DOI:10.1111/cgf.14082

Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson

(Guest Editors)

Volume 39 (2020), Number 5

DFR: Differentiable Function Rendering for Learning 3D
Generation from Images

Yunjie Wu! and Zhengxing Sun'

I'State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, P R China

Input Image Target Shape

Optimize

; 2D Loss 1
@ v
- Back-propagate
Camera = o : -

Implicit Function

Rendering Results

_ Differentiable Function Rendering

~

Represented 3D Shapes

)

o T = T u
o U o aE sl A~
Py S v
M) 3 gt e g

=30 m 0e

Figure 1: (a) DFR enables 2D-supervised 3D modeling tasks. (b) 3D shapes generated by our GAN model, which is trained with 2D images.

Abstract

Learning-based 3D generation is a popular research field in computer graphics. Recently, some works adapted implicit function
defined by a neural network to represent 3D objects and have become the current state-of-the-art. However, training the network
requires precise ground truth 3D data and heavy pre-processing, which is unrealistic. To tackle this problem, we propose the
DFR, a differentiable process for rendering implicit function representation of 3D objects into 2D images. Briefly, our method
is to simulate the physical imaging process by casting multiple rays through the image plane to the function space, aggregating
all information along with each ray, and performing a differentiable shading according to every ray’s state. Some strategies are
also proposed to optimize the rendering pipeline, making it efficient both in time and memory to support training a network.
With DFR, we can perform many 3D modeling tasks with only 2D supervision. We conduct several experiments for various
applications. The quantitative and qualitative evaluations both demonstrate the effectiveness of our method.

Keywords: Differentiable Rendering; Learning-based 3D generation; Implicit Function Representation for 3D objects

CCS Concepts

e Computing methodologies — Shape inference; Ray tracing; Volumetric models;

1. Introduction

Modeling and generating 3D shapes is a key problem in computer
graphics. Deep-learning based methods have been popular in recent
years. Various representations are employed in deep-learning-based
3D generation including voxel [CXG*16, WWX*17, HTM17],
point cloud [FSG17] and mesh [GFK*18].

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Recently, some methods [CZ19, MON*19, MPJ*19, PFS*19]
adapted continuous implicit function to represent 3D shapes and
achieved impressive results. The main idea of the function repre-
sentation is shown in Figure 2(a). It represents a 3D shape with
a function, which is defined by a neural network. During training,
these methods rely on precise 3D data to decide whether a 3D point

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

242 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

*— f(p,)>0
* =1 flp,)<0

(2)

Voxel Point Cloud Mesh Function

L

’ Transformation |

L

| Discretization

() L

| Pixel-Wise Aggregation |

L

| Shading |

(

| Ray Emission |

| Rasterization | | Points Sampling |

-

‘ Ray Integral ‘

| Soft Shading |
Proposed DFR

(g |l |

Previous Differentiable Rendering

Figure 2: (a) Illustration of explicit and implicit 3D representa-
tions. (b) Comparison between previous differentiable rendering
and our proposed DFR.

is inside. However, 3D shape data is usually difficult to obtain. In
contrast, 2D images are easier to collect. So it is appealing if we
can train the 3D generation network with 2D images.

The key to this task is differentiable rendering, which enables
us to propagate the loss signal from 2D images to the 3D field.
Many works have designed the differentiable rendering process
for explicit 3D representation [GCC*17,YYY*16,ID18, GCM* 18,
KUH18,LADL18, LLCL19,LB14,PBCC18]. These works trans-
form 3D shapes for the view’s variety, then perform discretization
or rasterization process to map the 3D elements (e.g., 3D voxel
grids, points, or meshes) into image’s pixels. However, implement-
ing a differentiable rendering for an implicit function is difficult
because there are no explicit 3D elements(e.g. point cloud or mesh)
providing the object’s surface information for rendering.

A traditional solution to this problem is the ray-marching based
rendering algorithm. It launches rays into a function space and de-
termines the pixel’s color by the corresponding ray. For an implicit
function, the process is performed iteratively since the surface can
not be directly solved. The ray marches forward, and one point is
queried at each step. The process will continue until the queried
point is inside the object, indicating the ray has intersected with a
potential surface. Some adaptive marching strategy, such as sphere-
tracing, can accelerate the process. However, as we need to perform
the rendering in every batch during training, the iterative process
will cost too much time.

In this paper, we propose an efficient differentiable function ren-
dering for implicit 3D representation, referred to as “DFR”. The
main components are shown in Figure 2(b). Different from itera-
tive ray marching, our method performs not only ray-level but also
point-level parallelization, which takes much less time consump-
tion. More specifically, our concern is to represent individual 3D
shapes instead of scenes, so we restrict the function’s domain to
a normalized space. Then we can simultaneously sample multiple
points on each ray’s bounded part to approximately cover it and
query function values of these points for rendering. To keep the ren-

dering differentiable, the intermediate results in the computational
graph need to be saved. However, it may cost unbearable mem-
ory burden as each point’s query involves a large number of tensor
operations in the network. Hence, we propose an efficient ray inte-
gral process via point-picking strategy, which formulates each ray’s
state by only picked points instead of all. So the intermediate results
of unselected sampling points can be omitted. This process keeps
the effectiveness of rendering while significantly reduces memory
consumption. Besides, we raise a differentiable shading function to
replace the traditional non-differentiable one, enabling the gradient
signal flow from pixels to rays and further to the networks.

With the proposed DFR, it is able to train an implicit-represented
3D generation network with only 2D images. Benefiting from the
implicit function’s representation power, the trained network can
produce various-topologies 3D shapes with pleasing visual appear-
ance. Our contribution can be summarized as follows:

e We propose an efficient, gradient-favored rendering process for
implicit function-based 3D representation, which is defined by a
neural network. The method enables the integration of rendering
for function space into deep learning.

e The DFR allows us to train 3D generation networks with only 2D
supervision for many applications, including single-image 3D
reconstruction, 3D adversarial generation learning, and image-
fusion based 3D modeling.

e We conduct experiments on various 3D generation tasks.
The quantitative and qualitative evaluations show our method
outperforms other 2D-supervised methods, demonstrating our
method’s effectiveness.

