space at t
VK, ṼK Canonical frame and warped mesh

Motion G Deformation graph
W t Motion field at frame t
qi, σi, wi Position, radius and the weight of the ith deformation graph node
� Kernel funcion

Parameters λ Regularize parameter
κ IR emmiter illumination
γC , γI Gamma value of the colour and the IR camera
vtx, ω

t
x Half angle buffer value and its weight of a voxel x at t

vtm, ω
t
m Half angle buffer value and its weight of a cluster m at t

Reflectance A Appearance of the canonical space model
ρd , ρs, α Diffuse albedo, specular albedo and specular roughness
õtD, õ

t
C View direction of x̃tD to the depth camera at t and x̃tC to the colour camera at t

ĩtI,D Light direction of x̃tD to the IR emitter at t
θi, θo, θh Zenith angle between the normal plane and the light, view and half vector direction
fr , fd , fs Reflectance, diffuse reflectance, and specular reflectance function
Hk, lk Spherical harmonics basis function and coefficient
B, S Diffuse and specular reflection
M Cluster

Figure 1(a) presents our acquisition setup. Figure 3 depicts light
transport in our imaging setup. First, to estimate the incident illu-
mination of the scene, we capture an environment map using a 360◦

camera. Second, for each frame, anRGB colour frame is captured by
the colour camera module in Kinect 2 under the ambient scene illu-
mination. An infrared frame is captured by the TOF camera module
under active illumination of the TOF camera module in the RGBD
camera. We use both colour and infrared frames in the video stream
to estimate the diffuse and specular parameters of SVBRDF.

5. Capturing SVBRDF and Shape in Motion

To capture SVBRDF on a non-rigid object using a single RGBD
camera, we introduce a two-step framework of dynamic inverse ren-
dering. First, we calculate motion fields by comparing both the ap-
pearance and geometry of the current frame with those properties of
the static model continuously accumulated from previous frames.
Second, using the estimated motion fields, we update three prop-
erties sequentially in each frame: geometry, specular reflectance
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parameters and diffuse albedo, sequentially in each frame. Refined
geometry is used for estimating the parameters of specular albedo
and surface roughness from photometric samples under active in-
frared illumination of the TOF camera. We cluster these parame-
ters in the deformation graph structure to estimate SVBRDFs per
cluster. Our SVBRDF acquisition progressively captures diffuse
albedo, specular coefficient, specular roughness, geometry and mo-
tion frame by frame under visible environment illumination.

5.1. Background

5.1.1. Voxel Grid and SVBRDF Model

Voxel Grid. We make use of a truncated signed distance function
(TSDF) volume T [CL96] to store the estimated appearance and
shape information. We reconstruct actual geometry and appearance
properties in the 3D voxel grid of TSDF, which is a set of voxel
x ∈ N

3 that consists of two sets of properties: T ={V,A}. First, ge-
ometry V={[dT , ωT ]}t at frame t is defined as a signed distance
value dT and its weight ωT . Second, appearance A={[ρd, ρs, α]}t
is a set of diffuse albedo ρd , specular albedo ρs and roughness pa-
rameter α. As appearance parameters are surface properties, we only
accumulate the appearance parameters to the voxels near to surface:
|dT | < 0.5τ , where τ is the truncate value.

Reflectance. We formulate appearance as SVBRDF, where the re-
flectance function fr represents the isotropic Ward model [War92]
at vertex point p in the voxel grid. The diffuse term fd represents in-
dividual diffuse albedo ρd per point, and the specular term fs shares
specular albedo (a.k.a. specular coefficient) ρs and roughness pa-
rameter α per cluster M as follows:

fr(i, o; ρd, ρs, α, n,p) = fd (ρd, p) + fs(i, o; ρs, α, n,p),

= ρd

π
+ ρs

4πα2
√
cos θi cos θo

e−(tan2(θh )/α2 ), (1)

where i and o are the incident light vector and the view vector, h =
(i + o)/||i + o|| is the half-angle vector, θi, θo and θh are an angle
between the normal n and each vector i, o and h, respectively, at
point p.

Rendering. With an objective of per-frame inverse rendering, we
capture an HDR environment map as scene illumination over solid
angle � as input. Suppose we have incident light L(−i;p) over an-
gle �. Using the rendering equation [Kaj86], we calculate reflected
light L(o;p) as

L(o; n,p) =
∫
�

L(−i;p) fr(i, o; ρd, ρs, α, n,p)(n · i)di

≈ B(ρd,n, p) + S(o; ρs, α,n, p). (2)

First, for computational efficiency, we approximate diffuse re-
flection as spherical harmonics of radiosity [WZN*14, RH01]
from given normals, assuming fixed environment illumination:
B(ρd,n, p)=ρd

∑8
k=0 lkHk(n), where lk are the nine spherical har-

monics coefficients of incident environment illumination (up to
the second order) over �, and the spherical harmonics basis func-
tions Hk(n) take normals n as input to calculate diffuse shad-
ing in the global space. Second, we calculate specular reflec-

tion S(o; ρs, α,n, p)=
∫
�
L(−i,p) fs(i, o; ρs, α, n, p)(n · i)di by in-

tegrating the spherical illumination map using uniform sampling of
the upper hemisphere in the normal space.

