
J. Naruniec & L. Helminger & C. Schroers & R.M. Weber / High-Resolution Neural Face Swapping for Visual Effects

Appendix A: Appendix

In this appendix we share additional details and insights about the
design and functionality of our face-swapping pipeline. In the first
section we report an experiment showing the effect of different
choices in the number of shared decoder layers on the network out-
put. Next we provide details about the progressive-training regime
that played a key role in producing our high-resolution results along
with information about used hardware. We also present the algo-
rithm for our multi-band blending. Finally we provide more in-
sights about the network capabilities in the context of interpolating
between images in the latent space. The structure of our network
architecture is presented in Table 1.

Number of common layers

In principle, the split to the person-specific decoders can be placed
directly after the encoded latent vector (the bottleneck, which in
our case is in R512) or later in the network following a series of
weight-sharing layers. We observed that if we perform the split at
level 0 (which corresponds to a 512× 4× 4 feature map), directly
after the bottleneck, and before level 3 (which corresponds to a
512× 32× 32 feature map), the generated images in most cases
look quite realistic. However, we also observed that the more levels
that are shared, the more the generated face departs from the source
appearance and the more it resembles the input image. If the split
comes too early, such as right after the latent space, or too late, such
as after the third level, then the network occasionally introduces
undesirable artifacts. Results of training with different split points
are presented in Fig.12. In our implementation we chose level 1 as
our split point, as it seemed to provide the best trade-off between
source and target fidelity.

Progressive training

Our model is trained in a progressive regime, starting from coarse,
low-resolution 4×4 pixel images and then gradually expanding the
network’s capacity as higher-resolution images are used for train-
ing, up to 1024×1024 pixels. The base architecture, which focuses
on the lowest-resolution data, corresponds to “level 0” in Figures 3
and 13 and Table 1. Each new “level” of the network doubles in-
put and output resolution by adding a composition of two convolu-
tional layers and a down- or up-scaling layer in the encoder and de-
coder, respectively. During training, additional convolutional “to-
RGB” layers are added to the end of the decoder portion of the net-
work to transform multi-channel output to three-channel RGB out-
put. Analogously, the beginning of the encoder part of the network
includes “from-RGB” layers to accept image data at the current
level’s resolution. These intermediate-resolution to- and from-RGB
layers are discarded after their respective level’s training, leaving
only those for the final resolution trained. The “shock” of expand-
ing the network by adding new, untrained network components is
attenuated by a gain parameter, α ∈ [0,1], which acts as a fader
switch that gradually blends the activations of the new network
components with those of the trained, smaller network. This gain
parameter is increased linearly within its range over the course of a
new level’s training. This process is presented schematically in Fig.
13.

Hardware specification

All the models were trained on a single NVIDIA 1080Ti GPU
workstation (Intel R© CoreTM i7-6700K CPU @ 4.00GHz).

Data manifold

The results we presented in Section 5 showed that the comb model
can successfully reproduce certain source expressions for which
there is no exactly matching target data. We further illustrate this
capability in Fig. 14.

We chose a set of short video sequences and generated source-
target swaps using our model. We then searched our source data for
nearest neighbors of the generated images, namely using L2 dis-
tance in pixel space, limited to the face area, with all faces aligned
and normalized to 1024× 1024 resolution. We observed that for
many expressions there were indeed no corresponding images in
the training set, meaning that the network was able to “hallucinate”
and fill in some missing details.

We further experimented by swapping the target face with the
nearest-neighbor images instead of our network-generated faces.
Since we use the same blending technique, it is not surprising that
individual frames look quite good. However, when we performed
this procedure frame by frame, the resulting video contained con-
siderable “jumps” due to multiple frames’ corresponding to the
same images in the training set or to images that departed signifi-
cantly from the target expression.

We are further interested in the overall coherence of the data
manifold induced by the encoder. More precisely, while we know
that training examples are properly encoded, we are also interested
in the area between these points.

To investigate this, we conducted the following experiment: We
selected two training examples from a randomly chosen subject,
p. These images, x(1)p and x(2)p , we will refer to as anchor points.

