
Eurographics Symposium on Rendering 2020
C. Dachsbacher and M. Pharr
(Guest Editors)

Volume 39 (2020), Number 4

Semi-Procedural Textures Using
Point Process Texture Basis Functions

P. Guehl1 , R. Allègre1 , J.-M. Dischler1, B. Benes2 , and E. Galin3

1ICube, Université de Strasbourg, CNRS, France 2Purdue University, USA 3LIRIS, Université de Lyon, CNRS, France

Supplemental material #4

In this supplemental material, we describe PPTBF implementa-
tion details and practical choices.

1. Window Function

Figure 1 shows an example of the influence of the cellular window
w1 parameters λ (anisotropy) and lc (smoothness) for two different
values nv (number of Bezier curve control points).

Figure 1: Examples of the cellular window basis w1 obtained for
an increasing λ (from left to right) and by using tiling type (d). The
second row uses the same parameters but a higher nv.

2. Feature Function

The feature function is defined by a mixture of stringed Gabor ker-
nels G̃ j. Since we only want to produce rough stochastic structures,
we implemented a limited number of mixtures. We experimentally
and empirically found these mixtures to be able to surprisingly
well cover most of the natural stochastic structures present in our

database. Label νG̃ for f selects the mixture among a finite set (we
implemented 5 mixture models, as described next).

In parallel, we implemented simple PDFs for randomly draw-
ing all other parameters of the feature function: J, µj|i, σ j|i, θ j and
A j, the remaining parameters κ, φ and τ being constant for all G̃ j.
As mentioned in the paper µj|i and σ j|i are correlated to the tes-
sellation cells Ri. J is uniformly drawn in interval [Jmin,Jmax]. θ j is
uniformly drawn in [0,θ]. We implemented only two different ways
for selecting the weights A j: 1) A j = 1 for all j and 2) a random bi-
nary selection in −1,1 (actually we take uniform random values
”close” to −1 and 1).

The mixture model is managed by function ω j. It is a function of
position x ∈ R2 that determines how kernel j will be contributing
to the sum. If its value is 0 for a given kernel at a given location
x, then kernel G̃ j does not contribute at all to the sum on this loca-
tion. This allows us to define for example stacks of kernels instead
of blends, feature stacks and piles being frequent in some natural
patterns such as pebbles or foliage.

In practice, we implemented following five mixture models:

• ω j = 1 for all x. A j is selected in−1,1. This results in a classical
sum;
• ω j = 1/J for all x. A j = 1. This is also a classical sum, but with

no negative values. Therefore it is normalized;
• ω j =

1
JG̃ j
− 1. A j = 1. Same sum as previous, but the result

is eventually inverted. It is equilavent to computing f (x) =
1−∑

J
j=1 G̃ j(x). As a result, features are “carved” into the win-

dow function when applying the multiplication with the latter;
• ω j is a Kronecker delta function based on a max operator, con-

sisting in keeping only the highest value of all stringed Gabor
kernels. This should not be confused with Worley’s min oper-
ator on distances, though in some case we obtain visually very
similar results (depending on the other parameters of G̃ j .
• ω j is a Kronecker delta function based on a max operator. This

time, the maximum is computed for random values drawn on µj|i
(the positions of the kernels). It results in stacking stringed Ga-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-6387-6355
https://orcid.org/0000-0002-7780-9284
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5946-4112

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

bor kernels in overlapping regions according to a certain random
priority. This is a kind of bombing of stringed Gabor kernels.

Figure 2 illustrates these five mixture models (columns). The rows
show variations of correlation parameter correl. In all cases we
used tesselation (a) and Jmin = 5,Jmax = 5, a medium jittering value
and a slight anisotropy with orientation interval θ j ∈ [0,π/2]. Fre-
quency was set to 0, so there are no Gabor stripes.

Figure 2: Examples of PPTBF. Each column shows one of the five
mixture models we implemented. The first row shows no correlation
with the window centroid, the second one, a strong correlation. Be-
ing able to easily manage correlations is one of the key properties
of our model. As can be observed, it has a strong influence on the
visual result.

3. PPTBF parameters and normalization

Table 1 summarizes all PPTBF parameters.

Symb. Description Value
POINT PROCESS (Paper Section 3.1.1.)

