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Abstract
This paper presents a novel recurrent neural network-based method to construct a latent motion manifold that can represent a
wide range of human motions in a long sequence. We introduce several new components to increase the spatial and temporal
coverage in motion space while retaining the details of motion capture data. These include new regularization terms for the
motion manifold, combination of two complementary decoders for predicting joint rotations and joint velocities and the addition
of the forward kinematics layer to consider both joint rotation and position errors. In addition, we propose a set of loss terms
that improve the overall quality of the motion manifold from various aspects, such as the capability of reconstructing not only the
motion but also the latent manifold vector, and the naturalness of the motion through adversarial loss. These components con-
tribute to creating compact and versatile motion manifold that allows for creating new motions by performing random sampling
and algebraic operations, such as interpolation and analogy, in the latent motion manifold.

Keywords: motion capture, animation, behavioural animation, animation

ACM CCS: • Computing methodologies → Dimensionality reduction and manifold learning; Neural networks; Motion pro-
cessing

1. Introduction

Constructing a latent space for human motion is an important prob-
lem as it has a wide range of applications such as motion recog-
nition, prediction, interpolation and synthesis. Ideal motion spaces
should be compact, in the sense that random sampling in the space
leads to plausible motions, and comprehensive so as to generate a
wide range of human motions. In addition, locally linear arrange-
ment of the semantically related hidden vectors would benefit mo-
tion synthesis, for example, by simple algebraic operations.

However, constructing a compact and versatile motion space and
extracting valid motions from it remains a challenging problem be-
cause the body parts of human body are highly correlated in general
actions and the joints are constrained to satisfy the bone lengths and
the range of movement. The high dimensionality of the joint space
adds additional difficulty to this problem.

In this paper, we present a novel framework to construct a la-
tent motion manifold and to produce various human motions from
the motion manifold. In order to embrace the temporal character-
istic of human motion, our model is based on the sequence-to-
sequence model. The unsupervised sequence-to-sequence models
have been shown to be effective by previous studies on motion
prediction [MBR17, PGA18]. Based on these studies, we develop
several novel technical contributions to achieve a compact yet

versatile latent motion manifold and a motion generation method as
follows.

First, our model is characterized by the combination of one en-
coder and two decoders. Given a motion manifold vector, one de-
coder learns to generate the joint rotation while the other learns to
output joint rotation velocities. As will be discussed later, the joint
rotation decoder has the advantage of reconstructing long-term mo-
tions better. In comparison, the joint velocity decoder has the advan-
tage of improving the continuity of the motion. By complementing
each other, our two decoder model shows a higher reconstruction
accuracy than that of the single decoder model.

Second, unlike previous studies that deal with only either joint an-
gles or joint positions, by adding a forward kinematics (FK) layer
[VYCL18], our joint angle-based human representation achieves
the advantage of satisfying bone-length constraints and simplifying
joint limit representation. By additionally considering joint position
computed by the FK layer while training, our method reduces the
joint position error, which is visually more perceptible than the joint
angle error.

Lastly, we introduce several loss functions, each of which con-
tributes to enhancing the quality of the motion manifold in differ-
ent aspects. A reconstruction loss reduces the difference between
the reconstructed motion and the input motion and thus allows the
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Figure 1: Examples of motion interpolation on the latent motion
manifold generated by our method. The first and last columns are
snapshots of two input motions, and the intermediate columns show
the snapshots of four individual motions obtained by the linear in-
terpolation on the motion manifold.

manifold to synthesize motion content and details observed in the
training motion dataset. A regularizer loss improves the distribu-
tion quality of the motion manifold and thus enables random sam-
pling and interpolation on the manifold. In addition, an adversarial
loss increases the naturalness of the motions generated from the mo-
tion manifold.

In this paper, we show that, based on these technical contribu-
tions, our method allows for various practical applications such as
random generation ofmotions, motion interpolation, motion denois-
ing andmotion analogy as will be shown in Section 5. The capability
of our method is demonstrated by the comparison with other ap-
proaches, such as the seq2seq model [MBR17] and the convolution
model [HSKJ15, HSK16].

The remaining part of this paper proceeds as follows: After re-
viewing previous studies related to our work in Section 2, we present
our method and loss function in detail in Section 3. Sections 4
detail the data pre-processing and Section 5 reports a number of
experiments performed to verify the effectiveness of our method.
Section 6 discusses the limitations of our work, future research di-
rections and concludes the paper. Our code and networks are avail-
able at https://github.com/DK-Jang/human_motion_manifold.