5.1.2. Capturing Shape

Simultaneously estimating SVBRDF, geometry and motion is a
chicken-and-egg problem because they are strongly correlated.
Once the first-frame observation of the RGBD camera is stored in
the canonical space, we begin with estimating the per-frame mo-
tion field by formulating the following optimization problems. Be-
fore explaining SVBRDF estimation in motion, we briefly explain
how to estimate themotion field to accumulate dynamic photometric
samples in our hierarchical data structure. This motion part is inher-
ited from the traditional fusion-based framework [NFS15]. Refer to
Table 1 for symbols and notations used in this paper.

Global Registration. To improve robustness, we first estimate
global transformation that registers the input frame of a depth cam-
era to the voxel grid in each frame, which is formulated as a 6-DOF
rigid body transformation (RBT) matrix Tt

D→K ∈ SE(3) such that
point ptD in the depth camera space D at frame t is transferred into
the canonical space of voxel grid K via ptK = Tt

D→Kp
t
D. The ma-

trix can be optimized by solving the iterative closest point (ICP)
method [RL01].

Capturing Shape via Motion. Following the previous work of
DynamicFusion [NFS15], we first estimate the local non-rigid mo-
tion fields per frame and update the shape of the deformable ob-
jects. We define a motion field W from the canonical space K to
the current warped frame t as W t={[qi, σi,Ti]}t , where qi is a po-
sition of ith node from the total N number of nodes (i ∈ {1, . . . , n})
in the deformation graph G, σi ∈ R

+ is a radius parameter for the
distance weight wi between node qi and point pK in the canoni-
cal space: wi(pK, σi)=exp(−||pK − qi||2/(2σ 2

i )) and Ti ∈ SE(3)
is a 6-DOF RBT of the ith node. The motion field W t at a point
pK is defined by dual-quaternion blending [KCvO07] using the k-
nearest neighbour nodes with its convex weights. The motion field
W t warps a point pK and a normal n(pK ) in the canonical space by
[p̃ᵀ

K, 1]
ᵀ=W t (pK )[p

ᵀ
K, 1]

ᵀ and [ñ(pK )ᵀ, 0]ᵀ=W t (pK )[n(pK )ᵀ, 0]ᵀ.
Given depth image Dt and the estimated warp motion field, we ob-
tain a weighted average of the projective TSDF values for every
voxel x to reconstruct the shape. Finally, we conduct the marching
cube algorithm on the TSDF volume to create a polygonal mesh
model per frame and update deformation graph. For more detail,
refer to the previous work [NFS15] and the supplemental material.

5.2. Estimating Motion with SVBRDF

State-of-the-art fusion methods [ZNI*14, DNZ*17, NFS15,
GXY*17] evaluate only diffuse colour and geometry differences
to estimate motion field. In contrast, we can estimate the current
motion field W t by minimizing the following energy function
making use of given geometry and SVBRDF:

Emotion

(
W t

) = Edepth + λdregEdreg + λpcolourEpcolour, (3)
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where Edepth and Edreg are the data term and its regularizer for geom-
etry, Epcolour is our novel data term for SVBRDF. λdreg and λpcolour
are the corresponding weights.

Geometric Energy. Our geometric energy terms Edepth and Edreg

are similar to those terms used in [NFS15]. Edepth optimizes the mo-
tion parameter by minimizing the plane-normal distance between
the warped mesh from the previous frame and its correspondence
point in the current depth image. To enforce the local smoothness
of motion and prevent overfitting,Edreg minimizes the distance when
the node is warped by its own motion parameter and when it is
warped by the motion of the neighbouring nodes. Refer to [NFS15]
or the supplemental document for more details.

Colour Energy. Assuming that SVBRDF of the captured object
does not change over time, our novel motion estimation term Epcolour

considers object appearance to enforce the photometric consistency
of object surfaces at the ith node in the camera space C as follows:

Epcolour(W t ) =
∑
u∈PtC

∥∥Ct (ũC ) − Lt
(
Õt

C (u); Ñt
C (u), Ṽ

t
C (u)

)∥∥2

2
, (4)

where P t
C is a set of visible pixels u obtained by rendering

the warped static model to the current colour camera space Ct ,
Ṽt

C :N
2→R

3 is the vertex map of the warped mesh Ṽ t
K transformed

by Tt
K→C from the canonical space to the current colour cam-

era space, Õt
C is the view direction of Ṽt

C to the colour cam-
era, Ñt

C :N
2→R

3 is the normal map of Ṽ t
K transformed by Tt

K→C ,
ũC=P(KCṼt

C (u)) is the pixel in the colour imageCt that corresponds
to u, KC is the intrinsic matrix of the colour camera, and the re-
flected light Lt=Bt+St is rendered by Equation (2). As unestimated
specular components degrade the estimate quality of the estimating
motion, this term helps to correctly estimate the photometric differ-
ence between a colour image and our reconstructed objects. Refer
to Figure 9 to see how geometric accuracy has been improved by
accounting for SVBRDF in estimating motion.