2. Related Work
2.1. Representation of 3D Objects

The representation of 3D objects is a fundamental factor in 3D
shape learning. There are various widely used 3D representations,
including voxel, point cloud, and mesh. The mostly used 3D voxel
is a regular and convolution-favored representation. A standard
method to generate the 3D voxel is employing the 3D decon-
volution layer, which transforms a feature vector into a 3D grid
voxel [CXG*16,YYY*16, WZX*16]. The Point cloud is another
popular representation, representing a 3D shape’s surface with a
set of 3D points. Some methods use a fully-connected layer to pro-
duce the 3D coordinates of all points [FSG17,ID18]. The 3D voxel
and point cloud takes up lots of memory and leads to a limit of
resolution. What is more, the surface normals of the 3D shapes are
lost in these two representations. The mesh representation defines
a 3D shape as a set of points and faces, which is more efficient than
the previous two. However, most mesh-based methods can not pro-
duce topology-various shapes [WZL*18,GCM™*18,KUH18], as the
topology of faces is not differentiable in neural networks. Recently,
some methods introduced the implicit representation of the 3D sur-
face and achieved better performance [MON*19,PFS*19,MPJ* 19,
CZ19] than previous representation. However, these methods rely
on precise 3D data for training. On the contrary, our work aims
to design a differentiable rendering to allow learning such implicit
shape representation without 3D supervision.

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images 243

2.2. Learning-based 3D Shape Generation

With the development of deep learning, it has become popular to
perform the learning-based 3D shape prediction with a trained neu-
ral network. A direct way to learn such a network is to employ
lots of existed 3D shapes for training [CXG*16,FSG17, GFK*18,
WZL*18, WWX*17,CZ19,MON*19,MPJ* 19, PFS*19,MPJ* 19].
Another way is to take 2D images as training data and estimate
the 3D manifold from 2D samples [KUH18, YYY*16, LLCL19,
KTEM18, KH19]. However, these works’ results struggle in reso-
lution (voxel), loss of surface topology (point cloud), or topology’s
diversity (deformation-based mesh).

Introducing the implicit shape representation can improve the
quality of results [MON™19, PFS*19, MPJ*19, CZ19]. Because of
the implicit characteristics, it is hard to design an encoder for
it. Park et al. [PFS*19] propose an auto-decoder model to re-
place the traditional auto-encoder and omit the encoder part. Some
works [MON*19,CZ19] rely on encoders for voxel or point cloud
to build up the auto-encoder. They successfully train an auto-
encoder to generate implicit 3D shapes. However, it seems un-
able to cooperate with another popular generative model: GAN
without the encoder (discriminator). In this paper, we show that we
can train a GAN model for implicit 3D representation by introduc-
ing DFR and a 2D image discriminator.

2.3. Differentiable Rendering

Rendering is the process that aims to project a 3D shape into
a 2D image. To be integrated into gradient-based neural net-
works, the process has to be differentiable. Based on a perspec-
tive transformation process, Yan ef al. [YYY™16] design the Per-
spective Transformer to get multi-view 2D masks from 3D voxel.
Gwak et al. [GCC*17] employ a hit-based ray-tracing method to
render 3D voxel for comparison with 2D supervision. Insafutdi-
nov et al. [ID18] design a framework in which the input point
cloud is transformed, smoothed, and discretized, resulting in a
differentiable 2D silhouette. As to the mesh representation, most
works [GCM™ 18, KUH18, LADL18, LLCL19] adopt an approxi-
mate process for rasterization, which enables the gradient flow. All
the works above focus on the differentiable rendering of explicit
3D representations while ignoring the implicit 3D representation.

We notice there are some concurrent works [SZW19, JJHZ20,
LZP*19,LSCL19] that focus on the differentiable rendering for im-
plicit 3D shapes. Sitzmann e? al. [SZW19] propose a trainable ren-
derer and jointly optimizes it with an implicit 3D network. Their
renderer needs to be re-trained for different object categories. Un-
like them, we can directly apply our renderer on different 3D ob-
jects. Jiang et al. [JJHZ20] design a differentiable ray-tracing for a
finite Signed Distance Function (SDF) grid. Applying it to a contin-
uous implicit field may cause much computation burden. Instead,
our method can perform an efficient rendering for a continuous
field. Liu er al. [LSCL19] propose to compute 2D loss from an
implicit function by projecting some sparse anchor points into 2D
planes. It leads to a pixel-level sparsity in rendering. Their method
is well suited for pixel-level loss while can hardly support high-
level image loss (e.g. image-level perception losses) because the
rendering is not complete. On the contrary, our work can efficiently

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

render a complete and differentiable result, enabling more applica-
tions such as training a 3D GAN model with 2D images.

The most related work to ours is the differentiable renderer pro-
posed by Liu e al. [LZP*19]. They optimize the iterative ray
marching to render a DeepSDF decoder [PFS*19] efficiently. The
main difference between their work and ours is whether the 3D
generator (decoder) part can be optimized with 2D supervision
during training. In order to support the sphere-marching process,
they require the 3D decoder to be a completely trained DeepSDF
network, which is pre-trained with 3D supervision. So they only
optimize the latent shape code instead of the decoder’s parameters.
It is difficult to apply their method to an untrained 3D decoder, be-
cause the decoder may probably break the SDF setting and make
the sphere-marching invalid. On the contrary, our method does not
rely on the SDF setting of the 3D shape decoder and can optimize
an initial decoder from scratch with 2D supervision.

3. Differentiable Function Rendering

In this section, we first describe the implicit function-based 3D
representation we employed. Then we introduce our differentiable
function rendering (DFR). The overview of our method is presented
in Figure 3.

3.1. Implicit Function-based 3D Representation

Similar to existing works [CZ19, MON*19, MPJ*19,PFS*19], we
employ an implicit function to represent the 3D shape. The function
is defined by a network f. It takes a 3D location coordinate p as
input and outputs a real value, which indicates whether the location
is inside or outside the 3D shape by the sign: positive value means
outside, and vice versa. Optionally, the network can take an extra
condition ¢, enabling the representation of various 3D objects with
the same f and different c.

fe(p) = R,|pll <1)

In our work, we assume each shape is normalized, leading the
function’s space bounded in a unit sphere.