2. Related Work

Researchers have developed several methods to construct motion
manifold to generate natural human motions, but compared with
studies on manifold learning for other data such as image, research
on motion data is scarce. Linear methods such as principal com-
ponent analysis (PCA) can model human motion in only a local
region. Chai et al. [CH05] apply local PCA to produce a motion
manifold that includes a certain range of human motion, and apply
it for synthesizing movements from low-dimensional inputs such as
the position of end effectors. Lawrence [Law04] uses Gaussian Pro-
cess Latent Variable Model (GPLVM) to find a low-dimensional la-
tent space for high-dimensional motion data. Taylor et al. [THR07]
propose a modified Restricted Boltzmann Machine that is able to
deal with the temporal coherency of the motion data. Lee et al.
[LWB*10] propose motion fields method, a novel representation of
motion data, which allows for creating human motion responsive
to arbitrary external disturbances. Recently, with the development
of deep learning technology, a method of constructing a motion
manifold by using Convolutional Neural Network (CNN)-based en-
coder was introduced by Holden et al. [HSKJ15, HSK16]. Butepage
et al. [BBKK17] compare a number of deep learning frameworks for
modelling human motion data.

Our method for constructing motion manifold is based on previ-
ous studies on sequence learning for motion to predict the joint po-
sition sequences of a 3D human body given past motions. Martinez
et al. [MBR17] develop a novel sequence-to-sequence encoder–
decoder model that predicts human motion given a short duration of
past motion. The presented result is impressive but has a few limi-
tations that sometimes implausible motions such as foot sliding are
generated and the initial pose of the predicted motion is somewhat
discontinuous from the input motion.

Pavllo et al. [PGA18] selectively use a joint rotation-based loss
for short-term prediction and a joint position-based loss for long-
term prediction. The latter includes FK to compute the joint posi-
tions. However, the basic sequence-to-sequencemodel can only pre-
dict short-termmotions and has limitations in predicting non-trivial,
long-term motions. In addition, a loss function that minimizes only
the prediction error does not guarantee to construct compact and ver-
satilemotionmanifold. Ourmethod solves these problems by jointly
considering joint rotation and position errors in the loss function and
by adding regularization to the motion manifold.

In a broader perspective, our work is related with the studies on
recognizing and generating human motion, which remains a chal-
lenging research topic due to the high dimensionality and dynamic
nature of the human motion. Wu and Shao [WS14] propose a hi-
erarchical dynamic framework that extracts top-level skeletal joint
features and uses the learned representation to infer the probabil-
ity of emissions to infer motion sequences. Du et al. [DWW15]
and Wang et al. [WW17] use recurrent neural network (RNN) to
model temporal motion sequences and propose hierarchical struc-
ture for action recognition. With regard to motion synthesis, Mittel-
man et al. [MKSL14] propose a new class of Recurrent Temporal
Restricted Boltzmann Machine (RTRBM). The structured RTRBM
explicitly graphs to model the dependency structure to improve the
quality of motion synthesis. Fragkiadaki et al. [FLFM15] propose
the encoder–recurrent–decoder (ERD) that combines representation
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learning with learning temporal dynamics for recognition and pre-
diction of human body pose in videos and motion capture. Jain et al.
[JZSS16] propose structural RNN for combining the power of high-
level spatio-temporal graphs.

3. Method

This section details our framework. After defining notations used in
this paper, we explain the structure of the network and the design of
the loss function for training.

3.1. Representation and notations

We denote the human motion set by Q and corresponding random
variable byQ. A motion with a time range of [t, t + �t − 1] is writ-
ten as Qt:(t+�t−1) = [qt , . . . ,qt+�t−1], where qt denotes the pose at
time t. A pose is represented with a set of joint angles written in
the exponential coordinates, that is, qt = [qti,x, q

t
i,y, q

t
i,z]

n joint
i=1 , where

(qti,x, q
t
i,y, q

t
i,z) are the three components of the exponential coordi-

nates and njoint is the number of joints. Therefore, the dimension
of a human motion is Q ∈ R

�t×n joint×3. Lastly, pt is the pose rep-
resented with the joint positions at time t corresponding to qt , and
Pt:(t+�t−1) = [pt , . . . , pt+�t−1]. P is also a random variable of mo-
tion set Q.

3.2. Motion manifold with sequential networks

We construct a motion manifold in an end-to-end unsupervised way
using a network of sequential networks, with an objective to mini-
mize the difference between the ground truth motion space distribu-
tion and the reconstructed motion space distribution extracted from
the latent motion manifold. To this end, we develop a sequential
model that consists of the RNN with gated recurrent unit (GRU).
Our model has a sequence-to-sequence structure [MBR17], which
is often used in machine translation. This RNN structure is effective
for maintaining the temporal coherency in motion, and it is trained
to generate a fixed length of motion (150 frames) in our study. As
shown in Figure 2, our model includes the combination of one en-
coder and two decoders with a regularizer. The encoder takes the
source motion as an input and maps it to the latent motion space.
The regularizer encourages the encoded motion distribution to ap-
proximate some prior distribution. The two decoders are designed
to map the latent motion space to joint angles and joint velocities,
respectively. Details of our model are given next.

