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Abstract
Following Archimedes’ Principle, any object immersed in a fluid is subject to an upward buoyancy force equal to the weight
of the fluid displaced by the object. This simple description is the origin of a set of effects that are ubiquitous in nature, and
are becoming commonplace in games, simulators and interactive animations. Although there are solutions to the fluid-to-solid
coupling problem in some particular cases, to the best of our knowledge, comprehensive and accurate computational buoyancy
models adequate in general contexts are still lacking. We propose a real-time Graphics Processing Unit (GPU) based algorithm
for realistic computation of the fluid-to-solid coupling problem, which is adequate for a wide generality of cases (solid or hollow
objects, with permeable or leak-proof surfaces, and with variable masses). The method incorporates the behaviour of the fluid
into which the object is immersed, and decouples the computation of the physical parameters involved in the buoyancy force of
the empty object from the mass of contained liquid. The dynamics of this mass of liquid are also computed, in a way such that
the relation between the centre of mass of the object and the buoyancy force may vary, leading to complex, realistic beha viours
such as the ones arising for instance with a sinking boat.

Keywords: Physically Based Animation, Animation

ACM CCS: • Computing methodologies → Physical simulation

1. Introduction

Solid-to-fluid coupling of submerged objects has been an ac-
tive research focus in the Computer Graphics field since its
beginnings [CL95]. This topic is of particular importance in
games [GO16], Virtual Reality, simulators and other interactive ap-
plications. Despite this extensive research, a comprehensive inter-
active model for realistic fluid-to-solid coupling is still a relatively
open problem, as most solutions use either extremely simplified
proxy geometries [GO16] or resort to complex, accurate off-line so-
lutions [LJF16]. One of the main difficulties arising in this context
is the requirement of accurate yet fast computation of the variables
involved in the motion dynamics, taking into account all possible
situations such as, among other things, water leaking and moving
inside the buoyant object. We will refer to fluid, liquid and water
as synonyms, as the ideas presented here are adequate to represent
buoyancy in other fluids.

We propose a real-time algorithm for an approximate yet real-
istic computation of the two-way coupling problem. There are re-
cent satisfactory solutions for the solid-to-fluid part of the prob-

lem [JSMF*18], hencewewill focus on the fluid-to-solid interaction
part. The key concept behind our approach is that, with a reasonable
parameterization, the textures traditionally used for texture mapping
can be readily used to store and compute all needed quantities for
the physical simulation. The main contributions of this work can be
summarized as follows.

• To the best of our knowledge, this is the first method able to com-
pute the main meaningful quantities needed to describe the buoy-
ancy movement of a 3D model (e.g. centre of gravity, moments
of inertia and centre of buoyancy) in real time, see Figure 1. Our
method is capable to deal with deformable or shape-varying ob-
jects, as it is able to compute the required quantities on the fly.

• We propose a new data structure and algorithm for representing
dynamically the liquid inside a submerged 3D object, together
with the mechanisms for computing how it enters and moves in-
side when the object changes position while submerged. This al-
lows to simulate the floating behaviour of a submerged object in a
realistic way, which is, to the best of our knowledge, not possible
until now in a general way.
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Figure 1: Simulated boat and buoy in complex dynamic conditions. Our approach leverages GPU power to compute in real time the main
physical magnitudes necessary to provide realistic fluid-to-solid coupling. Our technique is also able to model water leaks inside, and the
resulting buoyancy behaviour, as is the case with sinking objects.

• The algorithm does not require manual processing of the input
models, as it uses the parameterizations usually employed for tex-
turing objects in the artistic stages of the scene creation process.

2. Previous Work

The effect of liquids on solid objects partially or totally submerged
has been a research topic in Computer Graphics from its very begin-
ning [Bri15], always with the objective of achieving visual realism.
Offline methods proposed in the literature provide accurate solu-
tions, though not suitable for interactive applications. In this latter
context, the proposedmethods usually employ simple proxy geome-
tries [GO16, Gou19], which often lack realism.

2.1. Offline methods

[CMT04] proposed a method for solving the two-way coupling by
modelling rigid bodies as theyweremade of fluid. The rigidity of the
objects is established by applying constraints on the velocity field.
[GSLF05] provided a model for solving solid-water coupling, valid
for infinitesimal deformable thin surfaces like cloth or rigid concave
shells, using particles. Later, [BBB07] proposed a variational ap-
proach that allows robust and accurate solutions on relatively coarse
Cartesian grids, restating the classical pressure projection step as a
kinetic energy minimization. This idea is roughly similar to other
approaches to rigid body contact, where a robust coupling between
fluid and arbitrary solid simulations always yields awell-posed sym-
metric positive semi-definite linear system that can be solved with
well-known numerical algorithms. [RMSG*08] presented an algo-
rithm for the accurate computation of two-way coupling of fluids to
rigid and deformable solids and shells. Later, [RMEF09] developed
an accurate and direct method to compute the tangential velocities
for solid-fluid coupling.