3.2. Ray Emission

Ray emission is an initial stage of our rendering. Given a camera
position, we emit rays from the camera through each pixel’s center
in the image. After the computation of rays’ direction, we perform
a hit-test between all rays and the unit sphere of function space. If a
ray does not intersect with the unit sphere, the corresponding pixel
will be colored with background color, and the ray will not enter
the following process.

3.3. Ray-wise Point Sampling

Rendering 2D observations from the implicit function requires de-
ciding each ray’s state by evaluating sampled points. A typical
method is to perform an iterative raymarching and test the front
ends of all beams in each step. It can be optimized in a ray-level
parallelization, but the time consumption is still highly relevant to
the number of steps. In our setting, as the unit sphere bounds the

244 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

Function Space

Forward with grad disabled
—

Re-Forward with grad enabled
—

. - - -Y
Pixels -~ Network f Network f _-="

C - - o _-- _
amera —___.__.- _.__._—0' ..-—‘T...' > ° o HI__--- -7
<SS St | S
——— il e _ B e BN 0 |-___

T Diiaee b N . =3Il .
~ o - S~ ~<
~»
(a) Ray emission & points sampling (b) Points evaluation by f' (c) Ray integral via point picking (d) Soft shading

Figure 3: Differentiable Function Rendering. Given an implicit function defined by a neural network f and camera parameters, the
rendering process includes: (a) We first emit rays from the camera through pixels into the function space. Then we perform points sampling
on bounded parts of each ray. (b) All points are evaluated by network f in a point-level parallelization without keeping the computational
graphs. The sign and abs value are marked by color and size. (c) We compare all sampled points and pick one point per ray. The picked
points are re-forwarded via f again with intermediate tensors saved in the computational graph. (d) We propose a soft shading function
to replace the normal shading, keeping the pipeline differentiable. With DFR, loss signal in pixels can flow into each ray, and further to

network f.

(a) Uniform Sahlpling

(b) Random Sampling (c) Stratified Random Sampling

Figure 4: (a) The uniform sampling restricts the possible sam-
pling distribution on a set of concentric spheres, which can not
cover the whole function space. (b) The random sampling’s high
instability may lead to an error in rendering results. (c) The pro-
posed stratified random sampling can cover the whole function
space and reduce erroneous coloring.

function space, it is unnecessary to follow this framework. We can
split the bounded part of rays into segments and sample some points
at each of those segments. The main advantage is we can decide
rays’ states in a point-level parallelization, which costs much less
time.

Some common sampling strategies, such as uniform sampling
or random sampling, can be employed. However, we reveal that
both sampling strategies are not suitable for our task. With uniform
sampling, rendering results are stable. However, the potential sam-
pling space can not cover the full function’s space. As shown in
Figure 4(a), with a certain focal length and camera distance (It is
a common assumption in most works [KH19, KUH18, LLCL19,
YYY*16]), no matter how the viewpoint changes, the sampling
points of all rays would distribute on a set of concentric spheres.
The effect of this problem is illustrated in Section 4.2.2. As to the
randomly sampling, although the sampled points’ distribution can
cover the function’s space, the high uncertainty may interfere with
the rendering results. For example, it may lead to erroneous color-
ing in actual foreground pixels when every randomly sampled point
is located outside the object by chance, as shown in Figure 4(b).
Here we introduce a stratified random sampling strategy, which per-

forms jittering in uniformly sampled positions. Let /n; and Out; de-
note the two intersections of i-th Ray and the unit sphere. We first
split the uniform segments between In; and Out; into N parts. Then
an extra stochastic offset is added to each k-th part’s starting point.
With the proposed sampling strategy, the distribution of sampling
points can cover the full function’s domain, and the rendering re-
sult is relatively stable. Under this setting, the k-th sampling point’s
location of i-th ray is

S8 = In; + ((k;]l) +§) «(Out;—1In;)) E€U (o,%) 2)

3.4. Point-level Parallelized Evaluation

With the process above, we now obtain all sampled points’ 3D lo-
cations. We need to evaluate their values to get each pixel’s state.
One direct way is to batch and forward them through f in parallel.
However, it is not feasible because computational graphs have to
be kept for being differentiable. The heavy memory consumption
prevents us from performing the parallelized evaluation.

We raise a key observation here: although we sample multiple
points, the rendering results are actually decided by a few crit-
ical points (e.g., the points lie on the implicit surface) instead
of all points. Based on this observation, we can first evaluate all
points without keeping computational graphs, as shown in Figure 3.
With the evaluated results, we can select the critical points and re-
forward them to achieve a differentiable rendering pipeline (see de-
tails in Section 3.5).

This point-level parallelized evaluation strategy enables us to
achieve all points’ value efficiently under affordable memory con-
sumption. We can easily implement this process in practice by
disabling the autograd module in common frameworks (e.g., Py-
torch [PGM*19], or TensorFlow [ABC*16]) and forwarding all
sampled points through f parallelly (It may not fit in a single batch
with high resolution and sampling number N. We can split them
into a few batches and combine the results).

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images 245

3.5. Ray Integral

After obtaining every point’s value on a ray, we need to integrate
the information and determine the ray’s state for further rendering
pipeline. Let F; denote the set of all N sampled points’ function
values on Ray; (These values are achieved with no gradients):

Fo={fe(s) s (s¥)} 3)

We can tell whether the collision happens by only checking the
minimal value among the N values. That is because: (1) Positive
minimum indicates all values are positive, which means no colli-
sion happens; (2) Negative minimum indicates that there exists at
least one point inside the object. We first get the minimal value
min (F;) and the corresponding point’s location s} on Ray;.

min () = fe (s]") @)

Then we classify all rays into hit ray and unhit ray by fe (si")’s sign.
For a hit ray, we further search the first negative point s in sam-
pling order, which is approximately the intersection point of the
ray and implicit surface. Although we compare all points together,
only these two points are important for yielding the rendering re-
sults. The minimal point decides whether collision happens, and
the intersection point tells where it happens. Especially, we can ob-
tain some approximate geometry information of implicit surface
from s, e.g., the surface normal. By now, we can render the 2D
pixels, but the pipeline is still non-differentiable, as described in
Section 3.4. To enable the gradient, we define a state of a ray by re-
forwarding a point with the autograd turned on. A hit ray’s state 7;
is defined by f¢ (s}') (approximate intersection point), and an unhit
ray’s state is defined by f (s{") (most possible to become inside):

The computational graph is maintained during this time’s forward
pass. So far, we have obtained a differentiable state of each ray.