3.2.1. Encoder

The encoder consists of a GRU and one linear layer, and Figure 2
shows the unrolled schematic diagram of the encoder. The �t poses
[qt , . . . ,qt+�t−1] of a motion are input to the GRU sequentially. The
GRU encodes the current frame while being conditioned by the pre-
vious frames with their hidden representation. Specifically, the pose
qi in the i-th frame is encoded as follows:

hEnci = GRUWEnc (h
Enc
i−1 , qi), (1)

where hi is the hidden state at frame i, andWEnc ∈ R
3njoint×dh are the

training parameters with dh being the hidden dimension of the GRU.
After the final pose of the input motion is read, one linear layer of

parameter Wc ∈ R
dh×dm receives ht+�t−1 and compresses it to pro-

duce the dm-dimensional code Z ∈ Z where Z denotes the motion
manifold. It is worth mentioning that this compression brings the
benefit of denoising input data. Now the encoder mapping Enc :
Q → Z is completed.

3.2.2. Latent motion manifold with the Wasserstein regularizer

We adopt the Wasserstein regularizer for matching the distribution
EZ := EPQ [E(Z | Q)] of the motion manifold to the desired prior
distribution PZ . Unlike the variational auto-encoder [RMW14], the
sequential networks trained with the Wasserstein regularizer allows
non-random encoders to deterministically map inputs to the latent
codes, and thus it helps randomly sampled or interpolated points
in the motion manifold correspond to plausible motions. Refer to
[TBGS17] for more details about the Wasserstein regularizer.

3.2.3. Decoder with joint rotation and joint velocity

Our decoder model consists of two kinds: One decoder learns the
joint rotation and the other learns joint rotational velocity as shown
in Figure 2. Both decoders are based on the GRU while the connec-
tion structures of the two are different. Unlike the rotation decoder,
the velocity decoder adds a residual connection between the input
and the output to construct joint rotation. Each decoder then gener-
ates the reconstructed joint angle sequence in reverse temporal order
as suggested by [SMS15]. The decoders are trained simultaneously
with backpropagation.

This dual decoder model is based on the idea of [SMS15]. By
combining the two decoders, we can alleviate the limitations of in-
dividual decoder models. The rotation decoder shows strength when
reconstructing long-termmotions because it learns joint angle itself.
Conversely, it may cause pose discontinuity between frames. The
velocity decoder has the advantage of reconstructing continuous hu-
man motion as it outputs difference between consecutive rotations,
which is usually small and easier to learn. However, training veloci-
ties tends to be unstable in a long-term sequence because the longer
the motion is, the more error is accumulated. As our two decoders
have contrasting strengths and weaknesses, when combined, they
complement each other in synergy.

Unlike previous studies about motion prediction, recognition
and manifold [BBKK17, MBR17, HSKJ15, FLFM15, PGA18] in
which either only the joint rotations or the joint positions are used,
our model considers both the joint rotations and positions in the mo-
tion reconstruction loss term, LR (see Equation (8)). Loss with joint
angles has the advantage of preventing errors such as inconsistent
bone length or deviation from human motion range, and thus learn-
ing with joint angle loss can generate plausible motions. However,
rotation prediction is often paired with a loss that averages errors
over joints by giving each joint the same weight. The ignorance of
varying influence of different joints on the reconstructed motion can
yield large errors in the important joints and degrade the quality of
the generated poses.

The joint position loss minimizes the averaged position errors
over 3D points, which better reflects perceptual differences between
poses. To combine both joint rotations and positions in the motion
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Figure 2: Structure of our sequential networks for constructing the motion manifold.

reconstruction loss LR, we add an FK layer that computes the joint
positions from the joint rotations. This allows for calculating the loss
between the joint positions of the target motion and the reconstruc-
tion motion. The FK module is valid for network training because
its output is differentiable with respect to joint rotation.

Finally, ourmethod reconstructs themotion in the reverse order of
the input sequence. Reversing the target sequence has an advantage
in learning in that the first output frame of the decoder needs only
to match the last frame input of the encoder, which allows for a
continuous transition of hidden space vectors from the encoder to
the decoders. Refer to [SMS15] for a theoretical background on this
approach. Details of our decoder are explained next.