[AIA*12] developed a two-way coupling method of Smoothed-
particle hydrodynamics (SPH) fluids and arbitrary rigid ob-
jects based on hydrodynamic forces. This momentum-conserving

method is based on taking samples on the surface of rigid bodies
with boundary particles that interact with the fluid. [GB13] pre-
sented a method based on the combination of unilateral incompress-
ibility, mass-full FLIP, and blurred boundaries, which proved to be
well-suited to the animation of large-scale fluids. In a later contri-
bution, [GKSB13] proposed a model-reduced simulation schema
based on basis enrichment for two-way solid–fluid coupling, ef-
fectively combining data-driven or artistically derived bases with
more general analytic bases derived from Laplacian eigenfunctions.
[YSZH13] proposed an efficient framework, based on a unified par-
ticle model for fluid–solid coupling, including both rigid and elas-
tic bodies. Their technique applies different coupling schemes for
fluid–solid and solid–solid coupling, respectively.

[DHB*16] presented a technique for computing the surface of
liquids taking into account scale effects such as surface tension,
but their interaction with solid objects is limited to splashing liq-
uids only. [AVW*15] showed a technique for modelling thin liquid
films over arbitrary shape surfaces. [TLK16] presented an Eulerian
method for solid–fluid coupling. Simultaneously, [LJF16] presented
a two-way coupling framework that couples incompressible fluids to
reduced deformable bodies. [CMT*16] presented a method to com-
pute wave accelerations by using a dispersion kernel, which uses
a spatially variant filter provided by pyramid kernels that compen-
sate for low-frequency truncation errors, and a shadowed convolu-
tion operation that accounts for obstacle interactions by modulat-
ing the dispersion kernel. [ANZS18] presented an extended parti-
tionedmethod for two-way solid–fluid coupling, where the fluid and
solid solvers are treated as black boxes with limited, exposed in-
terfaces, which facilitates modularity and code reuse. On the other
hand, [WW16] presented a design method for the fabrication of
floating objects. In this proposal, the user chooses the desired ori-
entation and waterline, and then an optimization procedure is used
to compute the internal required configurations. When printed in
3D, the final objects float in the desired positions. From another
point of view, there are several studies that provide bio-mechanical
computational models for articulated bodies moving through flu-
ids [KWC*10, SLST14]. The interaction of water absorbed by some
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materials has also been extensively studied, proposing models to
describe the change in appearance and to simulate the liquid flow
inside the geometry [PC13, LAD08, FBGZ18]. [ZB17] presented
an algorithm to simulate two-way coupling between fluid and de-
formable solids using a cut-cell discretization method in order to
calculate boundary conditions at the solid-fluid interface. [TL19]
showed a grid-based fluid solver for viscous fluids and solid objects.

None of these methods was designed with real-time, interactive
applications in mind, but to be integrated in more accurate, but com-
plex solvers for off-line computations. Instead, the ideas presented
in our proposal are intended to be accurate, yet fully usable in real
time in interactive environments, such as video-games and VR
applications.

2.2. Interactive methods

As already mentioned, in the game industry the use of proxy geome-
tries for water-to-solid interaction is commonplace [GO16, Gou19].
On the other hand, solid-to-water coupling has been extensively
studied in the Computer Graphics literature. One example is the
work by 2007, who presentedWave Particles, which offers a simple,
fast and unconditionally stable approach to wave simulation. The
model converts wave particles into a height field surface, which is
warped horizontally to account for local wave-induced flow. As a
direct extension of that seminal work, [JSMF*18] presented Wa-
ter Surface Wavelets, a technique for modelling waves using a
wavelet transformation that discretizes the liquid motion in terms of
amplitude-like functions that vary over space, frequency and direc-
tion. This overcomes some limitations of the CFL condition and the
Nyquist limit, and allows to simulate highly detailed water waves at
very large visual resolutions. Among other simple extensions, the
paper presented two-way solid–fluid coupling from solid obstacles
like boats and buoys by emitting waves using circular shapes as ini-
tial sources. The fluid-to-solid interaction is computed by means of
an integration over a simple proxy surface. [MMCK14] developed a
method that unifies the dynamics between solids and fluids by sam-
pling the rigid geometry with particles. Although these solutions are
intended for real-time applications, the fluid-to-solid coupling in all
cases is handled in a generic, proxy-based way.

[WP12] proposed a method for describing the motion of rigid
bodies underwater replacing the inertia tensor by the Kirchoff ten-
sor. This methodworks accurately for completely submerged bodies
where the complete surface is in contact with water. [TMFSG07]
proposed a method for simulating realistic breaking waves at the
shoreline. As already mentioned, our aim here is to go beyond these
simple couplings by using the actual geometry and properties of the
objects themselves to perform the calculations. Also, we incorpo-
rate a simple, yet effective model of the (possibly) dynamic interior
of the object, achieving effects which, to the best of our knowledge,
were not possible until now.

3. A Comprehensive Buoyancy Model

Our method computes efficiently all the variables involved within
buoyancy and solid–liquid interaction of partially submerged ob-
jects (including centre of mass, total mass, tensor of inertia, and

many others, see Figure 2), considering two main cases. The first
one is for homogeneous, dry solid objects interacting with water,
whereas the second deals with dynamic behaviour, for instance,
such as water entering a sinking boat or a wet plush Teddy bear that
has fallen into a pool. For this, our implementation requires the ob-
ject surface to have a watertight parametrized mesh, which could be
done with any parameterization, such as those traditionally used for
regular texture mapping. As these computations can be performed
interactively, our technique can deal with deformable (or with dy-
namically variable shape) objects by treating them at each frame as
if they were rigid, but recomputing their geometric properties on-
the-fly. To this end, we use the information stored in a few specifi-
cally tailored textures, see next section.