νT tiling type (e.g., regular, irregular...) {0,..., 16}
jit jittering (randomness) [0, 1]

WINDOW FUNCTION (Paper Section 3.1.2.)
ω linear combination of the two [0,..., 1]

basis windows
‖·‖c cellular basis window norm [1,2,...,∞]
λ anisotropy of cellular basis window [0, 1]
nv number of control points for smoothing [3,..., 64]
lc degree of smoothing [0,..., 2]
σ j sigma of window float

FEATURE FUNCTION (Paper Section 3.1.3.)
ft mixture model [0,..., 3]
Jmin min/max number of kernels [0,..., 8]
Jmax
correl correlation with centroids [0,..., 1]
φ frequency of stringed Gabor stripes [0,..., 16]
τ thickness of stringed Gabor stripes [0,..., 1]
κ curvature of stringed Gabor stripes [0,..., 1]
θ orientation of stringed Gabor stripes [0,..., π/2]
η anisotropy [0,..., 5]
‖·‖ f feature norm [1,2,...,∞]
σ f sigma of Gabor kernel float
σ f var σ f random variation float

Table 1: Overview of the control parameters.

Visual structures are defined by thresholding the PPTBF (Fig. 3).
Normalization must be applied to generate the database used to ac-
celerate the estimation of best matching PPTBF parameters. Fig-
ure 4 illustrates the four types of deformation we apply to all im-
ages for normalization. Of course we apply multiple scales, rota-
tions, stretches and Brownian motion-based distortions.

Figure 3: Thresholding the PPTBF. A single PPTBF incorporates
multiple binary structures with different topologies, that are only
revealed by different thresholds. Top-left: PPTBF as a grayscale
image; following binary images correspond to thresholded version
with increasing threshold values.

(a) (b) (c) (d)

Figure 4: Spatial transforms are used for normalization: we apply
scaling (b), stretching (c), rotation and a 1/ f n noise-based spa-
tial warping (d), aiming at simulating natural Brownian motion, a
frequent stochastic process in nature. Conversely, distortions due
to perspective projection and surface curvature are not considered
for normalization.

4. Source code and algorithm

In the following, we provide a pseudo-code for the PPTBF (see
Appendix A). A full GPU implementation is available on our web-
site †. Functions highlighted in red are also implemented in the
GPU. These are:

• brownnoise: computes a fractal noise with given amplitude
falloff factor;

† https://github.com/ASTex-ICube/semiproctex

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

• genPointSet: generates a point process according to a given
tesselation, it provides a list (arrays) of closest rectangular cells
and points inside these cells. The number of generated neighbor-
ing cells is returned.
• nthclosest: orders the points according to closest distance.

Result is an indirection table, where element 0 is the index of the
closest point, element 1 the index of second-closest point, etc.
• seeding, seeding2 and rand: implement the pseudo ran-

dom number generator. seeding2 is used to allow the gener-
ation of a novel series of numbers, uncorrelated from the series
initialized with seeding at the same spatial location.
• beziercell and cellborder: compute intersections with

Voronoi -cells that a given location x belongs to, the former ap-
plying the Bezier-based cell smoothing described in the paper.
Both return a distance value.
• p-norm: computes a Minkowski distance.

Appendix A: PPTBF pseudo-code

See next page.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

// POINT PROCESS TEXTURE BASIS FUNCTION PSEUDO-CODE

// This pseudo code slightly differs from the actual GPU implementation:
// some parameters being tuned on GPU to improve performance
// PPTBF Parameters provided in the supplementals match the GPU implementation
// that will be made publicly available

float compute_pptbf (vec2 x, // where to compute PPTBF

// deformation and normalization parameters
 float zoom, float rotation_angle, float rescalex,
 float ampli[3], // Brownian distorsion parameters

 // point set parameters
 int tile_type,
 float jitter,

 // window function parameters
 float normblend, // ω

float arity, // nv control points for Bezier
 float larp, // λ window anisotropy
 float wsmooth, // lc window smoothing
 float norm, float sigw1, float sigw2, // ||.|| and σj

 // feature function parameters
 int mixture, // mixture model

float winfeatcorrel, // correlation with window
float feataniso, // η anisotropy

 int Jmin, int Jmax,
 float freq, // φ

float thickness, float curvature, float deltaorient // τ,κ,θ
 float normfeat, // ||.||f
 float sigcos, float sigcosvar, // σf and σfvar

)
{
// storing tessellation cells and point distributions
vec2 c[MAX_NEIGH_CELLS]; // cells lower left corner coords
vec2 d[MAX_NEIGH_CELLS]; // cells size
vec2 p[MAX_NEIGH_CELLS]; // random points
int mink[MAX_NEIGH_CELLS];

 //----------------
 // [1] Brownian Deformation
 //----------------

x = x + amp[0] * brownnoise(amp[1]*x*zoom, amp[2]) ;

 //--------------------
 // [2] Model Transform: scale x, rotation and zoom
 //--------------------

x = x * mat2(cos(rotation_angle),-sin(rotation_angle),
 sin(rotation_angle),cos(rotation_angle))*zoom;