Joint rotation decoder. The unfolded schematic diagram of the
joint rotation decoder is shown in the upper row in Figure 2. It
first transforms an element of the motion manifold z ∈ Z to a dh-
dimensional hidden space vector with a linear layer of parameter
Wr
e ∈ R

dm×dh . Then, conditioned by the hidden space vector repre-
senting the future frames, the GRU and a linear layer outputs the
reconstructed pose q̂ri at the i-th frame given its next pose q̂ri+1:

hDec
r

i = GRUWDecr (h
Decr

i+1 , q̂ri+1), (2)

q̂ri =WrT
o hDec

r

i , (3)

whereWDecr ∈ R
3njoint×dh is learning parameter of the GRU andWr

o ∈
R
dh×3n joint is the parameter of the linear layer.

Note that, as mentioned earlier, the decoder uses the reversed in-
put motion as the target motion, so the reconstruction is performed

in the order of Q̂(t+�t−1):t = [q̂t+�t−1, . . . , q̂t ]. Unlike the encoder,
the decoder uses the reconstructed result of the previous frame as the
input [MBR17, LZX*17]. This is equivalent to the noise scheduling
[BVJS15] without parameter tuning for long-term reconstruction,
and it also helps prevent the overfitting. The initial input q̂rt+�t to
the GRU is set zero because there is no reconstruction result of the
previous frame. The reconstructed joint rotations are used to calcu-
late the angle loss with respect to the target motion, and are also
used to calculate the position p̂ri through the FK layer.

p̂ri = Forward Kinematics (̂qri ). (4)

After the last pose q̂t is generated, the joint decoder mappingDecr :
Z → Q is completed.

Joint velocity decoder. The joint velocity decoder has the similar
structure to the joint rotation decoder. The main difference is that it
has a residual connection to generate q̂v

i .

hdec
v

i = GRUWDecv
(hDecv

i+1 , q̂v
i+1), (5)

q̂v
i =W v T

o hDecv
i + q̂v

i+1, (6)

p̂v
i = Forward Kinematics (̂qv

i ), (7)

whereWDecv ∈ R
3njoint×dh andW v

o are the learning parameters. This
residual network learns the difference between the current frame
pose q̂v

i and the previous frame pose q̂v
i+1. Therefore, the model

predicts the angle difference or velocity and integrates it over time.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



318 D-K. Jang & S-H. Lee / Constructing Human Motion Manifold with Sequential Networks

Figure 3: Each loss term is evaluated from the data processed in the network pipeline shown with black arrows. Red arrows indicate the data
used for the individual loss terms.

After the last pose is generated, the joint velocity decoder mapping
Decv : Z → Q is completed.

3.3. Training the motion manifold

We model a number of loss functions, each of which contributes
to enhancing the quality of the motion generated from the motion
manifold from different perspectives. To reduce the reconstruction
loss, we employ two kinds of loss functions: motion reconstruction
loss LR that encourages a motion to be reconstructed after going
through the encoder and decoder, and manifold reconstruction loss
LM that helps a latent vector be reconstructed after going through the
decoder and encoder. In addition, we include Wasserstein loss LW
that penalizes the discrepancy between PZ and the distribution EZ
induced by the encoder, and an adversarial loss LG to achieve more
natural motions from themotionmanifold. Figure 3 shows overview
of our loss functions.

Motion reconstruction loss. The motion reconstruction loss pe-
nalizes the difference between the motion and the reconstructed mo-
tion, which is obtained by encoding the motion followed by decod-
ing it. Specifically, we measure the discrepancy of both the joint
rotation angle q and the joint position p as follows:

LR = Lang + wpLpos, (8)

Lang =
n joint∑
i

‖ q̂ri − qi ‖ + ‖ q̂v
i − qi ‖, (9)

Lpos =
n joint∑
i

‖ p̂ri − pi ‖ + ‖ p̂v
i − pi ‖, (10)

where ‖ · ‖ is the Euclidean norm and wp (= 5 in our experiment)
is the weight of the position error.

Manifold reconstruction loss. A latent code sampled from the
latent distribution should be reconstructed after decoding and

encoding. Manifold reconstruction loss encourages this recipro-
cal mapping between the motions and the manifold space. To this
end, we apply L1 loss similar to [LTH*18]. We draw a motion
manifold vector Z from the encoded motion sequences and recon-
struct it with Ẑr = Enc(Decr(Z)) and Ẑv = Enc(Decv (Z)), where
Z = Enc(Qt:(t+�t−1) ).

LM =‖ Ẑr − Z ‖1 + ‖ Ẑv − Z ‖1 . (11)

Wasserstein regularizer loss. In order to make the manifold space
have a particular desired prior distribution so that we can efficiently
sample from the distribution, we use theWasserstein regularizer that
penalizes deviation of the distributionEZ of the latent manifold from
the desired prior distribution PZ .