Motion Optimization. In order to solve Equation (3), we refor-
mulate it as the sum of squared residuals f so that we can define a
new vector field F to find out the vector of motion parameters X ,
satisfying: E(X ) = ∑

f (X )2 = ||F(X )||2. Then, the optimization
formulation can be solved by the Gauss–Newton method. The re-
formulated optimization needs the linearization of three terms of
motion, diffuse reflectance and specular reflectance.

For the first two approximation steps of motion and diffuse
colour, we follow an existing method of using twist representa-
tion [MSZ94] that represents each node’s motion parametersX (3D
for rotation and 3D for translation), and converting it to SE(3) using
an exponential map.We also linearize the diffuse colour image using
the first-order Taylor approximation [WVT12, NFS15, GXY*17].

However, linearizing our novel SVBRDF term is not trivial. Dif-
ferent from view-invariant diffuse reflection Bt at frame t, specular
reflection St at vertex Ṽt

C depends on the outgoing angle variable Õ
t
C

with appearance parameters (ρs, α, n) and also is formulated by the
integration of the incident light (Equations (1) and (2)). Therefore,
the computational cost for the direct minimization of Equation (4)
with the SVBRDF term is highly expensive. Instead, we first ren-

Figure 4: (a) and (b) Input photographs of 720th and 740th frames.
(c) Our estimated motion fields showing the deformation of the cloth
at the 740th frame.

der specular reflection St with given environment illumination in
the current colour camera spaceCt and then substitute St from cap-
tured colour image Ct for comparison with pure radiosity Bt , based
on Equation (2). This solution increases colour optimization very
efficiently and enabling us to consider SVBRDF when estimating
motion fields.

Finally, in each Gauss–Newton iteration, we find parameters of
�X by solving a linear least-squares problem [DNZ*17]:

�X̂ = argmin�X
∥∥F(X ( j−1) ) + JF(X ( j−1) ) ·�X

∥∥. (5)

To obtain �X̂ , we set the partial derivatives of the above equa-
tion with respect to �X as zero to solve the following equation:
JᵀF (X ( j−1) )JF(X ( j−1) ) ·�X̂ = −JᵀF (X ( j−1) )F(X ( j−1) ). We solve
this problem with pre-conditioned conjugate gradient method (Sec-
tion 6). Finally, we update motion field as follows: Tt

i = e�X̂ · Tt−1
i .

Figure 4 shows an example of the estimated motion field using our
SVBRDF-aware motion optimization.

5.3. Capturing SVBRDF in Motion

The state-of-the-art methods for estimating material appearance
have focused on SVBRDF of static objects [PNS18, NLGK18] or
only diffuse albedo of dynamic objects [GXY*17]. As we estimate
per-vertex motion and shape, we then estimate complete SVBRDF
parameters per vertex in a progressive way through our novel opti-
mization method.

5.3.1. Specular Parameters

There are two main technical challenges for estimating specular pa-
rameters: First, specular reflectance depends on both light and view
directions, whereas diffuse reflectance is a constant. In particular,
specular parameter estimation requires a set of multiple photometric
samples with known light and view directions before optimization.
Second, per-frame progressive optimization of specular parameters
is therefore supposed to suffer from a lack of samples more than the
traditional offline methods. The appearance parameters of the same
materials need to be shared with spatial and temporal coherence for
efficient sampling. We handle these challenges as follows.

Point-Light Illumination for Specular Reflection. As mentioned
earlier, in an RGBD camera, there is a TOF camera module that
consists of an infrared light and an infrared camera to measure depth
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(Figure 3). We utilize the pair of the infrared illumination and the
infrared camera module to capture photometric samples to estimate
specular parameters.

First, we have geometrically calibrated these two devices before-
hand to obtain the light and view vectors (iI , oI ). The relative po-
sition and orientation of both iI and oI with respect to the surface
geometry are obtained using the estimated motion field. Given the
known light and view vectors in the normal space, we can remove
the integral over hemisphere� in Equation (2) using the point light
assumption:

S(iI , oI; ρs, α,n, p) = LiI (p) fs(iI , oI; ρs, α,n,p)(n · iI ). (6)

It allows us to solve the inverse problem efficiently per frame, as-
suming that the surface roughness of microfacets is consistent in
both visible and infrared illumination, following [WZ15, PNS18].