3.6. Soft Shading

A shading process is to assign a color for each pixel of the im-
age. In this work, we mainly concern about the rendering of sil-
houette, which is widely used as supervision for 3D generation
tasks [KUH18,LLCL19, YYY*16]. Notice other types of observa-
tions, for example, a normal map, can also be achieved by evaluat-
ing more points in s}'’s neighborhood and calculating the difference
as the approximation of the surface’s normal. The details of the nor-

mal map’s rendering are contained in the supplementary material.

A direct way to generate a silhouette by ray’s state is a binary
function:

[1,Ti>0
L—{Qngo (©6)

where /; denotes the intensity value of i-th pixel. However, with

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

such a shading function, /;’s gradient w.r.t. ray’s state 7; is always
0, preventing the gradient flow from image to the function field. We
replace it with a soft, differentiable shading function:

1

li= 14 e+

@)
It is a sigmoid function with an extra k parameter. The k£ denotes
a shading sharpness parameter. Larger & leads to a sharper shading
effect. With the increase of k, we can get a more sharp boundary be-
tween the inside and outside colors. However, a large k may cause
the gradient to gather near the zero point, making the training dif-
ficult. When k approaches infinity, the shading will degenerate into
Equation 6. In our implementation, we set k to 10 empirically. A
detailed analysis of the sharpness parameter is provided in Sec-
tion 4.2.3.

3.7. Gradient Computation

To train a network f, it requires gradient to propagate from a ren-
dered image to sampled points in function space. More specifically,
we need the gradient from each pixel’s intensity I; to the picked
point s{ in the corresponding ray. The I; is achieved by performing
the shading process on the ray’s state 7;. So, with the chain rule, we
can obtain that:

oLl _oli ofi j=norm
aﬂ@‘%M@7F ®)

l

According to the Equation 7, we can obtain that:

L, 1 1
FTlS = <171+67m)_k1,(171,) ©)

a1,
3fe(s)
Equation 8. Hence we get that, for Ray;, its pixel’s gradient w.r.t.
picked point s/ is kI; (1 —1;). A detailed deduction of the formula
is provided in the supplementary material.

According to the definition of 7;, we can omit the term in

4. Experiments

In this section, we first demonstrate the efficiency and effective-
ness of our DFR pipeline. Then, we integrate our DFR into various
3D generation applications with only 2D supervision. We make the
core part of our code public in the link https://github.com/
JiejiangWu/DFR.

4.1. Efficiency and Effectiveness of Rendering

To verify the proposed DFR’s efficiency and effectiveness, we con-
duct some evaluations. First, we perform the rendering process on
an implicit shape represented by a trained network f. The network’s
architecture is shown in Figure 7(a). The sampling number is set
to 32. We report efficiency comparison in Table 1 and show cor-
responding rendered results in Figure 5. In the naive version, we
perform no parallelization and evaluate each sampling point itera-
tively.

https://github.com/JiejiangWu/DFR
https://github.com/JiejiangWu/DFR

246 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

Setting Res | Diff | Time | GPU memory
Naive 64 | No | 3.87h 4.3GB
+Ray para 64 No 1.6s 4.3GB
+Point para 64 No | 0.09s 4.3GB
+Point para 128 | No \ >11GB
+ Ray Integral | 64 No | 0.12s 2.0GB
+ Ray Integral | 128 | No | 0.17s 3.4GB
+ Soft Shading | 128 | Yes | 0.17s 3.4GB

Table 1: The efficiency comparison of different settings. From left
to right: rendering resolution, whether differentiable, the runtime,
and the GPU memory consumption. Test on a single GTX-1080Ti
with Pytorch 1.1.0 [PGM*19].

Ray parallelization ~ +Ray integral +Ray integral +Soft Shading
64x64 64x64 128x128 128x128

¥ ¥ ¥

Figure 5: Rendered silhouettes under different settings. With much
less time and memory consumption, our method’s rendered silhou-
ette maintains correct.

To check the effectiveness of differentiability, we conduct a test.
Given an input silhouette and a simple network f with three fully-
connected layers, we render the f by DFR and optimize the differ-
ence between rendered and input silhouettes. We employ a zero iso-
surface extraction method [MON™19] to extract the explicit mesh
from f for visualization. Figure 6 illustrates the optimization pro-
cess. It shows that, with the optimization of the silhouette, the ex-
tracted shape is also transformed, meaning the loss in 2D pixels can
propagate to the 3D implicit function filed via DFR.

4.2. Single-view 3D Reconstruction

The first application of DFR is to integrate it into the learning of
single-image 3D reconstruction. With the DFR, we can train a 3D
reconstruction network with only 2D supervision.

Target silhouette

N

Rendered silhouettes during optimization

LEE K.

Extracted 3D meshes during optimization

Figure 6: Differentiability test. Samples of silhouettes and ex-
tracted 3D meshes during optimization are presented above.

Implementation details. We employ an encoder-decoder network
for this task. The encoder is a resnet-18 [HZRS16], which takes the
rgb image as input. The decoder is a conditional network f with
four fully-connected res-blocks to represent predicted implicit 3D
shapes. Its detailed architecture follows the design in [MON™19],
shown in Figure 7(a). The condition c is defined as the image’s fea-
ture. During training, we take a pair of same object’s images with
known viewpoints and silhouettes as training data. DFR renders the
silhouettes under the two conditions from both viewpoints, respec-
tively. The loss is defined as cross-entropy between input silhouette
s; and rendered silhouette §;:

1 N
Ls = NZ[s”ilogs,-—Q—(l—§i)log(1—s,-)] (10)
i=1

The resolution of the rendering image is 64. We empirically set the
sampling number to 32. The batch size is 12. The ADAM [KB14]
with f = 0.9 and learning rate = 1e-4 is employed. More implemen-
tation details are contained in the supplementary material.