For the case of non-homogeneous objects, such as a plush Teddy
bear partially submerged in water which diffuses through its body,
we additionally compute an ancillary structure called water graph
(WG). This structure is a simple geometrical graph that is used to
approximate the local distribution and propagation of water within
the object taking into account its internal geometry. Each node of the
WG represents the empty space inside the object, which eventually
may be filledwith liquid. The graph edges represent the interconnec-
tions among these empty spaces, modelled as variable radii pipes.
The WG is flexible enough to model a wide variety of situations,
from hollow objects, where liquid moves freely inside the object,
to objects of permeable material, where liquid tends to spread uni-
formly following a diffusion equation. This allows for an accurate
representation of the sinking behaviour in different situations, for in-
stance, the Teddy bear already mentioned, or a sinking boat as seen
in many AAA video-games [GO16]. The use of a non-regular data
structure, that is the graph, instead of a simple voxelization, tends
to reduce the number of elements necessary to accurately describe
a given object. The two cases (homogeneous rigid or non-rigid, and
non-homogeneous) can be easily superimposed by adding together
their respective physical quantities, thus leading to a comprehen-
sive and realistic water-to-solid interaction model that can be in-
tegrated into real-time applications. For the solid-to-water part of
the simulation, we used the publicly available implementation from
[JSMF*18]. This case is discussed in the following section.

3.1. Object physical properties

The method we propose here requires an evaluation of the physical
magnitudes corresponding to the dry object being modelled: object
mass, inertia tensor and drag coefficients. These are automatically
computed, either as a pre-processing stage when the object is not
deformed over time, or as part of the set of functions computed at
each frame of the simulation.

Mass. The mass of any solid object bounded by a volume V can be
simply calculated as

M =
�
V

ρ dv, (1)

that is, the integral of body density at each point over the volume of
the body. In homogeneous objects, ρ is constant:

M =
�
V

ρ dv = ρ
�
V

dv. (2)
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Figure 2: Overview of our method: from the parameterized input
model, we compute two additional textures (i.e. the position and the
area-vector textures), and we use them to further compute the pa-
rameters of the physical model (e.g. submerged volume, centre of
buoyancy, and inertia tensor). Finally, we compute the penetration
of water into the geometry of the model, and use an ancillary struc-
ture, the water graph, to obtain the relevant physical magnitudes.

By means of the Divergence Theorem, this last expression can be
written as an integral over the surface of the object [BBWSH17].
To this end, we identify an arbitrary vector field, s.t. ∇ · r = 1, so
we chose r = (0, y, 0) for our case (in a coordinate system where y
points upwards, as in OpenGL and Vulkan), resulting in

M = ρ

∫ ∫ ∫

V

∇ · rdv = ρ
�
∂V

n · rds. (3)

If the surface of the object has an adequate parameterization, this
integral can be approximated as the sum over the texels of a texture:

M = ρ
∑
texels i

aiciyi = ρ
∑
texels i

Ay
i yi, (4)

where ci = ni · (0, 1, 0), yi is the yworld coordinate of the texel and
ni is the unit normal stored for the nth texel, ai is the texel area and
Ay
i is the texel area vector projected in the y direction (so it is a scalar

quantity), with · the dot product. We call this texture the Area Vector
Texture (AVT) and each texel i stores Ai = aini. The area projected
in any direction d can be simply computed as Ai · d.
When the density ρ cannot be considered constant (e.g. inside

a hollow boat), we can use a modified per-texel density ρ̃i which
represents an average of the changing density. However, if the ob-
ject is not deformable, the exact values could be computed in a pre-
processing stagewith anymethod of choice. The approximation pre-
sented here can be used only when no extreme accuracy is required,
or when approximate real-time computations are adequate. Other-
wise, in specific cases like with the hollow boat, we could use a
specifically tailored solution, such as using a mass concentrated at
the object boundary. In this latter case, we can replace the above
equation with

M = ρ
∑
texels i

Ay
i ti, (5)

where ti is the object thickness associated with the ith texel, which
can be defined as a per-texel constant in a 2D texture, or by means of
a specific mathematical formula. In any case, it is important to note
that the mass of the dry object remains constant during the simula-
tion and therefore can be pre-computed.

Centre of mass. The above calculation can be repeated for the ob-
ject’s centre of mass, resulting in

C = ρ
�
∂V

nTTds, (6)

where

T =
⎡
⎣x

2/2 0 0
0 y2/2 0
0 0 z2/2

⎤
⎦ . (7)

This step is followed by a discrete summation over the texture texels
that mimics the previous development.