LW = MMDk(PZ,EZ ), (12)

where PZ (Z) = N (Z; 0, σ 2
z · Id) is modelled as the multivariate

normal distribution with σ 2
z being decided through validation. We

use the maximum mean discrepancy MMDk to measure the diver-
gence between two distributions with the inverse multi-quadratics
kernel k(x, y) = C/(C+ ‖ x− y ‖2

2) withC = 2Zdimσ 2
z .We set σ 2

z =
1 and the dimension of motion manifold space Zdim = 64.

Adversarial loss. Finally, we employ the least squares generative
adversarial network (LSGAN) to match the distribution of gener-
ated motion to the real motion data distribution, that is, to promote
motions generated by our model to be indistinguishable from real
motions.

LD =1

2

∑
Q̂t:(t+�t−1)

[
D(Q̂t:(t+�t−1) ) − 0

]2 +

1

2

∑
Qt:(t+�t−1)

[
D(Qt:(t+�t−1) ) − 1

]2 (13)

LG = 1

2

∑
Q̂t:(t+�t−1)

[
D(Q̂t:(t+�t−1) ) − 1

]2
, (14)
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where the discriminator D tries to distinguish between the recon-
structed motions and the real motions. The discriminator is then
used to help our decoder generate realistic motions.

Total loss. We jointly train the encoder, joint rotation decoder,
joint velocity decoder and discriminator to optimize the total ob-
jective function, which is a weighted sum of the reconstruction loss,
Wasserstein regularizer loss and adversarial loss. The total objective
function of manifold network is:

min
Enc,Decr ,Decv

L(Enc,Decr,Decv )

= LR + λM LM + λW LW + λG LG

(15)

and the discriminator loss is:

min
D

L(D) = λG LD, (16)

whereweighting parameters λM , λW and λG are 0.001, 0.1, and 0.001
determined through validation.

4. Data Pre-Processing

We tested our method with H3.6M dataset. Every motion in the
dataset has the same skeletal structure. All the poses are represented
with the position and orientation of the root and the joint rotations
expressed with the exponential coordinates. For the training, motion
clips of 150 frames are randomly selected from the input motion se-
quence and used to learn a motion manifold. The root position in the
transverse plane is removed and other data are normalized for better
performance. We will explain how motion dataset is processed.

H3.6M dataset. H3.6M dataset [IPOS14] consists of 15 activities
such as walking, smoking, discussion, taking pictures and phoning
performed by seven subjects. We reduce 32 joints in the original
data to 17 joints by removing redundant joints as done by [MBR17],
and configured all data to have a frame rate of 25 Hz. Therefore,
150 frames motion applied to our model cover 6 s. The activities
of subject S5 were used as the test data and those of the remaining
subjects S1, S6, S7, S8, S9 and S11 were used as the training data.
Some motion data contain noises such as joint popping, but were
used without noise removal.

5. Experimental Results

We perform several experiments to evaluate the performance of our
method. First, we compare the reconstruction accuracy of the pro-
posed model with its own variations with some components ablated
as well as the sequence-to-sequence model proposed by [MBR17].
Next, we test random sampling, motion interpolation via motion
manifold, and motion denoising, followed by an experiment for mo-
tion analogies. For these tests, we use the joint rotation decoder to
generate motions. We qualitatively compare the result of motion in-
terpolation and motion analogies with that of [HSKJ15].1 All exper-
iments were conducted with test sets not included in the training set.

1[HSKJ15] is not comparedwith ourswith respect to the reconstruction qual-
ity as it deals only with joint positions and not joint angles.

The supplemental video shows the resulting motions from the ex-
periments.

5.1. Motion and manifold reconstruction

We assess the accuracy of the reconstructed motion Q̂ with respect
to the input motion Q, as well as the accuracy of the reconstructed
motion manifold vector ẑ with respect to the motion manifold vec-
tor z obtained by encoding a motion. The results are provided in
Table 1. Generally, the reconstruction accuracy and the data gener-
ation quality of a manifold conflict with each other to some degree.
As our purpose is to achieve a motion manifold that supports not
only the motion reconstruction but also motion generation, it is im-
portant to strike a balance among various performance measures,
and our method should not be evaluated only by the reconstruction
accuracy. This trade-off will be discussed in Section 5.1.1.

The sequence-to-sequence model (Seq2seq) compared with ours
is based on [MBR17]. The only difference is that a fully connected
layer of 64 dimension is implemented between the encoder and the
decoder to construct a motion manifold.