 //------------------
 // [3] Point Process
 //------------------

int npp = genPointSet(x, tile_type, jitter, p, c, d);
// order according to nth closest: result is in table mink[]
nthclosest(mink, npp, x, p, c, d, larp, norm);

 //-------------------------
 // [4] PPTBF = PP x (W F)
 //-------------------------

float pptbfvv = 0.0f; // final value, to be computed and returned

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

float priomax = -1.0f; // initial lowest priority for mixture
float minval = -1000.0f; // initial value for max mixture

for (int k = 0; k < npp; k++) // for each tessellation cell
{
 // init PRNG at cell center
 seeding(p[mink[k]]);
 float bezierangularstep = 2.0 * M_PI / arity;
 float bezierstartangle = bezierangularstep * rand();
 int J = Jmin + (int)((float)(Jmax - Jmin)*rand();

 //-----------------------
 // [5] Window Function: W
 //-----------------------

 // window_1: cellular basis window
 float cval = 0.0;
 if (k == 0) // only inside Voronoi cell
 {
 float smoothdist = beziercell(mink[0],x,c,d,p,
 bezierangularstep, bezierstartangle);
 float cdist = cellborder(mink[0],x,c,d,p);
 cval = mix(smoothdist,cdist,wsmooth);
 }
 float w1 = normblend * (exp((cv - 1.0)*sigw1) - exp(-1.0*sigw1));
 if (w1<0) w1=0;

 // window_2: overlapping basis window
 float sddno = p-norm(x - p[mink[k]]);
 // empirical constant for clamping gaussian, depending on tile type
 float footprint = 1.5
 if (tile_type >= 10) footprint *= 0.4;
 // compute w2
 float w2 = (1.0 - normblend) * exp(-sigw2 * sddno) - exp(-sigw2* footprint))
 if (w2<0) w2=0;

 //---------------------
 // [7] Feature Function
 //---------------------

 float feat = 0.0; // feature function value to be computed

 // stringed Gaussian parameters
 float mu[MAX_G], dif[MAX_G];
 float theta[MAX_G], prior[MAX_G], sigb[MAX_G];
 float valb[MAX_G]; // for amplitude

 // init PRNG, decorelated from window seed
 seeding2(p[mink[k]]);
 for (int i = 0; i < J; i++)
 {
 prior[i] = rand();
 valb[i] = rand();
 mu[i] = c[mink[k]] + (0.5+0.5*rand()) * d[mink[k]];
 // shift mu according to correlation
 mu[i] = mix(p[mink[k]],mu[i], winfeatcorrel);
 // orient Gabor stripes
 dif[i] = (x - mu[i]) / d[mink[k]];
 theta[i] = deltaorient * rand();
 sigb[i] = sigcos * (1.0 + sigcosvar*rand());
 // apply rotation, anisotropy and curliness
 vec2 dd = mat2(cos(theta[i]),-sin(theta[i]),
 sin(theta[i]),cos(theta[i])) * dif[i];
 dd.y /= feataniso;
 float xfeat = sqrt(dd.x * dd.x * curvature * curvature + dd.y * dd.y);
 // compute stringed gaussian value
 float ff = 0.5 + 0.5 * cos(π * freq * xfeat);
 ff = pow(ff, 1.0 / (0.0001 + thickness)); // avoids division by zero

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

 float fdist = p-norm(dd,normfeat) / (footprint / sigb[i]);
 // apply mixture
 switch (mixture) {
 case 1:
 float amp = valb[i] < 0.0 ? -0.25 + 0.75 * valb[i] : 0.25 + 0.75 * valb[i];
 feat += ff * amp * exp(-fdist);
 break;
 case 2:
 case 3:
 feat += ff * exp(-fdist);
 break;
 case 4:
 if (priomax < prior[i] && fdist < 1.0 && ff>0.5)
 {
 priomax = prior[i];
 pptbfvv = 2.0*(ff - 0.5) * exp(-fdist);
 }
 break;
 case 5:
 float ww = ff* exp(-fdist);
 if (minval < ww) { pptbfvv = ww; minval = ww; }
 break;
 default: feat = 1.0;
 }
 // normalization according to mixture model
 if (mixture == 1) feat = 0.5 * feat + 0.5;
 if (mixture == 2) feat /= float(J);
 if (mixture == 3) feat = 1.0-feat;

 // add contribution except for max operators
 if (mixture < 4) pptbfvv += (w1 + w2) * feat;
 }
return pptbfvv;
}

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

	Window Function
	Feature Function
	 PPTBF parameters and normalization
	 Source code and algorithm
	PPTBF pseudo-code