Inertia tensor. Again, following the same reasoning, for the inertia
moments of the object, we obtain the same expression as before,
I = ρ

�
∂V

nTTds, but this time T , according to [BBWSH17], is given

by

T =
⎡
⎣ x2y/2 0 0 x3/3 0 0

0 y2z/2 0 0 y3/3 0
0 0 z2x/2 0 0 z3/3

⎤
⎦. (8)

3.2. Water-to-object coupling

When an object is submerged in water, its interaction depends on
the exact water surface in contact with the object. For the method we
present here, the water surface is computed according to any specific
method used to model the water behaviour, which can be performed
by a simple parameterized function, as commonly done in video-
games [GO16], by managing the time steps of a fluid simulation
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Figure 3: Submerged volume computation (striped region): Texels
whose normal vector has negative vertical component (green texels)
contribute to the submerged total volume. On the other hand, tex-
els with normal vector with positive vertical component (red texel)
subtract volume from the total.

method over 2D or 3D grids, by Gerstner waves, or even by simpler
analytic functions. The only requirement of our algorithm is to be
able to retrieve a water level f for any position on the submerged ob-
ject surface. In our implementation, we use a simple analytic form,
plus the technique (and code) by Jeschke et al. [JSMF*18].

Submerged volume computation. In order to compute the por-
tion of submerged volume, we apply the following expression, as
illustrated in Figure 3,

SV =
�
Vsub

dv, =
�
∂Vsub

n · rds, (9)

where we have to integrate over the submerged volume Vsub only,
instead of the full object volume V .
Unlike Equation (4), in this case the integration limits should take

into account the water surface in order to compute the submerged
volume correctly.

It is easy to note that the submerged volume Vsub is enclosed be-
tween the liquid level and the surface of the object located below
it, thus Vsub can be computed integrating between these two limits.
This process is depicted in the left liquid column in Figure 3, where
the volume between the water surface and the red texel would be
subtracted from the water volume between the green texel and the
water surface, resulting in the correct volume being computed. Also,
observe that we use the AVT to correctly project the texel area in the
direction of the y axis (i.e. water coordinates). Figure 4 shows two
different texel configurations, whose volume computations take into
account their respective orientations. At this point, it is important to
remark that the surface normals, encoded in the AVT, already con-
tain the upper/lower surface information, so we could directly com-
pute this as

SV =
∑

texelssub i

−Ayi ( fi − yi), (10)

where fi is the fluid’s surface height at texel position; Ayi is the
vertical component of the area vector corresponding to the texel

Figure 4: The volume is computed as the product of the height and
projected area Ayi , which in turn is the product of texel total area
and the cosine of the angle between texel normal and vertical axis.

(Ayi = Ai · (0, 1, 0)), with Ai the texel area times its unit normal,
stored in the AVT; (xi, yi, zi) is the texel position in world space, and
texelssub are all the texels that are below the liquid surface. To test
this latter situation, we use an additional texture, called position tex-
ture (PT), which stores the 3D texel positions in object coordinates.
The PT computing process consists of taking each of the faces of
the object mesh and transforming them into texture space. It is im-
portant to note that the UV mapping in the PT must be bijective.
Otherwise, we would lose mapping information during the compu-
tation of its inverse function, and as a result it may be impossible to
determine the world coordinate positions for some texels. Note that
situations like the one depicted at the right liquid column in Fig-
ure 3 do not require special care, as the upper part of the object will
be discarded by the test that checks if the texel is below/above the
water surface.

Buoyancy computation. The centre of buoyancy is defined as the
centre of mass of the fluid volume displaced by an immersed body.
The submerged body receives an upwards buoyancy force applied
at the centre of buoyancy. The other force is gravitational pull due to
the object weight, which acts downwards through the object’s centre
of gravity. The comparative strengths of these two forces determine
whether the object sinks completely, or only partially until it reaches
a stable buoying situation. The relative position of these centres de-
termines whether this buoyancy is stable or not, see Figure 5. This
relative position may also introduce a rotational torque τ upon the
floating object.

The centre of buoyancy is computed in a similar way as before:
given the PT and the fluid model, we compute it for the submerged
texels as

Csub = ρwater

∑
texelssub i

nTi Tiai, (11)
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(a)

(b)

Figure 5: Forces acting on a submerged object. The relative posi-
tion between the centres of buoyancy and mass determines whether
a buoyancy condition is stable or not.

where ri is the ith texel position stored in the PT, Ti is as in Equa-
tion (7) for the ith texel and ai is the corresponding texel area (stored
in the AVT).

Drag. The drag force arises opposite to the translation at each point
of the object itself. The expression for the drag magnitude by the
liquid should be evaluated for all the surface of the object in contact
with the liquid, that is the submerged part of the surface:

Di = 1

2
ρCdA

Vi
i V

2
i , (12)

where Cd is the drag coefficient, ρ is the fluid density, AV
i = Ai ·

V/|V | is the texel area projected on to Vi, which is the texel rela-
tive velocity in world coordinates with respect to the surrounding
fluid. Here care must be taken, as this velocity is the sum of the ob-
ject translational velocity plus the rotational velocity of the point
where the ith texel is evaluated, and taking also into account the liq-
uid velocity if necessary (e.g. if the object moves together with the
liquid, then no translational drag should be considered). The trans-
lational velocity is constant for the whole object. To evaluate these
local velocities, we need to know the exact positions of every texel,
as provided by the PT.