Hierarchical Data Structure. Different from capturing diffuse
albedo, estimating specular parameters requires dense observa-
tion samples, and thus existing SVBRDF methods [TAL*07,
LWS*13, WZ15, PNS18] have used a hierarchical data structure
to accumulate sparse samples of specular appearance per each
cluster to be used for inferring the specular parameters. In addition,
existing dynamic fusion methods [NFS15, GXY*17] make use of
a hierarchical data structure to regularize motion vectors of moving
objects. In this work, to estimate the SVBRDF of objects in motion,
we combine these two data structures into a novel hierarchical data
structure that allows us to estimate motion vectors and appearance
parameters together. The structure consists of three main compo-
nents: surface clusters, deformation graphs and a TSDF volume,
where diffuse albedo is estimated per voxel, and specular parame-
ters are estimated per cluster (a set of deformation graph nodes that
are associated with motion fields) by assuming that surfaces are
dichromatic, and that roughness is locally smooth [WZ15, PNS18].

Once these attributes are optimized per frame, they are interpo-
lated to each vertex in the static model. Our hierarchical structure
is beneficial in two aspects: First, we can efficiently estimate both
appearance and geometry in motion per frame, which requires ex-
pensive optimization, by working on the small number of clusters
compared to the number of voxel grids. Second, we can achieve ob-
servations with various angles of θh to optimize SVBRDF parame-
ters per frame by working on a large range of surfaces with poten-
tially different angles of θh. Figure 5 visualizes our hierarchical data
structure that accumulate photometric samples.

Fine-to-Coarse Sample Accumulation. We accumulate these
photometric samples in the hierarchical data structure of the half-
angle buffer based on spatiotemporally coherent clustering using
the motion fields. We first store the reflection observations of the
infrared point light in the fine-grained TSDF voxel grid. To this end,
we first warp the positions of the canonical voxels xK into the current
depth camera frame via x̃tD=Tt

K→DW t (xK )xK. We then calculate the
perspective projection of x̃tD to check visibility and correspondence
of ũxD=P(KDx̃tD ) with respect to camera pixels It . Once we find out
the corresponding camera intensity It (ũxD ), we calculate the specu-
lar intensity v with respect to the half-angle vector angle θh (a.k.a.
the discrete normal distribution function (NDF)) by normalizing the

Figure 5: We accumulate shape and SVBRDF parameters in a hi-
erarchical data structure. First, we store every observation from
the RGBD camera into the high-resolution TSDF structure. We
then transfer the observation into the deformation graph structure
for efficient appearance estimation. Nodes are associated with mo-
tion fields to yield the spatiotemporal coherence of appearance
estimates. Finally, the deformation nodes are clustered, providing
enough samples for fitting BRDF parameters for each cluster.

gamma-corrected intensity with shading 1/(n · iI ) and distance d2

at point x̃tD as follows:

v = d2
(
x̃tD

)
κ

·
(
It
(
ũxD

))γI
ñtD · ĩtI,D

, (7)

where ñtD is a normal at x̃tD, ĩ
t
I,D is incident IR illumination vector at

x̃tD, γI is the infrared camera gamma and κ is a normalization con-
stant. Both γI and κ are calibrated, following [PNS18]. We assume
that the infrared emitter and receiver are close enough that both i
and o are the same as h to simplify Equation (7) similar to [WZ15].
Per-voxel specular reflectance, vtx, of point x at current frame t is up-
dated in the half-angle buffer through weighted average in the static
model:

vtx(θh) = v · ω + vt−1
x (θh) · ωt−1

x (θh)

ω + ωt−1
x (θh)

, (8)

where ω = �bell(u) · ñtD · õtD, õtD is camera view direction at x̃tD,
�bell is the bell-shaped filter kernel to suppress extreme noise at
the edge of the image. We also update the corresponding weight as
follows: ωtx(θh) = ω + ωt−1

x (θh). As we estimate specular parame-
ters in the hierarchical data structure, we lift the discrete NDF val-
ues stored in the high-resolution TSDF structure to the deformation
graph’s nodes. Specifically, we assign the target deformation node
to a TSDF voxel based on the diffuse albedo values of the node and
the voxel. We then cluster deformation graph nodes qi with normal-
ized diffuse albedo using the k-mean clustering algorithm (k varies
up to eight).

Specular Parameters Optimization. For each cluster m ∈ Mt ,
we estimate infrared diffuse albedo ρdI by finding out the minimum

value of vtm(θ̂h) such that
�box(v

t
m (θh+1))

�box(v
t
m (θh ))

≥1 + ε, where�box is the box
filter kernel, and ε is a user-defined value (0 – 0.01). We then esti-
mate α̂(m) and initial ρ̂s(m) of each cluster m by minimizing the
objective function:

minimize
α, ρs

π/3∑
θh=0

(
ω′∣∣vtm(θh) − ρdI − fs(θh, α, ρs)

∣∣2), (9)
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where ω′=cos2(θh) max(ωmax, ω
t
z(θh)) when ωmax is a pre-defined

clamp parameter and vtz is the sums of vtx that belong to the cluster z.
Here,ω indicates the level of confidence of observation.We setωmax

to a certain level empirically to exclude the diffuse-like observation
from the regression of the specular parameter. We solve the opti-
mization problem through the brute-force search with a tabulated
function fs (70 levels: 0 – 70◦) in Equation (1), pre-computed with
discrete α (66 levels: 0.05 – 0.7) and ρs (100 levels: 0.01 – 1.00).
Note that the deformation graph’s nodes are associated with the mo-
tion field, allowing for spatiotemporal coherence. Figure 6 shows
the estimated clusters, accumulated observations for each cluster
and our fitting results.