We then computed the latent representations z(i) = E
(

x(i)p

)
(for

i ∈ {1,2}) of each anchor point and interpolated the space between
them by defining the parametric path

z(λ) = (1−λ)z(1)+λz(2) (2)

for λ ∈ [0,1]. We then took nine equally spaced values of λ, evalu-
ated z(λ), and decoded the resulting images using decoders corre-
sponding to five separate identities to examine their realizations in
pixel space.

The results of this experiment are shown in Fig. 15. The left- and
right-most images are the anchor points. In the first row we show
the reconstruction using the decoder Dp, corresponding to the per-
son present in the anchor images. In the subsequent rows we decode
the latent vectors with decoders Dq, q 6= p. We can see that for all
of the identitities the transition of the facial expression between the
anchor points is smooth and encodes intermediate facial behavior
consistent across identities.

Out-of-sample generalization

In a second experiment, we selected two anchor points x(i)p′ , i ∈
{1,2} of identity p′, a subject that the model did not see during

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Naruniec & L. Helminger & C. Schroers & R.M. Weber / High-Resolution Neural Face Swapping for Visual Effects

Lvl Encoder Activation Output shape Params
8 Input Image - 3×1024×1024 -

Conv 1×1 LeakyReLU 16×1024×1024 64
Conv 3×3 LeakyReLU 16×1024×1024 2.3k
Conv 3×3 LeakyReLU 32×1024×1024 4.6k

Downsample - 32×512×512 -
7 Conv 3×3 LeakyReLU 32×512×512 9.2k

Conv 3×3 LeakyReLU 64×512×512 18k
Downsample - 64×256×256 -

6 Conv 3×3 LeakyReLU 32×256×256 37k
Conv 3×3 LeakyReLU 128×256×256 74k

Downsample - 128×128×128 -
5 Conv 3×3 LeakyReLU 128×128×128 148k

Conv 3×3 LeakyReLU 256×128×128 295k
Downsample - 256×64×64 -

4 Conv 3×3 LeakyReLU 256×64×64 590k
Conv 3×3 LeakyReLU 512×64×64 1.2M

Downsample - 512×32×32 -
3 Conv 3×3 LeakyReLU 512×32×32 2.4M

Conv 3×3 LeakyReLU 512×32×32 2.4M
Downsample - 512×16×16 -

2 Conv 3×3 LeakyReLU 512×16×16 2.4M
Conv 3×3 LeakyReLU 512×16×16 2.4M

Downsample - 512×8×8 -
1 Conv 3×3 LeakyReLU 512×8×8 2.4M

Conv 3×3 LeakyReLU 512×8×8 2.4M
Downsample - 512×4×4 -

0 Conv 3×3 LeakyReLU 512×4×4 2.4M
Conv 4×4 LeakyReLU 512×1×1 4.M

Latent vector - 512×1×1 513
23.1M

Lvl Decoder Activation Output shape Params
0 Latent vector - 512×1×1 -

Conv 4×4 LeakyReLU 512×4×4 4.2M
Conv 3×3 LeakyReLU 512×4×4 2.4M

1 Upsample - 512×8×8 -
Conv 3×3 LeakyReLU 512×8×8 2.4M
Conv 3×3 LeakyReLU 512×8×8 2.4M

2 Upsample - 512×16×16 -
Conv 3×3 LeakyReLU 512×16×16 2.4M
Conv 3×3 LeakyReLU 512×16×16 2.4M

3 Upsample - 512×32×32 -
Conv 3×3 LeakyReLU 512×32×32 2.4M
Conv 3×3 LeakyReLU 512×32×32 2.4M

4 Upsample - 512×64×64 -
Conv 3×3 LeakyReLU 256×64×64 1.2M
Conv 3×3 LeakyReLU 256×64×64 590k

5 Upsample - 256×128×128 -
Conv 3×3 LeakyReLU 128×128×128 295k
Conv 3×3 LeakyReLU 128×128×128 148k

6 Upsample - 128×256×256 -
Conv 3×3 LeakyReLU 64×256×256 74k
Conv 3×3 LeakyReLU 64×256×256 37k

7 Upsample - 64×512×512 -
Conv 3×3 LeakyReLU 32×512×512 18k
Conv 3×3 LeakyReLU 32×512×512 9.2k

8 Upsample - 32×1024×1024 -
Conv 3×3 LeakyReLU 16×1024×1024 4.6k
Conv 3×3 LeakyReLU 16×1024×1024 2.3k
Conv 1×1 sigmoid 3×1024×1024 51