On the other hand, the rotational velocity of each surface point
depends on its distance di to the centre of mass. The velocity of each
texel is calculated as ω × di, where ω is the object angular velocity.
The final force is computed as the sum over all the texels involved.
In cases where the object density is not constant, or it is permeable

and can contain liquid inside, a WG should be determined using an
automatic algorithm, or it can be created manually, see Section 4.
If the graph is constructed automatically, the number of created
nodes depends on the segmentation algorithm. In cases where the
graph is manually defined, artists choose the number of nodes
according to their own criteria. Clearly, both methods could be used
simultaneously.

Physical magnitudes update. The physical simulation of a rigid
body involves the resolution of a number of simple first-order dif-
ferential equations:

d

dt
Y(t ) = d

dt

⎡
⎢⎢⎣
x(t )
R(t )
P(t )
L(t )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v(t )
ω(t ) ∗ R(t )

F (t )
τ (t )

⎤
⎥⎥⎦ , (13)

where x stands for the object position, R is the current rotation that
needs to be updated, P is the momentum, F is the total force on
the object, τ is the current torque and L is the angular momen-
tum [WB97]. These equations are solved with a straightforward Eu-
ler integration scheme, but more general applications would need to
use a more careful implementation [ES04, Mil10, BF89]. However,
for all our tests, our direct implementation proved to be both stable
and accurate enough for real-time requirements.

4. Hollow/Permeable Objects

As already mentioned, we represent the water content in the inte-
rior of a solid object with a WG, which models the distribution and
movement of liquidwithin the object. Figure 6 shows different water
graphs for the Stanford Bunny model according to alternative mesh
segmentation. Please note that different nodes have different sizes,
representing their different capacities for liquid collection. When
the liquid moves inside the object, flow is modelled as a liquid trans-
fer among the nodes through the graph edges. The edges, in turn,
model the amount of liquid that may flow between a pair of nodes
at each unit of time. The topology of the graph reflects the descrip-
tion of the object’s interior according to user semantics (as typical
geometry meshes for real-time applications only describes object’s
the exterior). Thus, hand-made graphs allow artists to represent spe-
cific situations, for example, a sealed room in a damaged boat, or an
object in which water is permeating only at specific locations. The
following subsections explain all these elements in detail.

4.1. Automatic graph construction

First, we generate a segmentation of the object input triangulated
mesh. The segmentation algorithm computes a Shape Diameter
Function (SDF) for all facets and applies a graph-cut-based algo-
rithm over these values [YL18], see Figure 6. Then, the algorithm
computes, for each sub-mesh, the sphere centred at the sub-mesh
centroid that minimizes the quadratic error between the sphere and
the sub-mesh vertices. Finally, we connect two nodes with an edge
if the respective sub-meshes are adjacent in the original model. Al-
ternatively, as only a relatively sparse and small graph is needed,
we also let the user manually provide the graph with the respective
node capacities.
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Figure 6: Water Graph construction: mesh segmentation and node creation for different number of sub-meshes. Same colours refer to the
same regions.

4.2. Water graph update

Once the WG has been created and the node capacities have been
set, we can evaluate the (coarse) dynamics of fluid inside the object.
The first stage is to compute the amount of water that enters (or
permeates) the object. This can be trivially accomplished by adding
an arbitrary amount of water to any node in the graph. However, to
increase realism and at the same time to let the user have finer con-
trol, in our implementation we define an extra permeability texture
with the same parameterization as before, where the user defines the
amount of water that enters at each point (i.e. each texel) of the ob-
ject. For each texel the user specifies a constant permeability factor,
which wemultiply by the volume of water in contact with this area if
the area is submerged, to get a per-texel water content. These quan-
tities are accumulated in a single GPU pass, and distributed to the
corresponding nodes, whose capacities are already known given the
prior segmentation done before. The permeability texture can be up-
dated at any time, thus allowing for completely dynamic situations
to be simulated (e.g. a naval battle).

For the dynamics of fluid inside the object, at each computation
step (e.g. each frame), we use a communicating vessels approxima-
tion, which has proven to be effective and practical in most situa-
tions. Each node can transfer liquid to any other node with which
it is connected to, taking into account the respective node capaci-
ties, the edge maximum water flow capacity and the flow direction
imposed by gravity. A special case may arise with water and some
diffusive materials, as surface tension may pull upwards a certain
amount of water.

A straightforward implementation of this idea may lead to a cum-
bersome algorithm. See, for instance, the situations depicted in Fig-
ure 7, where we have three nodes with equal capacity connected
as shown, with different amounts of liquid each, and at different
heights. The direct implementation of the water flow algorithm
would lead to node B sending (some) water down to C, and in a
later iteration, A sendingwater to B. If we think that, in the end, fluid
particles are indistinguishable for our purposes, it would be far more
practical if A could send water directly to C, avoiding the two-stage

Figure 7: Two simple graphs, each with three nodes of equal capac-
ity: Node A has some liquid, node B is full while node C is empty.
The nodes are connected by regular edges, and located as shown in
the figures (upper means higher altitude).

process described. Function findDischargeNode, explained below,
is responsible for this implementation, taking into account that a
lower node cannot send water upwards to any upper node, or pass
through an upper node in its way to a lower node.