Specular Albedo Adjustment. We utilize the active infrared illu-
mination and the infrared camera to estimate the specular parame-
ters: specular albedo ρ̂s and roughness α̂. However, the albedo of
the infrared wavelength is independent of that of the visible wave-
length. To estimate specular reflection captured by the RGB colour
camera, we estimate the albedo scalar λI→C that adjusts the infrared
albedo to the visible specular albedo, that is, λI→C is then multiplied
to the infrared specular albedo ρs, yielding visible albedo ρ̂s. Note
that the infrared roughness parameter α is independent of albedo so
that the same value is copied to the visible roughness α̂. The albedo
scalar λI→C (m) of each cluster m is estimated as

λI→C (m) =

∑
x∈T t

C∩Mm

(
max

(
Y (Ct

(
ũxC

)
) − Y (BtC

(
x̃tC

)
), 0

))
∑

x∈T t
C∩Mm

StC
(
ρ̂s,I (m), α̂I (m), x̃tC

) , (10)

where T t
C is a set of visible surface voxels x warped to the cur-

rent Ct , Mm is a set of voxels which cluster to m, x̃tC=TD→C x̃tD
is a voxel transformed from the current depth camera space Dt to
the colour camera space Ct , BtC (x̃tC ) = BtC (ρd (x̃

t
C ), n, x̃

t
C ) is diffuse

shading rendering using the diffuse albedo of voxel at Ct , Y (·) is a
luminance function that converts a colour to the luminance inten-
sity, Y (Ct ) − Y (Bt ) is the difference between the captured colour
and rough diffuse albedo of voxels subject to Y (Ct ) > Y (Bt ), yield-
ing initial specular shading in the colour camera and StC (x̃

t
C ) =

StC (o; ρ̂s,I , α̂I , n, x̃tC ) is specular shading rendered at Ct with the IR
specular parameters using Equation (2). In order to calculate the
diffuse shading image, we use the (t − 1) frame estimated diffuse
albedo. Our algorithm refines the diffuse albedo and the specular
albedo progressively over time.

Coarse-to-Fine Propagation of Parameters. Before we render
the specular shading of each voxel StC (x̃

t
C ), we propagate the vis-

ible specular parameters from the deformation graphs to the res-
olution of TSDF. Each deformation-graph node takes the appear-
ance values from its associated cluster. Each TSDF voxel obtains
the parameters from the deformation nodes based on the k-nearest
neighbours classified by diffuse albedo. As every voxel x is as-
sociated with four k-nearest neighbour nodes, we propagate per-
cluster α̂(x) and ρ̂s(x) to every voxel x by the minimum differ-
ence of albedos in each voxel and the node within the k-nearest
neighbour.

Figure 6: We accumulate all the photometric samples from the fine
to the coarse levels: TSDF, deformation graph and cluster. After we
estimate specular appearance per cluster, we propagate the esti-
mated appearance from the coarse to the fine levels.

5.3.2. Diffuse Albedo Estimation

Existing fusion-based methods that estimate appearance account
for diffuse reflection, assuming that surfaces have pure diffuse
albedo only. The traditional fusion-based methods can integrate
averaged photometric observations as diffuse albedos per voxel
without separating specular reflection from them [NFS15]. The
state-of-the-art method [GXY*17] accounts for shading when
calculating diffuse albedos by capturing the environment illumina-
tion additionally. However, these methods still cannot account for
specular reflection from diffuse albedo computation. In contrast,
our method separates specular reflection from the entire reflection,
yielding pure diffuse reflection.

5.3.3. SVBRDF Optimization

Given the motion field W t , we estimate the surface properties of
SVBRDF At={[ρd, ρs, α]}t : diffuse albedo, specular albedo and
surface roughness per voxel x in the TSDF volume T by formu-
lating the following energy function:

ESVBRDF

(
At

) = Evcolour + λtregEtreg + λsregEsreg, (11)

where Evcolour is the per-voxel colour data term, Etreg is the tem-
poral regularizer and Esreg is the spatial regularizer for the diffuse
SVBRDF parameters.

The colour data term Evcolour enforces photometric consistency of
the SVBRDF parameters (on each voxel warped to the camera xtC)
to make rendering with them satisfy given camera observation Ct :

Evcolour =
∑

x∈T t
C
�

(∥∥ñtC − õtC
∥∥)∥∥Ct

(
ũxC

) − Lt
(
x̃tC

)∥∥2

2
, (12)

where ũxC=P(KC x̃tC ) is a corresponding pixel of x̃tC at the current
colour image Ct , ñtC and õtC are normals and camera vectors at x̃tC ,
respectively and � is a robust kernel where �(x) = 1/(1 + 5x)3,
following [ZDI*15]. Here, Lt (x̃tC ) = Lt (õtC; ñtC, x̃tC ) is the outgoing
radiance under visible environment illumination, which is the sum
of diffuse radiosity Bt and specular reflection St of the voxel in the
colour camera space (Equation (2)).
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Regularizer Etreg in Equation (11) suppresses the temporal overfit
of diffuse albedo ρd towards specular reflection:

Etreg =
∑

x∈T t
C∩T t−1

C

∥∥ρtd (x) − ρt−1
d (x)

∥∥2

2
, (13)

where T t−1
C is a set of visible surface voxels x at the previous colour

camera frame Ct−1.