Dataset. We use the subset of ShapeNet [CFG*15] and the same
train/test splits as Choy ef al. [CXG™ 16]. Each 3D shape is rendered
from 24 random viewpoints with both RGB and silhouette. During
training, we require a random pair of the same object’s images.

Comparisons. We select three 2D-supervised methods: differen-
tiable ray consistency (DRC) [TZEM17], neural mesh renderer
(NMR) [KUH18], soft rasterizer (SoftR) [LLCL19] and two 3D-
supervised methods: AtlasNet (Atlas) [GFK*18] and occupancy
net (Onet) [MON*19] for comparison. We use the pre-trained
model provided by authors for evaluation.

Metrics. We select two widely used metrics for evaluation: 3D in-
tersection over union (IoU) and the chamfer distance (CD) between
meshes. We evaluate the IoU in a 64 voxelization resolution. To
compute the chamfer distance, 100k random points are sampled
from each mesh’s surface.

4.2.1. Qualitative and Quantitative Results

The qualitative results are shown in Figure 8. We can observe that
all methods can capture the global and coarse shapes of the objects.
The DRC’s results are coarse because it is limited by voxel resolu-
tion. The NMR’s model cannot handle different topologies of 3D
shapes (e.g., the chair’s arms in row 1, and legs in row 2) and show
unsmoothness in results. The SoftR’s are better but still fails to re-
flect different topologies as the meshes are produced by moving
vertices. The Atlas’s results are various in topology, but the surface
is often discontinuous. Benefiting from the implicit function repre-
sentation, Onet achieves a much better visual effect. Our method
can obtain similar visual effects with Onet while we only employ
2D silhouettes supervision. More qualitative results are provided in
supplementary material and videos.

The quantitative evaluation is reported in Table 2. Our method
achieves a leading result among 2D-supervised methods. We can
further find that our method is superior in categories with vari-
ous topologies, such as chairs. On the contrary, the SoftR achieves
a better result in simple-topology categories like cabinet and car.

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images 247

Condition ¢

r FC-Res Block x 4
128 256 = emmmmmmm e e m e e m e — <
1 ! \
! 1
1 1
! 1
! 1
1 1
1 1
1 1
N ' -
1 1
1 1
! 1
! 1
! 1
3 256 ! 256 256 256 1 256 1
| N @ e e e e e e e e e e e e v |
Query 3D Points Function Values

(a) Architecture of f

]
@ Add
—
—_—
—

ReLU
64x64 39330
16x16
8)(8 4X4 1X1
= 1 1
12 5
! 64 8
| I

FC layer
Convolution
Input Silhouette

(b) Architecture of Discriminator

Figure 7: Networks’ architectures. (a) The architecture of f in Section 4.2 and 4.3. (b) The architecture of discriminator in Section 4.3.
Input Ground Truth

Atlas (3d) Onet(3d)

DRC(2d)

NMR(2d) Ours(2d)

Figure 8: Qualitative results of single-image 3D reconstruction. We compare our method with three 2D-supervised methods and two

3D-supervised methods.

The possible reason for their better performance is that estimating
implicit-represented 3D shapes is more difficult and complicated
than estimating template-deformed ones. Besides, shapes in these
categories contain many large flat surfaces, which can be easily
obtained by the template’s deformation. However, the template-
deformation representation limits the results’ variety in topology
and harms the final performance for complex-topology categories.

Compared to the 3D-supervised methods, our method’s perfor-
mance is worse. This is not surprising as these two methods ac-
cess the ground-truth 3D data, while our model is trained with 2D
silhouettes. The weaker supervision inevitably leads to the loss of
some 3D information. In general, our method can achieve state-of-
the-art 2D-supervised results in complex-topology categories.

4.2.2. Effect of Points Sampling Strategies
‘We conduct some experiments to check the influence of points sam-
pling strategies. We compare models trained with random sampling

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

(RS), uniform sampling (US), and the proposed stratified random
sampling (SRS). The results are shown in Table 3 and Figure 9. It
could be seen that the results of the RS often miss some detailed
parts, such as the arms in row 2. On the other hand, the results of
the US can coarsely represent the shape but may lead to an over-
thick effect. It is because the sampled points are distributed in a
limited region, which causes some errors in unsampled space. With
SRS, we can achieve better results.

4.2.3. Effect of Sharpness Parameter

The sharpness parameter in soft shading controls the clarity of the
boundaries in results. We present rendering results of reconstruc-
tion network f in Figure 10. We can observe that a higher k can
make the rendering closer to the standard shading effect. According
to section 3.7, the gradients of black or white pixels are close to 0.
So all the pixels’ gradients under high & are close to 0. On the con-
trary, a smaller £ makes the erroneous pixels shaded grey (e.g. the

248 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

2D-supervised methods 3D-supervised methods
CD IoU CD IoU

DRC NMR SoftR Ours | DRC NMR SoftR Ours | Atlas Onet | Atlas Onet
plane 9.02 2.88 196 1.64 | 342 465 509 533 | 1.18 152 - 59.0
bench - 3.22 439 2.03 - 31.8 33.8 39.1 144 1.56 - 48.5
cabinet - 3.23 226 248 - 66.1 68.7 652 | 1.82 145 - 75.0
car 5.56 2.52 2.03 235 | 441 63.4 672 66.0 | 135 1.21 - 74.3
chair 1491 9.20 7.09 584 | 318 36.7 419 444 | 225 279 - 53.2
display - 4.81 3.73 421 - 453 47.8 522 | 201 2.67 - 54.4
Lamp - 1245 984 831 - 27.8 327 377 | 391 415 - 40.4
speaker - 5.61 6.58 5.46 - 57.4 62.5 6277 | 327 394 - 67.6
rifle - 2.17 1.83 228 - 423 453 389 | 140 173 - 479
sofa - 2.38 265 247 - 52.6 559 5438 1.78 2.06 - 69.3
table - 7.62 6.90 5.15 - 425 380 45,6 | 298 6.33 - 535
cellphone - 4.05 3.07 347 - 61.9 622 668 | 1.31 1.44 - 74.1
vessel - 5.37 3.67 3.26 - 473 502 538 | 1.69 2.64 - 55.1
mean 9.83 5.04 431 3.77 | 36.7 478 505 523 | 2.03 257 - 59.4