The whole process is controlled by an algorithm, which, at each
frame, iteratively calls the method findDischargeNode for each
node in the graph. This method is presented in pseudo-code in
Algorithm 1, which, given an initial node ns for which we want to
find a node to transfer water to (called discharge node), recursively
tries all nodes connected to the current one to find a suitable one.
If during the discharge node search we found a node that is higher
than the source node, the process must be stopped because that node
is an energy barrier, thus water cannot flow through it. This means
that liquid present in the source node cannot move forward in that
path.

Repeating this process for each node every frame, and searching
paths in a random way, ensure a feasible solution to the problem of
liquid movement inside the object.

If a node still has some water capacity, it is selected and returned
by the function. If no suitable node is found, the algorithm returns
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Algorithm 1. findDischargeNode - Algorithm to find a node to
discharge to

the null node, meaning that, at the moment, the starting node
cannot pass its fluid content to any other node in the graph.

Once a suitable node nd (or set of nodes) is found, we use a
method to actually transfer the corresponding quantity of water from
the start node ns to nd , using Poiseuille’s Law [Bat00], which states:

�ns→nd = π�Pr4

8μL
, (14)

where �ns→nd is the flow rate across a cylindrical pipe, �p is the
pressure drop, r the segment radius, L the path length between
ns → nd and μ the liquid viscosity. In the case of a diffusion-like
process, �p should be replaced by the difference in concentration.
The algorithm could be easily modified to account for multiple dis-
charge nodes instead of a single one, by simply continuing the re-
cursion and returning a list of suitable nodes instead of a single one.
Then, a small algorithm to prioritize these nodes should be imple-
mented, depending on their relative positions with respect to the
starting one.

4.3. Computing the physical magnitudes of the graph

As before, it is necessary to compute the physical magnitudes (e.g.
mass, centre of mass and tensor of inertia) of the graph, as they
will be needed for the final composed system object plus graph.
The mass of the graph is given by a discrete version of the previous
expression:

MG = ρ f

∑
n

vn, (15)

where the sum is over the graph nodes n, ρ f is the fluid density and
vn is the occupied volume of the nth node.

Figure 8: Computation of the resultant centre of mass (C) and in-
ertia tensor (I) of a non-homogeneous body (in grey) with absorbed
liquid (in blue, with CG and IG). The liquid magnitudes are com-
puted from the WG. (Please note that the plus sign does not denote
the algebraic sum, as the centre of mass and inertia tensors must be
composed together as described in the text.)

The centre of mass of the fluid represented by the graph is

CG = ρ f

MG

∑
n

rnvn, (16)

where rn = (xn, yn, zn) is a node position. Finally, the inertia tensor
IG is given by the discrete counterpart of the one used above:

IGxx =
∑

(y2n + z2n)mn IGyy =
∑

(x2n + z2n)mn

IGzz =
∑

(x2n + y2n)mn IGxy = IGyx = −
∑

xnynmn (17)

IGyz = IGzy = −
∑

ynznmn IGxz = IGzx = −
∑

xnznmn.

4.4. Final Model Computation

To compute the effect of the different physical magnitudes for
the submerged object and the water that has entered (e.g. as in a
sinking boat), we simply have to combine them. The total mass
of the object plus the graph can be simply computed as M +MG;
the combined centre of mass is a weighted sum of the previously
computed centres of mass, CT = MC+MGCG

M+MG
; and the inertia tensor

now is I + IG. In the latter case, extra care must be taken, as both
centres of inertia must be in the same coordinate system before

Table 1: Computation times (in ms) for different position and area texture
sizes. Impermeable objects (e.g. buoy simulation) do not have a water graph
defined. On the other side, permeable objects (e.g. drowning ship) have a
graph defined, thus the computation times are higher. Computation times
neither depend on the number of vertices nor on the number of faces in the
geometric mesh. Also, the sizes of the textures used by the method not nec-
essarily should match the textures used for rendering.

Computation times (ms)
Texture size Impermeable Permeable

512 1.7 2.4
1024 2 3.1
2048 3 4.2
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Figure 9: Submerged volume of a sphere of radius R = 0.5 as a function of the immersion depth, from d = −0.5 (not submerged) to d = 0.5
(totally submerged). Water surface is at depth d = 0 (Left). Middle: Analytical value and approximations computed with our method for
different AVT and PT resolutions (from 32 × 32 to 1024 × 1024 texels). Right: our results with texture size 1024 × 1024 compared with the
analytical solution and the method proposed by the Unity commercial package AQUAS2020.

Figure 10: Frames from an animation, showing the buoyancy dynamics simulation. The buoy is not permeable, thus there is no liquid inside
the volume. Using texel positions, the wet portions of the object were rendered accordingly to generate more realistic results. The rightmost
frame is generated by exaggerating the effect of the solid-to-fluid coupling technique used [JSMF*18]. It can be seen the perturbation produced
by the buoy on the fluid around it.

the summation can be performed. This can be easily performed by
means of the parallel axis theorem [HV28, Abd17], and translating
both moments of inertia to the axis that goes though the total
centre of mass CT. Note that this is trivial for the graph, but the
calculation for the submerged object is a bit more involved (see
Figure 8).