In addition to the colour data term, we enforce local smoothness
of diffuse albedo by formulating Esreg:

Esreg =
∑

x∈T t
C

∑
y∈N(x)∩T t

C
�

(∥∥�(
ũxC

) − �
(
ũyC

)∥∥)∥∥ρtd (x) − ρtd (y)
∥∥2
2,

(14)

where N(x) is a set of the neighbouring voxels x, ũxC and ũyC are
pixels obtained by transforming voxels x and y to the current colour
camera space Ct , respectively, �=Ct/Y (Ct ) is the ratio of chro-
maticity to luminance Y of each pixel.

To implement this optimization progressively, we render visi-
ble specular reflection St with the specular parameters ρ̂s and α̂ at
voxel xt that we have estimated in Section 5.3.1, using iC and oC
under visible environment illumination (captured by a 360 camera).
We then subtract the estimated specular components from the cap-
tured image so that Equation (11) can be optimized only with re-
spect to the pure diffuse albedo. This can be solved with the pre-
conditioned conjugate gradient optimization as it becomes a least-
square problem.

6. Implementation Details

Radiometric Calibration. We have conducted radiometric cali-
bration for the RGB camera module and the infrared TOF camera
module inside an RGBD device, Kinect 2 (Figure 3) in order to
quantify the sensor responses in the red, green, blue and infrared
channels. First, we estimate the RGB irradiance of the illumina-
tion (rn, gn, bn) by capturing the standard reflectance tile, Spectralon
(Labsphere SRM99) for white balancing with the gamma value of
γC = 2.2. Then, we calibrate the infrared camera parameters by
solving the following optimization [PNS18]:

min
κ, γ

∑
u∈Ps

(
I(u) −

(
κ · ψ n(u) · i(u)

π · d2(u)
)γI )2

, (15)

where Ps is a set of pixels u in the region where the spectralon is
captured, κ is the illumination intensity of the infrared emitter in
the Kinect 2 sensor, γI is the gamma exponent of the infrared cam-
era, I(u) is the infrared value at the pixel u, n(u) is the normal of
the pixel u, i(u) is the incident light direction of the pixel u and d(u)
is the distance between the IR emitter and the pixel u. We have es-
timated the values of κ and γI as 0.46 and 0.92 through nonlinear
optimization [BGN00]. Given the radiometric parameters rn, gn, bn,
κ , γC and γI in the pre-processing of calibration, we linearize each
RGB and infrared images and normalize them with irradiance.

Pre-conditioned Conjugate Gradient for GPU. We have imple-
mented a GPU-based data-parallel pre-conditioned conjugate gra-
dient (PCG) solver [WBS*13]. The main computational bottle-
neck is the part of calculating matrix–vector multiplication. Fol-

Table 2: Per-frame processing time of our method. Our method takes
456 ms in total to process each frame inputs.

Algorithm Processing time (ms)

Global registration 8
Motion estimation 224
TSDF integration 26
Specular estimation 89
Diffuse estimation 43
Marching cube 63
Etc. 2
Total 456

lowing [ZNI*14], we have made use of two sparse matrix–vector
multiplication kernels.

Environment Map Capture. To estimate incident illumination of
scenes, we have captured scene environmentmaps as high-dynamic-
range (HDR) radiance maps using a 360 camera (Ricoh Theta)
with multiple exposures. In this paper, we have used monochro-
matic illumination maps by converting RGB radiance maps to lumi-
nance maps for computational efficiency. We then represent the en-
vironmentmapswith spherical harmonics coefficients for efficiently
computing shading.

7. Results

We built our capture setup using a Kinect 2 RGBD camera that con-
sists of both an RGB and an infrared camera with an infrared il-
luminator in the TOF camera module (see Figures 1 and 3). Our
method is implemented in C++, where CUDA-based GPU accel-
eration is extensively used for parallel processing, along with the
OpenGL Shading Language for rendering. We set the resolution of
the TSDF volume as 512 × 512 × 512, and each TSDF voxel is
defined as a cube with a width of 2 mm. Each node in the deforma-
tion graph has a radius of 20 mm. For the ground-truth data, we use
1.5 mm voxel size and 15 mm deformation graph radius. The trun-
cation range for TSDF is five times wider than the voxel size. We
pre-compute a discrete table of the BRDF function for pre-defined
samples of parameters: The half-angle is sampled from 0 to 60◦ with
a step size of 1◦. Then, theWard BRDFmodel is pre-computed with
the values of α and ρs from 0.05 to 0.70 and 0.01 to 1 both with 0.01
intervals, respectively. We tested our algorithm on a desktop com-
puter with an Intel Core i7-7700K 4.20 GHz and a graphics card of

Figure 7: Synthetic input example. (a) Ground-truth depth image
with normals. (b) Synthetic depth image with Gaussian noise. (c)
GT IR image. (d) Synthetic IR image with Gaussian noise.
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Figure 8: We have evaluated the reconstruction accuracy of geometry and appearance parameters, compared with the ground truth dataset
synthetically created with Gaussian noise. (a) Input RGB images, (b) our results of reconstructed 3D models at each frame, followed by (c)
our results of surface normals, (d) motion vectors, (e) diffuse albedo and (f) specular roughness.