For ablation study, we prepare a set of variations of our model.
The most basic model, denoted S, has only joint rotation decoder
with reconstruction and Wasserstein regularizer losses, without the
FK layer in the network. Next model D is the dual decoder model
by adding the velocity decoder. From the dual model, we make vari-
ations by incrementally accumulating FK layer (DK), adversarial
loss (DKG), manifold reconstruction loss (DKGM, our method).
The last variation DKGMZ is made by concatenating the manifold
vector to the decoder input, that is, [̂qi+1, Z] is used instead of q̂i+1 in
Equations (3) and (5). The idea of this last variation is to prevent the
decoder from forgetting the motion manifold vector. All variations
have the same network weight dimensions and hyper-parameters as
our model. Supplemental material includes details of implementing
the compared models. All models are trained with datasets that in-
clude all action categories.

The accuracy of the motion reconstruction is evaluated for both
the joint rotation decoder (Decr) and the joint velocity decoder
(Decv). Both the Euclidean distances of joint angle errors (Lang, also
denoted as Er) and joint position errors (Lpos or Ep) are used for each
decoder for the reconstruction loss. As for the reconstruction qual-
ity of the motion manifold vector, we measure the L1-norm (Ez) of
the difference between the motion manifold vector z obtained by

Figure 4: Ground truth motions (green) and reconstruction results
(coral) of our method from H3.6M dataset.
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Table 1: Reconstruction errors of joint angles (Er) and joint positions (Ep) at sample time frames, and the reconstruction error of the manifold vector (Ez).
The error is measured with respect to the general actions (all the actions in the DB) in H3.6M dataset.

1.2s 2.4s 3.6s 4.8s 6.0s

Model Er Ep Er Ep Er Ep Er Ep Er Ep Ez

rot 0.889 0.957 0.971 0.978 0.990 1.040 1.097 1.078 1.195 1.181 0.317
S vel – – – – – – – – – – –

rot 0.823 0.855 0.868 0.923 0.925 0.999 1.039 1.032 1.164 1.167 0.264
D vel 0.856 0.889 0.843 0.889 0.877 0.961 1.008 1.081 1.127 1.212 0.259

rot 1.020 0.561 1.099 0.682 1.110 0.706 1.195 0.761 1.261 0.822 0.196
DK vel 1.347 0.600 1.353 0.698 1.323 0.723 1.382 0.756 1.391 0.809 0.288

rot 0.986 0.549 1.077 0.657 1.094 0.679 1.180 0.726 1.251 0.810 0.188
DKG vel 1.343 0.589 1.345 0.682 1.332 0.702 1.405 0.765 1.415 0.834 0.307

rot 0.997 0.541 1.066 0.659 1.084 0.668 1.162 0.696 1.258 0.780 0.182
DKGM (ours) vel 1.356 0.590 1.381 0.673 1.338 0.694 1.400 0.735 1.406 0.792 0.293

rot 0.906 0.629 0.909 0.730 0.886 0.724 0.954 0.754 1.053 0.788 0.164
DKGMZ vel 0.877 0.635 0.883 0.703 0.848 0.689 0.916 0.706 1.030 0.815 0.157

rot – – – – – – – – – – –
Seq2seq vel 0.875 0.863 0.870 0.954 0.891 1.059 1.039 1.177 1.154 1.258 0.216

encoding a motion sequence and the reconstructed vector ẑr ob-
tained by sequentially decoding z and encoding it.

Table 1 shows the reconstruction errors of our method and oth-
ers for the datasets containing all action categories (15 actions in
H3.6M dataset). The reported errors are the average of 30 motions
randomly selected from a test dataset. A total of 150 frames are di-
vided into five intervals, and errors (Er, Ep) are measured for each
interval to investigate the temporal characteristic. The lowest and
the next lowest errors are marked in bold and with underline, re-
spectively.

We first compare with respect to Er and Ep errors. Comparing S
and D, the latter has lower Er and Ep errors, which suggests that the
joint rotation and velocity decoders complement with each other to
reduce the errors. Comparing D and DK, the latter reduces Ep error
significantly while only mildly sacrificing Er error. DKG has lower
Er andEp errors thanDK, but higher errors thanD and S. This shows
that adversarial loss slightly reduces reconstruction error. However,
it turns out that the adversarial loss helps reconstruct the original
behaviours, as will be discussed in Section 5.1.2. Examining the
error of DKGM and DKGMZ, we can see that adding manifold
reconstruction loss does not significantly affect the reconstruction
errors while explicitly feeding the manifold vector to the decoder
helps reduce the errors.