5. Implementation and Results

We implemented our technique using GPGPU techniques based on
the OpenCL and OpenGL APIs. Time measures were gathered on
an Intel(R) Core(TM) i7 920 at 2.67GHz with a NVidia GeForce
GTX 1080 video card. The reduction steps were implemented using
a freely available OpenCL demo code provided by Apple [App18].
The accuracy of our method is shown in Figure 9, where we present
the submerged volume of a sphere of radius R = 0.5 at different
depths using multiple PT and AVT texture sizes. We can observe
the typical trade-off between required memory and precision: For
instance, a set of 128 × 128 textures can describe a simple volume,
such as a sphere. On the rightmost subfigure, we compare our result
using the largest texture size (1024 × 1024) with the analytical
solution and the method used in the Unity [Uni19] commercial
package called AQUAS2020 [Dom20], which is designed to model

and simulate flat water and related effects, such as buoyancy.
AQUAS2020 computes the buoyancy force as a resultant of many
forces, one for each mesh triangle. The magnitude of each force is
calculated as the volume displaced by the corresponding triangle.
This process is only applied for triangles facing down, which
explains the large error and the linear relation between displaced
volume and depth when the sphere is totally submerged. Further-
more, the use of polygons to compute geometry measurements
turns an efficient GPU implementation difficult and leads to costly
processing times (e.g. a buoyancy simulation of 15k triangles
Stanford Bunny takes 22 mS approximately). Apart from this, our
texture-based approach also allows to easily implement an LoD
technique, simply by changing texture sizes.

As an example of our method, the buoy shown in Figure 10 is
simulated using the method proposed in this paper. Note that at the
rightmost frame of this sequence, the effect of the solid-to-fluid cou-
pling technique by [JSMF*18] was greatly exaggerated, for compar-
ison purposes only. The same sequence is shown in Figure 11 ren-
dered in orthographic projection andwith the force vectors acting on
the buoy overlapped to the renders. It is interesting to note how the
buoyancy force changes over time according to the submerged ge-
ometry. The computation of this force uses the PT and AVT, which
are computed directly from the geometry without supervision.
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Figure 11: Frames of the buoy simulation at different times, showing the weight and buoyant forces in orthographic projection. We can see
the relative position and magnitude of the buoyancy force (green line) and the weight force (red line) according to the submerged portion of
the model. Clearly, the weight force is constant because the object is not permeable, thus its mass does not change over wtime.

Figure 12: Frames of the drowning ship simulation, the top-left figure shows the most permeable zone, both from the side and from the front
of the ship.

In Figure 12 several frames of a drowning ship are shown. The
initial ship can be seen at Figure 1. The object permeability is de-
fined in a per-texel basis simulating a damaged section, as shown in
the top-left inset. The same object is shown in Figure 13 but with a
different Permeability Texture: in this case, the damaged section is
located at the boat stern. The compute times are shown in Table 1.
It is important to emphasize that compute times do not depend on
the geometry mesh defined by the object, as the method is com-
pletely texture-based.

In Figure 14, a set of frames of an unstable buoyancy simulation
are shown. As the centre of buoyancy is located below the centre of
mass, the object does not recover its initial rotational position. See
also Figure 5(b) for a diagram of this effect. On the other hand, the
presented method can also be used to simulate objects whose mass
distribution changes over time. In these cases, the physical magni-

tudes needed for the simulation must be computed at each frame
of the simulation, as they change continuously. In Figure 15, a ball
with variable mass density is depicted. The mass density function is
shown as a colour map over the ball, where red zones indicate higher
mass density, whereas green zones indicate lower density levels. The
distribution is also shown on each frame as insets at the bottom left
corners. In this case, unlike the cases of the ship and buoy simula-
tions where themass density was constant over time, themagnitudes
must be re-computed at each frame. This simulation shows that the
computing times remain suitable for real-time applications even in
cases where physical magnitudes cannot be pre-computed. Further-
more, our model is capable of working with deformable models if
position and area textures are computed at each frame.

Figure 16 shows a plush object that tends to absorb liquid through
its surface, and water propagation follows a diffusion profile. In this
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Figure 13: Frames of the drowning ship simulation, the red spots of the mesh at the figure on the left show the permeable zone, shown both
from the side and from the back of the ship.

Figure 14: Different frames of an unstable buoyancy simulation. The ball has a uniform mass density over its surface, thus its centre of mass
is located at the geometric centre, but the centre of buoyancy is always located below the centre of mass, generating an unstable movement
(i.e. the object does not tend to recover its initial rotation, as opposed to a boat, where the mass is concentrated at its bottom). Compare with
the situation in Figure 15.

case, several water graphs are generated automatically from differ-
ent mesh segmentation, as previously explained and shown in Fig-
ure 6. Figure 17 shows a few frames of the inflatable balloon demo.
In this example, a deformable mesh was used to model the geometry
changes between a deflated and an inflated balloon. As the volume
occupied by the object increases when it is filled with hot air, the lift
force also increases.