Figure 9: We compared the geometric accuracy of our method with a state-of-the-art method, Guo et al. [GXY*17], implemented by ourselves.
We used the synthetic dataset that we created with Gaussian noise. Our method accurately reconstructs motion and geometry resulting in a
low geometric error of average 5.25 mm. (a) Reference ground truth geometry. (b) Result by Guo et al. (c) Our reconstructed geometry. (d)
Error map of Guo et al. compared with the GT geometry. (e) Error map of our results compared with the GT. Close-up boxes compares our
method with that of Guo et al.

Figure 10: We evaluate the accuracy of the reconstructed geometry,
comparing the warped geometry with the depth map of the current
frame. (a) Input RGB image, (b) rendered result, (c) warped geome-
try, and (d) a difference map between (c) and the current depth map.
The mean error of the depth values is just 1.62 mm.

NVIDIA Titan V (12 GB). Our entire algorithm took 456 ms to pro-
cess and render each frame. Our method is designed to be online,
progressively processing input frames. Table 2 shows the detailed
timestamps of our method taking 456 ms to process each frame.
We provide our experimental results and comparison as follows.

Quantitative Evaluation. We created a synthetic dataset with
known shape, SVBRDF and motion of different objects using
OpenGL rendering. To make our synthetic dataset closer to the
real sensor input, we also added Gaussian noise to the ground-truth
(GT)depth images with N (0, 0.0022) and the GT IR images with
N (0, 10002), as shown in Figure 7.

Using the synthetic dataset created with Gaussian noise, we have
evaluated the accuracy of our reconstruction algorithm compared
with the ground truth. Figure 8 presents our reconstruction results
compared with the ground-truth SVBRDF, shape and motion. In or-
der to quantitatively evaluate the reconstruction accuracy of shape
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Figure 11: Our method faithfully reconstructs SVBRDF, geometry and motion of real-world dynamic objects. (a) Input RGB frame. (b) our
results rendered with (c) reconstructed diffuse albedo, (d) specular roughness and (e) surface normals. (f) Results rendered under novel
environment illumination. Note that we have multiplied the specular intensities by a factor of two for visualization purpose only. Refer to the
supplemental video for more results.
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Figure 12: Our method progressively estimates SVBRDF by accumulating observations. We evaluate the stableness of our SVBRDF recon-
struction for the real and synthetic dataset. (a) Real (top) and synthetic (bottom) colour photographs and target clusters noted by arrows.
(b)–(d) Estimated SVBRDF parameter values for the target clusters over frames. We plot our estimates with solid lines and the ground truth
values with dotted lines (synthetic only).

Figure 13: We compare our method with two online scanning meth-
ods. (a) Reference photograph. (b) An environment map. (c) Dy-
namicFusion [NFS15] presents fixed specular reflection while (d)
Guo et al. [GXY*17] can reconstruct only diffuse shading. (e) Our
method can acquire both specular and diffuse appearance. Note that
specular reflection changes realistically in our results when the en-
vironment illumination spins. Refer to the supplemental video for
more results.

Figure 14: We present captured BRDFs of dynamic objects, recon-
structed by our method. Even though objects are dynamic, we re-
construct diffuse colour and specular lobe successfully.

and motion together, we warp the estimated geometry to the current
camera frame with motion estimates for each frame. The averaged
error between the ground-truth shape and the reconstructed shape
with motion is very low at just 5.25 mm in the Hausdorff distance,
as shown in Figure 9.

Moreover, we evaluate the accuracy of the estimated flow by our
method in the real scene. We compare the differences between the
actual depth map at #400 frame (of the Bag scene) and the warped
geometry of our reconstructed model in Figure 10. The average dis-
tance error of the entire human body is just 1.62 mm. It is not sur-
prising that there are some large errors around challenging geome-
try, such as hair and the silhouette of the body. Overall, our method
successfully reconstructs SVBRDF, shape and motion for not only
synthetic data but also real data. Refer to the supplementary video
for every reconstruction results.

Qualitative Evaluation. Figure 11 presents the results of real-
world dynamic objects. We present (a) input colour frame, (b) our
reconstructed 3D objects rendered with a point light, (c) diffuse
albedo, (d) specular roughness, (e) surface normals and (f) novel
light-and-view rendering with an environment illumination map to
qualitatively evaluate the overfitting problem of inverse rendering.
The results of diffuse albedo and specular roughness demonstrate
the effectiveness of our decomposition of material properties. Our
results rendered under novel environmental lighting and view con-
ditions present no typical blinking artefacts of overfitting. Refer to
the supplemental video for every reconstruction result.