Next, we examine manifold reconstruction error, Ez (= LM).
Comparing D and S, it is remarkable that D reduces Ez error even
without any manifold-related loss term. However, adding FK layer
to reduce joint position error slightly increasesEz for the velocity de-
coder while it is decreased for the rotation decoder. Comparing DK
and DKG, we can see that adversarial loss has negligible effect to
the manifold reconstruction error. Subsequently,DKGM reduces Ez
slightly by adding the manifold reconstruction error, and DKGMZ
achieves the lowest Ez error by explicitly feeding the manifold vec-
tor to the decoder.

Seq2seq [MBR17] shows less Er than our model, but Ep is higher.
In addition, our model shows better Ez errors with respect to rotation

decoder. Figure 4 visualizes the reconstruction results with our
model over time in comparison with the ground truth input motion.

5.1.1. Tradeoff between joint angle, joint position and motion
manifold

This experiment examines the effect of different settings of the
weight λW for the regularization on the reconstruction errors (Lang
and Lpos) and on motion manifold (LM) on the test set. We employed
Dmodel for this experiment to exclude the effect of other loss terms.
Figures 5(a) and (b) show that the joint reconstruction errors de-
crease as λW becomes smaller, which makes D model closer to a
pure autoencoder, sacrificing the ability to enforce a prior over the
motion manifold space while obtaining better reconstruction loss.
For the same reason, Figure 5(c) shows that the motion manifold
reconstruction error LM decreases as λW becomes larger.

As our goal is to obtain an effective motion manifold that is able
to generate realistic motions, it is important to find a suitable set of
weight parameters that compromise among different qualities.

5.1.2. Adversarial loss and explicit feeding manifold vector

Here, we discuss the effects of adversarial loss (Section 3.3) and
explicitly feeding motion manifold vector to the decoders on mo-
tion quality. First, Table 1 shows that DKG decreases Er from DK
only slightly. However, Figure 6 shows that DK cannot properly
reconstruct the original motion, reconstructing only posing motion
from the original motion of posing with walking. In contrast, DKG
improves the overall motion quality by better reconstructing the be-
haviours in the original motion. Comparing our method (DKGM)
and DKGMZ, the latter results in lower Er and Ep than our method
as shown in Table 1. However, Figure 6 reveals that DKGMZ
fails to capture walking motion. We conjecture that directly feed-
ing manifold vector to decoder reduces reconstruction loss by ex-
plicitly retaining the motion manifold vector, but tends to converge
to mean pose. In contrast, our method successfully reconstructs the
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Figure 5: Reconstruction errors of joint angle, joint position and manifold according to training step while adjusting λW for H3.6M dataset.

Figure 6: Reconstruction results of different loss combinations for
a posing while walking motion. Supplementary video includes full
motions.

Figure 7: Results of randomly sampling motions from the motion
manifold PZ.

original posing with walking behaviour. This observation suggests
that, while the joint reconstruction error is an important indicator of
motion quality, it may not appropriately assess the motion quality
in terms of reconstructing the original behaviours.

5.2. Random motion samples

To verify whether the latent motion manifold can create meaningful
motions, we randomly sampled PZ and decoded to obtain motions.
We extracted 30 random samples from the motion manifold learned
with H3.6M dataset. Figure 7 is the results of random sampling from

PZ , and one can see that our method can create various actions in-
cluding sitting, crossing the legs and resting on the wall. This result
suggests that our motion manifold and decoder can create a wide
range of plausible behaviours.

To examine the importance ofWasserstein Auto-Encoder (WAE),
we experimented random sampling by replacing the WAE regular-
izer with a simple L2-norm ‖z‖2 loss. Sampled motions from this
method, as shown in Figure 7 (right), often show unnatural poses
and extreme joint rotations. This experiment shows that the WAE
regularizer not only helps achieve the desired motion manifold dis-
tribution but also improves quality of motion sampling.

5.3. Motion interpolation with latent motion manifold

We can interpolate two different motions by encoding them into the
latent motion manifold and then performing linear interpolation be-
tween the encoded motion manifold vectors. The resulting interpo-
lated motion created by our method is not just frame-by-frame inter-
polation, but may contain meaningful transition between the input
motions. For example, interpolating sitting down motion and photo
taking motion creates hand raising motion to prepare to take a pic-
ture from sitting posture. When waiting and smoking motions are
interpolated, an interesting motion that a character seems tired of
waiting and starts to smoke is created. The capability of creating
such meaningful motions is due to the Wasserstein regularizer that
shortens the distance between the encoded vectors by matching the
motion manifold to the multivariate normal prior. Figure 1 and the
supplemental video show the interpolated motions.