Table 2: Comparison on single-view 3D reconstruction. We compare our method with three 2D-supervised methods: DRC [TZEM17],
NMR [KUHI18], SoftR [LLCL19] and two 3D-supervised methods: Atlas [GFK* 18], Onet [MON*19]. The metrics are chamfer distance

(x0.001) and 3D Intersection-over-Union (%).

Input (SN} SRS

r X

Input k=1 k=10 =20
i : Reconstruction k=30 k=50

Figure 10: Rendering results under different k. The network f is
not completely trained, and some regions are missing in reconstruc-
tion results. These missing regions are shaded grey under small £

Figure 9: Effect of points sampling strategies.
and white under big k.

RS [N SRS

CD 6.15 6.02 5.84 Input k=1 k=10 k=20 k=30 k=50
IoU 42.1 427 444 |
A Nete Nete Seil Nwie Mo

Table 3: Quantitative comparison of different points sampling
strategies in the ‘chair’ category.

missing crossbars). It means the gradients in these pixels are bigger
than the correct pixels, leading the training process. We show some
final reconstruction results under different sharpness parameter set-
tings in Figure 11. The results are within the expectation. When &
is not too big, the results are close. When k exceeds about 30, the
results become worse.

Figure 11: Reconstruction results with different k. When k exceeds
about 30, the reconstruction results become defective.

first attempt to train an implicit-represented 3D GAN with 2D im-
ages. Notice concurrent work [LSCL19] is not suited for this task,

4.3. 3D GAN Learning

The second application of DFR is to cooperate with a 3D GAN, en-
abling the training without 3D data. To our knowledge, this is the

since the incomplete renderings can hardly fool the discriminator.

Implementation details. To generate a 3D GAN with 2D images,
we combine a 2D discriminator with our implicit 3D shapes gen-

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images 249

3D-GAN MP-GAN Ours 3D-GAN Ours

- TN
N
A

N

P0G

3D-GAN Ours

3D-GAN Ours

@
e
|

Figure 12: Qualitative comparisons of various GAN model. Our model can generate various shapes with a more plausible appearance.

erator. We take the real silhouettes as real samples to train a 2D
discriminator. Then we generate implicit 3D shapes by generator
and render them with DFR. The generator is expected to produce
plausible 3D shapes to fool the discriminator from any perspective.
During rendering, we fix the elevation to 30 and randomly sample
an azimuth to decide the camera viewpoint.

Discriminator: We follow the designing of the discriminator in DC-
GAN [RMC15]. Its architecture is illustrated in Figure 8(b). Empir-
ically, we find that adopting the WGAN-gp [GAA*17] improves
the training process. Hence the loss for discriminator is:

Lp(X,Z)= Y D(DFR(v,G(z)))— Y D(x)

~Z x~X

(1)
+A Z |VeD()||271)

where G denotes the generator, and D denotes the discriminator.
The v denotes a random viewpoint. The z is a noise vector that
follows Gaussian distribution Z. The x is a real silhouette in training
data X. The X is the interpolated space between real samples and
generated samples, which is proposed by Gulrajani [GAA™17]. The
A controls the weight of the gradient penalty and it is set to 10.

Generator: The network f is now seen as a 3D generator. It takes a
noise vector z as condition ¢, generating implicit 3D shape f; from
z. Its architecture is the same with 4.2. The loss function for the
generator is defined as:

Lg(Z)=— Y. D(DFR(v,G(2))) (12)

~Z

During training, batch-size, learning rate, and sampling steps keep
the same as Section 4.2.

Dataset. We employ the same dataset as Section 4.2. Differently,
we take a single instead of a pair of images from each 3D shape
for training. Besides, in this section, we do not need the viewpoint
annotation for training.

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Chair Sofa Table Rifle Mean

3D-GAN | 23472 270.03 171.83 65.23 18545
MP-GAN | 240.31 - - - 240.31
Ours 169.57 21395 192.18 59.55 158.81

Table 4: The comparison of GAN models with fid. We render the
generated shapes to images and evaluate them by Inception-v3.

rERERRBL

v(

»—*\w*\w R K XX

NN N N T N R

Figure 13: Interpolation of shapes in the learned latent space.

Comparisons. We take a 2D-based method MP-GAN [LDPT19]
and a 3D-based method 3D-GAN [WZX*16] for comparison. Both
methods are evaluated with the official pre-trained models. The pro-
vided model of MP-GAN [LDPT19] only contains the ‘chair’ class.

Metrics We select the fid metric [HRU* 17] to evaluate the quality
of generated shapes. It measures the difference between the dis-
tribution of real and synthesized samples by calculating the acti-
vations in a pre-trained perceptual model. We render all methods’
results to 2D images and use the pre-trained inception-v3 to capture
a higher-level visual evaluation.

Results First, we show some qualitative results in Figure 12. More
qualitative results are provided in Figure 1 (b) and supplementary
materials. Compared to other methods, our model generates more
satisfactory results with a smooth surface and plausible details in all
categories. Note that 3D-GAN is trained with existed 3D data. MP-

250 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

Input Image

Mesh During Iterations

a 4 B 4 I

¥ AR ™ A
% n a ¥

) | x 5 &
5 3 £ e f
?‘. N 3 A “;\h \%

23
old
ol
-

y RS b >
’ X » is
. - . . 1 «
& W oW O, W K
< ¢ @ 2 b

»

Q@O e e:

¢
(8
&
4

X
) |
%

‘

1500 2000

R @* =6

X &
3 3
8 b
@ @

Q o 263¢:

Figure 14: Two examples of multi-view fusion results. With DFR, we can fusion multi-view images to get a 3D shape. Two views of the

results are shown.

