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1. Introduction
This supplemental material contains three parts:

e Section 2 provides more details on implementation of all appli-
cations mentioned in the main paper.

e Section 3 provides details on implementation of rendering for
normal map, as mentioned in the main paper.

e Section 4 shows more qualitative results.

2. Details on Implementation

In this section, we provide more details for the applications with
DFR mentioned in the main paper.

2.1. Data Processing

For preparing the training data of single-image 3D reconstruction,
we render training shapes in ShapeNet from 24 random views.
The distance between the camera and the original point is 2.732,
the same as NMR [KUH18] and SoftR [LLCL19]. The elevation’s
range is [-15, 45], and the azimuth’s range is [0, 360]. The resolu-
tion of rendered images is 64. The format of the images is RGBA,
where the alpha channel is used as silhouette supervision. During
training, 2 of 24 views are selected to make up a single training
sample. During test, only one view of the 24 is selected randomly.
The train/test split is the same as Choy [CXG™16].

The training data of 3D GAN Learning is the same as above.
For computing the fid, we generate 100 3D shapes randomly and
render them from some random viewpoints. Then we also render
100 shapes from training data. We compute the fid from these two
sets of rendered images.

For the image fusion application, we select the Stanford
3D Scanning Repository [LGCPO5]. We select the widely used
“Stanford Bunny” and “armadillo” for this task. We use the
Blender [Com18] to render the two shapes in 24 random views. The
distance of the camera to the original point is 2.732. The ranges of
elevation and azimuth are [-30, 60] and [0, 360] separately.

2.2. Network Architecture for Imgae-fusion

In main paper we have presented detailed architecture of networks
used in single-image 3D reconstruction and 3D GAN Learning.
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Figure 1: Network f in image fusion for 3D modeling. It
takes 3D points’ coordinates as input and predicts the function
value for each point.

Here we present the network’s structure for image fusion tasks. As
it only need to represent single 3D object, the structure is much
simpler and dosen’t take the condition input. The network contains
only a single decoder, which is consisted of four fully-connected
layers as shown in Fig 1. The activation after each layer is ReLU.

2.3. Training Details

Single-image 3D Reconstruction. We train our network in a single
GTX1080Ti GPU. The learning rate is decayed by rate 0.5 in 300
and 450 thousands of iterations. In practice, we find a model with
the US sampling strategy can convergence faster than RS or SRS.
To facilitate the training, in the first 200 thousands of iterations, we
alternately employ the US and USS for every two iterations. After
20 thousands of iterations, we only adopt the SRS.

3D GAN Learning. The same as above, the learning rate is de-
cayed by rate 0.5 in 300 and 450 thousands of iterations. For gen-
erating the random code z, we use a Gaussian distribution with
mean = 0 and variance = 0.33. We find this can achieve a bet-
ter performance compared with the variance = 1. Followed the
WGAN [GAA*17], we employ a critic iterations strategy, which
means train D for more iterations than D. We update D’s parame-
ters in every iteration and update the G’s parameters in every three
iterations.
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Figure 2: Examples of both normal map and silhouette rendering.

3. Rendering for Normal Map

In this section, we provide the details to extend our DFR to perform
normal map’s rendering, as mentioned in our main paper.

Rendering normal map requires the access to the surface normal
of each Ray;. As described in the main paper, the rays can be clas-
sified into hit rays and unhit rays. For the unhit rays, obviously no
color should be shaded in the normal map. For a hit ray, we have al-
ready achieved an approximate surface point s? along the ray. Then
we need the normal direction of this surface point for rendering.

We can estimate the normal direction by sampling f at nearby
points of s7. It produces an estimation of the local surface curvature.
Especially, let € denotes a very small number, we sample the up, the
left, and the front neighboring points of s

left; = 5" + (&,0,0)

up; = s7 +(0,€,0) ¢))
front; = 57 + (0,0,¢€)

We evaluate them via f and achieve the function values in the re-
forward process mentioned in the main paper. The the component
of the normal direction in each axis can be estimated by computing

the difference between the corresponding nearby point’s values and
the s}’s value:

fe(left;) — fe(s7)
nj = Je (”Pi) —fe (S:‘l) @3
fe(front;) — fe (si)

Then we normalize the n;’s length to 1:

_
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3
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As the ranges of 7i;’s components are all (—1,1), we perform a
linear transformation on it, so that the ranges become (0, 1), which
is consistent with the range of rgb values:

color; =1;-0.540.5 4)

the color; means the rgb value of the i-th pixel in a normal map.
Note that this pixel is a foreground pixel (Ray; is a hit ray), other
wise its color is set to (0,0,0).

We show some examples of the normal map rendering in Fig 2.
As discussed in in the main paper, a small sampling number may
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cause artifacts in the rendering. So we set the sampling number to
64 here.

4. More Qualitative Results

Here we provide more qualitative results of single-image 3D re-
construction and 3D GAN learning. We refer readers to our supple-
mental videos for a clearer effect.

4.1. single-image 3D reconstruction

Some additional results for single-image 3D reconstruction are
shown in Fig 3, Fig 4 and Fig 5. It could be observed our method
can handle with various structures of 3D shapes and produce visu-
ally satisfying meshes.

With the trained model, we are also able to perform shape in-
terpolation with two input images. First, we extract the feature
from images with trained encoder. Then interpolation operation is
performed in the feature space. The interpolated features are fed
into the decoder, producing interpolated shapes. We compare our
method with the other state-of-the-art SoftR [LLCL19] and show
some results in Fig 6. From the results, we can tell that, although
two methods can both perform smooth interpolation and generate
plausible shapes, our method is able to create more various topol-
ogy (example 1, 2, 3) and more accurate surface (Lamp’s base in
example 4).

4.2. 3D GAN learning

Some additional results for 3D GAN learning are shown in Fig 7.
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Input Image Reconstruction Result (from 4 views)

Figure 3: Results of single-image 3D reconstruction
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Input Image Reconstruction Result (from 4 views)
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Figure 4: Results of single-image 3D reconstruction
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Input Image Reconstruction Result (from 4 views)

Figure 5: Results of single-image 3D reconstruction
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Input Interpolated Shapes Input
Image 1 (Top: ours, Bottom: SoftR) Image 2
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Figure 6: Results of shape interpolation
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