Figure 8 compares our model with [HSKJ15] with respect to in-
terpolation. See supplementary material for the implementation of
[HSKJ15]. For the interpolation from sitting to walking (top) and
from sitting down to taking photo (bottom), our model shows a nat-
ural transition between two motions while [HSKJ15] creates some-
what averaged motion between the two motions.

5.4. Denoising motion data

Our motion model can denoise motion data by projecting it to the
latent motion manifold and decoding the motion manifold vector to
obtain a reconstructed motion. Since the motion manifold is con-
structed only from human motion capture data, any element in the
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Figure 8: Interpolation from sitting to walking (top) and from sit-
ting down to taking photo (bottom) made by our model (left) and
[HSKJ15] (right).

Figure 9: Denoising experiment. Three poses are shown from the
noise corrupted motion (orange), denoised motion by our method
(coral) and the ground truth motion (green). Two motions (top and
bottom) are shown.

manifold is likely to be decoded to natural motion. Therefore, de-
noising effect occurs when noisy motion data is projected to the
motion manifold. We experiment on the denoising capability of our
method in the similar manner as in [HSKJ15]. We generate noise
corrupted motion by randomly setting joint angles to zero with a
probability of 0.5, which makes half of the joint angle information
meaningless. Figure 9 shows the denoised results which are quite
similar to the ground truth motions.

5.5. Motion analogy

Through motion analogy, we can understand how our model or-
ganizes motion manifold to represent the feature of actions. De-
tails about analogy can be found in [Whi16]. We perform vector
algebraic operations with the latent vectors encoded from different
motions and explore how the model organizes the latent space to
represent motions. Figure 10(a) shows that subtracting a motion
manifold vector for ‘sitting down’ motion from ‘taking photo with
sitting down’ motion creates a vector representing ‘taking photo’
motion. The character is standing because a zero vector in our mo-
tion manifold corresponds to an idle standingmotion. Subsequently,

Figure 10: Motion analogy experiments performing arithmetic op-
erations in the motion manifold.

Figure 11: Motion analogy experiment with [HSKJ15].

when an encoded ‘walking’ motion manifold vector is added, the
motion vector becomes a vector for ‘taking photo with walking’ mo-
tion. Figure 10(b) shows a similar analogy among ‘walking’, ‘smok-
ing with walking’ and ‘sitting’ motions.

Figure 11 shows the experiments of performing analogy with
[HSKJ15]. Figure 11 (top) is the result of taking photo (left) and
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taking photo with walking (right) that correspond to Figure 10(a),
and Figure 11 (bottom) shows smoking and smoking with sitting
to compare with Figure 10(b). One can see that the motion mani-
fold obtained with [HSKJ15] does not support analogy on the mo-
tion manifold.

6. Conclusion and Future Work

In this paper, we presented a novel sequential network for construct-
ing a latent motionmanifold for modelling humanmotion. Themain
contributions of our method are the combined decoder for the joint
rotation and joint velocity, and considering both the joint rotations
and positions by adding the FK layer in both decoders, which im-
prove the reconstruction accuracy. In addition, we composed a set of
loss functions, each of which contribute to enhancing the quality of
motions generated from the motion manifold space from different
aspects. The capabilities of our model have been examined through
various experiments such as random sampling, motion interpola-
tion, denoising and motion analogy.

Our method has several limitations. First, as a sequence-to-
sequence framework, the performance of our model degrades if
trained to produce motions longer than 10 s. The supplementary
video shows randomly generated motions with our network being
trained to learn 300 frames (approx. 13 s). Resulting motions tend
to lose details. This limitation may be alleviated by employing an
attention mechanism [LPM15, BCB14]. Second, the encoded mo-
tions tend to be smoothed in the process of matching the latent mo-
tion manifold to the prior distribution through the regularizer. For
example, motions that contain frequent hand shaking, such as ‘walk-
ing with dog’ or ‘discussion’ motions in H3.6M dataset, lose fine
details when reconstructed. Overcoming these limitations will be
important future work.

We only considered joint rotations in the encoder, but incorpo-
rating additional information, such as joint positions and veloci-
ties, may be beneficial to achieve better motion qualities. In addi-
tion, in the process of learning a motion manifold, loss terms to
check validity of motions, such as joint limit, velocity limit and
foot sliding, are not needed as all input motion data are considered
valid. However, when an actual motion is sampled from the man-
ifold and applied to an environment, such criteria may need to be
checked.

Most studies onmotion space learning have focused on represent-
ing a wide range of motion categories with a compact representa-
tion. In fact, the range of motion categories is only one aspect of the
variedness of humanmotions. Even a singlemotion category such as
walking exhibits widely different styles depending on gender, body
scale, emotion and personality. Developing a motion manifold that
can generate stylistic variations of motion is another important fu-
ture research direction.
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