GAN is trained with 2D images, but they adopt a more complex
framework than ours, which contains multiple 2D discriminators
and an extra viewpoint-prediction module. So, this further explains
the superior ability of implicit representation and the effectiveness
of our DFR. In addition, we can observe that the generated shapes
are not as plausible as Section 4.2. It is because in Section 4.2, we
use pairs of images as supervision for training, while here we only
use independent images without correspondence information. This
makes the 3D generation more difficult. The quantitative evalua-
tion is reported in Table 4. It is consistent with qualitative results,
demonstrating our results can obtain a more plausible visual effect.
We also perform an interpolation operation in the noise vector z.
The results are presented in Figure 13. We can observe that all the
interpolated shapes are plausible.

4.4. Image-fusion for 3D modeling

Image fusion for 3D modeling is a traditional application that cre-
ates a 3D object from multiple 2D views. Different from tradi-
tional point-matching-based methods [LAAH12], our DFR enables
a gradient-based image fusion.

We select two objects from The Stanford 3D Scanning Repos-
itory [LGCPO5]. We first obtain 2D images from different views.
Then, we construct a simple network f with three fully-connected
layers. In this setting, no condition ¢ is needed as f only represents
a single 3D shape. With DFR, we render the f from all viewpoints
and compute the silhouettes errors compared with input images.
The fusion process is performed by minimizing all silhouettes’ er-
rors. We show the fusion process with iterations in Figure 14.

5. Limitations

There are some limitations of our work. First, we temporarily only
consider the 2D silhouette supervision for 3D modeling tasks. This
limits the information that can be obtained from supervision. For
example, our model can not predict the concave parts of the sofa in
Figure 15(a), because these parts do not appear in silhouettes from

any viewpoints. Second, our point sampling strategy is a fast but
approximate estimation of implicit surface. It may cause some arti-
facts in rendering results. An example is shown in Figure 15(b).
When the sampling step is 64, the normal map and the silhou-
ette are correct. When the sampling step is 32, some pixels’ col-
ors are wrong in the normal map. When the sampling step is 16,
the silhouette misses some thin parts, and the normal map becomes
even worse. Although a larger sampling number can achieve better
rendering results, it may cause more consumption of memory and
computation.

Predicted GT
Silhouette

Predicted GT
Silhouette Shape Shape

9 @ & O &

(a) Limitation of the Silhouette Supervision

Input Image

N=16

Implicit Sh
TpHelt Shape Normal Map

TR e s

(b) Limitation of the Sampling Strategy

Figure 15: Two examples of our method’s limitations.

6. Conclusions

In this paper, we propose the DFR: an efficient differentiable ren-
dering for implicit 3D representation. We optimize the normal it-
erative ray-marching to a totally parallelized points sampling pro-
cess. We design a ray integral strategy that reduces high memory
consumption. A soft shading function is also raised to replace the
traditional non-differentiable one. We conduct various 3D mod-
eling experiments with 2D supervision. The results show: 1) Our
framework can efficiently render the implicit function. 2) We can

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images 251

learn a single-image 3D reconstruction model without 3D supervi-
sion, and it outperforms other 2D-supervised methods. 3) We can
train an implicit-represented 3D GAN model with 2D images and
generate plausible 3D shapes. 4) We can perform a gradient-based
multi-view fusion process for 3D modeling and achieve results with
satisfactory visual effects. All these experimental results prove our
DFR’s effectiveness and superiority. We believe our work will be
useful and bring some inspirations to other researchers for their fu-
ture works related to the generation of 3D shapes.

Acknowledgement

We thank the anonymous reviewers for their valuable comments.
This work was supported by National High Technology Research
and Development Program of China (No. 2007AA01Z334), Na-
tional Natural Science Foundation of China (Nos. 61321491 and
61272219), National Key Research and Development Program
of China(Nos. 2018YFC0309100, 2018YFC0309104), the China
Postdoctoral Science Foundation (Grant No. 2017M621700) and
Innovation Fund of State Key Laboratory for Novel Software Tech-
nology (Nos. ZZKT2018A09).

References

[ABC*16] ABADI M., BARHAM P., CHEN J., CHEN Z., DAVIS A.,
DEAN J., DEVIN M., GHEMAWAT S., IRVING G., ISARD M., ET AL.:
Tensorflow: A system for large-scale machine learning. In [2th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16) (2016), pp. 265-283. 4

[CFG*15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., L1 Z., SAVARESE S., SAVVA M., SONG S., SU H.,
ET AL.: Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 (2015). 6

[CXG*16] CHOY C. B., XU D., GWAK J., CHEN K., SAVARESE S.:
3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In European conference on computer vision (2016), Springer,
pp- 628-644. 1,2,3,6

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 5939-5948. 1, 2, 3

[FSG17] FAN H., Su H., GUIBAS L. J.: A point set generation net-
work for 3d object reconstruction from a single image. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2017),
pp- 605-613. 1,2, 3

[GAA*17] GULRAJANII., AHMED F., ARJOVSKY M., DUMOULIN V.,
COURVILLE A. C.: Improved training of wasserstein gans. In Advances
in neural information processing systems (2017), pp. 5767-5777. 9

[GCC*17] GwaK J., CHOY C. B., CHANDRAKER M., GARG A.,
SAVARESE S.: Weakly supervised 3d reconstruction with adversarial
constraint. In 2017 International Conference on 3D Vision (3DV) (2017),
IEEE, pp. 263-272. 2,3

[GCM*18] GENOVA K., COLE F., MASCHINOT A., SARNA A., VLA-
SiC D., FREEMAN W. T.: Unsupervised training for 3d morphable
model regression. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 8377-8386. 2, 3

[GFK*18] GROUEIX T., FISHER M., KIM V., RUSSELL B., AUBRY M.:
Atlasnet: A papier-méché approach to learning 3d surface generation. In
CVPR 2018 (2018). 1,3,6, 8