23.1M

Table 1: Detailed description of our encoder (left) and decoder (right). For the Leaky rectified unit (LeakyReLU) we use α = 0.2.

training. We again computed the latent vectors of these anchor
points, took equidistant points on the parametric paths between
them and decoded the points with the same decoders Dq as in Fig.
15.

The result of this experiment is shown in Fig. 16. When com-
paring the anchor points x(i)p′ with the decoded images, it is clear
that the encoder is capable of representing the facial behavior of an
out-of-sample identity p′. Further, the transition between the an-
chor points is smooth and contains only valid intermediate facial
expressions. Our results suggest that our latent representations are
both well structured and essentially identity-free.

Blending algorithm

Pseudocode for our multi-band blending approach, adapted and
modified from Burt et al. [BA83], is presented in Algorithm 1.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Naruniec & L. Helminger & C. Schroers & R.M. Weber / High-Resolution Neural Face Swapping for Visual Effects

Figure 12: Output of the network with various number of shared decoder levels. The target image is presented on the left side. Images from
left to right correspond to the output of the network with the split placed after: latent vector, level 0, level 1, level 2 (which is our choice) and
level 3.

Figure 13: Encoder-decoder network architecture illustrating the
progressive approach. After adding a new level the gain parameter
α ∈ [0,1] acts as a fader switch that gradually blends the activa-
tions of the new network with those of the trained, smaller network.

Algorithm 1: Blending source image into target image
Input: source image S and target image T of equal sizes,

set of outer facial landmarks L in image T , standard
deviation σ, generated face image resolution r (in
our case 1024)

Output: blended output image O
n = log2 r;
Decompose source image S and target image T into

corresponding Laplacian pyramids P(S)i and P(T )i,
where i is a pyramid level, i ∈ 〈1,n〉;

Initialize output pyramid P(O) for output image O of the
same sizes as P(T ) and fill its values with zeroes;

for i = 1 to n do
Compute background mask M̂i defined as an image of

the same size as P(T )i, where all pixels in the interior
of the polygon formed by L are equal to 0 and 1
otherwise;

M̂i = G
(
M̂i,σ

)
, where G

(
M̂i,σ

)
denotes gaussian

smoothing of M̂i with standard deviation σ;
Calculate face mask: Mi = 1− M̂i;
Copy background from the target image to the output

image: P(O)i = P(O)i + M̂iP(T )i ;
if i 6 2 then

Copy face from the target image to the output
image: P(O)i = P(O)i +MiP(T )i;

else
Copy face from the source image to the output

image: P(O)i = P(O)i +MiP(S)i ;
end
Reconstruct and return output image O from P(O);

end

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Naruniec & L. Helminger & C. Schroers & R.M. Weber / High-Resolution Neural Face Swapping for Visual Effects

Figure 14: Visualization of swaps using the “comb” network output (ours) compared with nearest neighbors (n.n.) from the data set. Note
that there are no exact correspondences between n.n. and network outputs, which suggests that the network is able to generate previously
unseen intermediate states. Nearest neighbors are computed by L2 similarity to the network output in in the pixel space of the face region.

Figure 15: Visualization of a segment of the data manifold learned by the common encoder. We show that the facial behavior of the anchor
points (x(1)p and x(2)p ) can be encoded and transferred to different identities. Here λ corresponds to the mixing ratio between the anchor
points’ latent representations.

Figure 16: Visualization of the manifold path traversed for an out-of-sample identity. We show that the facial behavior of the anchor points
(x(1)p′ and x(2)p′ ) can be encoded and transferred to different identities. Note that the input face was not presented to the network during the
training.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.