Progressive Reconstruction. Our method reconstructs SVBRDF
and geometry progressively per frame. Figure 12 shows our esti-
mates of specular albedo, specular roughness and diffuse albedo
for each frame for a real scene and a synthetic scene. For the
real-world case, the optimization for diffuse albedo converges fast
thanks to our robust clustering. In contrast, optimization for specular
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parameters requires a long iteration to be stabilized, showing fluctu-
ation at an early stage. Our method provides fast and accurate con-
vergence when optimizing both diffuse and specular appearance pa-
rameters: RGB diffuse albedo, specular albedo and specular rough-
ness.

Comparison. Figure 13 compares our method with other two
fusion-based methods of capturing objects using a single RGBD
camera: DynamicFusion [NFS15] and Guo et al. [GXY*17]. As
there is no available public source, we implemented both methods.
DynamicFusion [NFS15] does not separate diffuse and specular re-
flection, that is, it stores the sum of diffuse and specular colours as
a single colour while geometry and motion can be faithfully recov-
ered. Guo et al. [GXY*17] extend the estimation of geometry and
motion to capture the diffuse appearance of objects. Their method
can cover only diffuse shading rendering, missing specular reflec-
tion. Our method is capable of estimating the full SVBRDF appear-
ance of diffuse and specular components, in addition to the mo-
tion and geometry of dynamic objects. Figure 14 presents our re-
constructed BRDFs of the dynamic objects that present very differ-
ent characteristics.

8. Discussion

Although our method can handle various scenes, it is not free
from limitations.

Infrared Illumination & Camera. In order to estimate appear-
ance parameters, we have made use of the infrared illumination and
camera in the TOF module of Kinect 2. As these light and sensor
modules are originally designed for measuring depth information,
the RGBD camera API does not provide any custom control of ex-
posure level of the IR emitter/sensor. Therefore, we were not able
to capture high-dynamic-range (HDR) images as input for estimat-
ing specular reflection. When surface normals of specular objects
look at the camera directly, not only depth map but also IR images
have often been saturated, resulting in suboptimal results. See Fig-
ure 15(a).

Frequency of Texture. For estimating specular roughness param-
eters per pixel, we have used the infrared camera in the TOF mod-
ule. The resolution of the IR image sensor is 512-by-424, while the
resolution of the RGB image sensor is 1920-by-1080. The resolu-
tion of the IR sensor is four-time lower than that of the RGB sen-
sor. Accordingly, when a target object has high-frequency patterns,
the estimated specular parameter cannot reflect the object’s appear-
ance in high frequency. Figure 15(b) shows that the high-frequency
structure of diffuse surface lines over the green tree cannot be esti-
mated properly.

Rapid motion. When estimating motion vectors of dynamic ob-
jects, our method inherits the traditional linearized approximation
of differential motion using the twist representation [MSZ94]. We
found that the performance of this approach has become suboptimal
when motion occurs very dynamically, or input frames are captured
with severe motion blurring. See Figure 15(c) for an example. In
addition, when motion causes deformation of objects surface with

Figure 15: (a) Owing to the limited dynamic range of the image
sensor, input signals from the IR camera are saturated when surface
smoothness is high. It often results in no depth values. The perfor-
mance of our method becomes suboptimal when object surfaces are
very smooth. (b) The resolution of the IR camera is four-time lower
than that of the RGB camera, and thus our method fails in capturing
high-frequency patterns of specular roughness. (c) When motion is
large or rapid, our motion estimation often suffer from suboptimal
reconstruction results due to motion blur.

texture, our method cannot account for the stretch of the texture sur-
faces. This would be interesting future work to explore.

Spatial Resolution. The spatial resolution of SVBRDF and shape
is determined by the spatial resolution of the TSDF volume. As we
currently store this information for each vertex, the current reso-
lution degrades the spatial resolution of the final results. Applying
texture mapping to our framework would be interesting future work.

Frame Rate. The current frame rate is about two frames per sec-
ond, which is lower than the real-time performance thus far due to
challenges of heavy optimization in factorizing SVBRDF, geometry
and motion simultaneously. Accelerating computation for real-time
applications would be an interesting avenue to explore.

9. Conclusions

We have presented a novel material acquisition method that esti-
mates SVBRDF, geometry and motion simultaneously using a sin-
gle RGBD camera. We have proposed an inverse rendering frame-
work that can efficiently estimate material appearance using the
voxel grid and the deformation graph in the two different scales. We
have also provided the appearance-aware motion estimation algo-
rithm so that the specular appearance can be considered to improve
the motion estimation accurately. We have experimented with real-
world objects. Finally, we have carefully discussed the limitations,
evaluations and comparisons with other methods to validate the per-
formance of our method.
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