6. Discussion and Further Work

The computation of all physical values (i.e. mass, centre of mass and
inertia tensor) is intimately related, and cannot be assignedmanually
unless the artist knows the behaviour of the model well. Otherwise
the resulting dynamics will be inadequate and, in the end, look unre-
alistic. The approximations described here were developed with the
idea of being used in the context of real-time applications, such as
simulators or video-games. If more precision is required, all these
values would need to be computed with a more accurate mechanism
(e.g. Monte Carlo integration).

If Level-of-Detail techniques are used, the method presented
here easily accommodates to this situation: simply by replacing
the PT by a lower resolution version would suffice to reduce the
amount of computation, which grows linearly with texture reso-
lution. This is empirically confirmed in Table 1. In extreme cases,
all the computations could be performed on the polygons them-

selves, without any textures, moving the cost from the pixel to the
geometry pipeline, much in the same way as Mesh Colour Textures
work [Yuk17].

Our technique depends on a reasonable parameterization and tex-
ture resolution. This is not a limitation in itself, as every model is
processed and provided a parameterization and texture in modern
graphics pipelines. Also, PTs are in a sense similar to Geometry
Images (GI) [GGH02], but it must be taken into account that GI
are intended as a connectivity-free resampling of an arbitrary shape
into a regular 2D grid, requiring a reparameterization of the input
object. Instead, PTs simply record, for each texel, its position when
projected to 3D space, requiring no reparameterization efforts or any
further processing.

Although our technique is presented using a height-field water
representation, it could be easily used with a particle-based repre-
sentation. One alternative could be to use marching cubes to recover
the fluid surface, while another possibility could be re-defining
the texel depth computation using the particles of the simulation
themselves.

The method was developed with the intention of being fully
automatic. However, the user can easily intervene to manually edit
or define certain parameters (e.g. the permeability texture and the
mass distribution along the object or the liquid graph) with the
aim to achieve some desired effects, such a specific behaviour. It is
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Figure 15: Frames of a time-dependent mass distribution simulation. Our method can also be used with time-variable mass objects (e.g. a
small boat with people moving on it). Textures used as data structures allow the method to compute physical magnitudes in real time (see the
insets that show the mass distributions). In the figure, the colour map shows the mass density function at each frame: Red zones show higher
mass density and green zones, lower. The yellow line is the weight force and the blue line the buoyant force. In this simulation, the total mass,
centre of mass and inertia tensor were computed at each frame using square textures of 1024 × 1024 texels. Average compute time is 3.2 ms.

Figure 16: Frames of a plush bunny simulation using thewater graphs automatically generated, as shown in Figure 6, with a diffusion profile.

important to note that the permeability texture can be computed
interactively, that is allowing dynamic destruction of objects.

With respect to the model processing, it should be noted that the
model should be rendered at its outer layer of polygons, so care must

be taken not to send the interior polygons to be processed by the al-
gorithm. However, for interior polygons, the graph can be used not
only for the liquid that enters the object, but also to model any inte-
rior feature that the user might be interested in taking into account
in the calculations.
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Figure 17: Frames of a inflatable air balloon simulation showing how the method works for an animated mesh. In this case, the object is
submerged in a gaseous medium (i.e. air). The red line shows the weight force, whereas the green line shows the lift force.

Our method is not free of drawbacks, though. Perhaps the most
important is that computations in texture space may not reflect the
actual properties of the object, as they can only compute values at
the outer layer of the object, and assume that the interior is homo-
geneous, which is not always true. One simple and effective way
to solve this is to use our graph-based approximation to compute
the lack of homogeneity we have not considered so far. Complex
density distributions may arise inside an object, requiring more
involved graphs which could be difficult to capture. This can be
solved with an automatic computation of the graph shape that takes
into account the mass distribution within the object in addition to
the exterior shape, which is left as future work. For these cases,
the only option at the moment is to manually create the associated
graph. From an implementation point of view, the mass distribution
can be as arbitrary as needed, because if it is constant the different
quantities can be pre-computed and the method would work without
changes.

Our method also requires closed surfaces. In the case of concave
objects (or hollow objects without a side), such as a bucket partially
submerged in water, the algorithm as presented would fail because,
for the bottom part, our algorithm would only consider two texels,
one at each side of the bucket bottom, and not take into account the
actual volume of the submerged part. However, this problem could
be easily solved by adding an external, invisible polygon that closes
the object at the upper side. This would require some extra work.
The automatic detection of concave parts will be left as future work.
Finally, the graph-based model is practical, efficient and intuitive,
clearly useful for real-time applications not concerned with accu-
racy. However, a more physically realistic model could probably be
derived. We think this is a promising venue for further research,
which is left as future work.

7. Conclusions

We have presented a technique that allows to simulate interactive
and realistic buoyancy behaviours for objects submerged in liquids.
This technique is based on two main components: an efficient
GPU-based algorithm for the computation in real time of the
physical quantities involved in the object motion (e.g. mass, centre
of mass, and tensor of inertia), and a graph-based algorithm and
data structure for the simulation of permeable objects or with
complex, mobile interiors. Together they allow interactive and

realistic simulations of both rigid and deformable objects, both
permeable and impermeable, and in variable conditions/situations.
To the best of our knowledge, it is the first time this is possible
in the literature, opening interesting applications for video-games,
virtual reality and other interactive applications.
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