[HRU*17] HEUSEL M., RAMSAUER H., UNTERTHINER T., NESSLER
B., HOCHREITER S.: Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium. In Advances in Neural Information
Processing Systems (2017), pp. 6626-6637. 9

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

[HTM17] HANE C., TULSIANI S., MALIK J.: Hierarchical surface pre-
diction for 3d object reconstruction. In 2017 International Conference
on 3D Vision (3DV) (2017), IEEE, pp. 412-420. 1

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), pp. 770-778. 6

[ID18] INSAFUTDINOV E., DOSOVITSKIY A.: Unsupervised learning of
shape and pose with differentiable point clouds. In Advances in Neural
Information Processing Systems (2018), pp. 2802-2812. 2, 3

[JJHZ20] JIANG Y., JI D., HAN Z., ZWICKER M.: Sdfdiff: Differen-
tiable rendering of signed distance fields for 3d shape optimization. 3

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 6

[KH19] KATO H., HARADA T.: Learning view priors for single-view
3d reconstruction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 9778-9787. 3,4

[KTEM18] KANAZAWA A., TULSIANI S., EFROS A. A., MALIK J.:
Learning category-specific mesh reconstruction from image collections.
In Proceedings of the European Conference on Computer Vision (ECCV)
(2018), pp. 371-386. 3

[KUH18] KATO H., USHIKU Y., HARADA T.: Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 3907-3916. 2,3,4,5,6, 8

[LAAHI12] LAGUELA S., ARMESTO J., ARIAS P., HERRAEZ J.: Au-
tomation of thermographic 3d modelling through image fusion and im-
age matching techniques. Automation in Construction 27 (2012), 24-31.
10

[LADL18] LI T.-M., AITTALA M., DURAND F., LEHTINEN J.: Differ-
entiable monte carlo ray tracing through edge sampling. In SIGGRAPH
Asia 2018 Technical Papers (2018), ACM, p. 222. 2,3

[LB14] LOPER M. M., BLACK M. J.: Opendr: An approximate differ-
entiable renderer. In European Conference on Computer Vision (2014),
Springer, pp. 154-169. 2

[LDPT19] LiX., DONG Y., PEERS P., TONG X.: Synthesizing 3d shapes
from silhouette image collections using multi-projection generative ad-
versarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 5535-5544. 9

[LGCP0O5] LEvOY M., GERTH J., CURLESS B., PULL K.: The
stanford 3d scanning repository. URL http://www-graphics. stanford.
edu/data/3dscanrep 5 (2005). 10

[LLCL19] Li1u S., L1 T., CHEN W., L1 H.: Soft rasterizer: A differen-
tiable renderer for image-based 3d reasoning. The IEEE International
Conference on Computer Vision (ICCV) (Oct 2019). 2,3,4,5,6, 8

[LSCL19] LiuS., SAITO S., CHEN W., L1 H.: Learning to infer implicit
surfaces without 3d supervision. In Advances in Neural Information Pro-
cessing Systems (2019), pp. 8293-8304. 3, 8

[LZP*19] LIU S., ZHANG Y., PENG S., SHI B., POLLEFEYS M., CUIL
Z.: Dist: Rendering deep implicit signed distance function with differ-
entiable sphere tracing. arXiv preprint arXiv:1911.13225 (2019). 3

[MON*19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 4460—4470. 1, 2, 3, 6, 8

[MPJ*19] MICHALKIEWICZ M., PONTES J. K., JACK D., BAKTASH-
MOTLAGH M., ERIKSSON A.: Deep level sets: Implicit surface rep-
resentations for 3d shape inference. arXiv preprint arXiv:1901.06802
(2019). 1,2, 3

[PBCC18] PALAZZI A., BERGAMINI L., CALDERARA S., CUCCHIARA
R.: End-to-end 6-dof object pose estimation through differentiable ras-
terization. In Proceedings of the European Conference on Computer
Vision (ECCV) (2018), pp. 0-0. 2

252 Yunjie Wu & Zhengxing Sun / DFR: Differentiable Function Rendering for Learning 3D Generation from Images

[PFS*19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2019), pp. 165-174. 1, 2,
3

[PGM*19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
ET AL.: Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems (2019),
pp. 8024-8035. 4, 6

[RMC15] RADFORD A., METZ L., CHINTALA S.: Unsupervised rep-
resentation learning with deep convolutional generative adversarial net-
works. arXiv preprint arXiv:1511.06434 (2015). 9

[SZW19] SITZMANN V., ZOLLHOFER M., WETZSTEIN G.: Scene rep-
resentation networks: Continuous 3d-structure-aware neural scene rep-
resentations. In Advances in Neural Information Processing Systems
(2019), pp. 1119-1130. 3

[TZEM17] TULSIANI S., ZHOU T., EFROS A. A., MALIK J.: Multi-
view supervision for single-view reconstruction via differentiable ray
consistency. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2017), pp. 2626-2634. 6, 8

[WWX*17] WulJ., WANG Y., XUE T., SUN X., FREEMAN B., TENEN-
BAUM J.: Marrnet: 3d shape reconstruction via 2.5 d sketches. In Ad-

vances in neural information processing systems (2017), pp. 540-550. 1,
3

[WZL*18] WANG N., ZHANG Y., L1Z., FU Y., Liu W., JIANG Y.-G.:
Pixel2mesh: Generating 3d mesh models from single rgb images. In
Proceedings of the European Conference on Computer Vision (ECCV)
(2018), pp. 52-67. 2,3

[WZX*16] Wu ., ZHANG C., XUE T., FREEMAN B., TENENBAUM J.:
Learning a probabilistic latent space of object shapes via 3d generative-

adversarial modeling. In Advances in neural information processing sys-
tems (2016), pp. 82-90. 2, 9

[YYY*16] YAN X., YANGJ., YUMER E., GUO Y., LEE H.: Perspective
transformer nets: Learning single-view 3d object reconstruction without

3d supervision. In Advances in Neural Information Processing Systems
(2016), pp. 1696-1704. 2, 3,4, 5

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

