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Figure 1: Visual comparisons of the results of the linear-time RVS algorithm and our sublinear-time force computation algorithm. (a) and
(b) show the sierpinski3d graph drawn using (a) RVS and (b) SLG, our sublinear force computation algorithm with geometric sampling
displaying the grid structure of the graph better with a lower runtime; and (c) and (d) show the 1138_bus graph drawn using (c) RVS and
(d) SSC-G, our sublinear force computation algorithm with spectral sparsification and combinatorial sampling, untangling the structure of
the graph better with a lower runtime.

Abstract
In this paper, we present a new framework for sublinear time force computation for visualization of big complex graphs.
Our algorithm is based on the sampling of vertices for computing repulsion forces and edge sparsification for attraction force
computation. More specifically, for vertex sampling, we present three types of sampling algorithms, including random sampling,
geometric sampling, and combinatorial sampling, to reduce the repulsion force computation to sublinear in the number of
vertices. We utilize a spectral sparsification approach to reduce the number of attraction force computations to sublinear in
the number of edges for dense graphs. We also present a smart initialization method based on radial tree drawing of the BFS
spanning tree rooted at the center.
Experiments show that our new sublinear time force computation algorithms run quite fast, while producing good visualization
of large and complex networks, with significant improvements in quality metrics such as shape-based and edge crossing metrics.

1. Introduction

Recently, big complex networks are abundant in various application
domains, such as the internet, finance, social networks, and systems
biology. Examples include web and autonomous system graphs,
social media networks, protein-protein interaction networks and
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biochemical pathways. Good visualization can be useful in under-
standing the hidden structure of such big complex networks, em-
phasizing cognitive perception, leading to new insights and possi-
ble future prediction. However, visualization of big complex net-
works is extremely challenging due to scalability and complexity.
For example, visualization of big complex networks often produces
hairball-like tangled visualizations, which raises difficulties for hu-
man perception and cognition.

Force-directed algorithm is the most popular algorithm for graph
visualization. The algorithm consists of computing repulsion force
for each pair of vertices, and computing attraction force for each
edge. The running time for force computation is O(|V |2) for re-
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pulsion force, and O(|E|) for attraction force computation for a
graph G = (V,E) with a vertex set V and edge set E. However,
this quadratic runtime complexity means the algorithm does not
scale well to big networks. Faster spring algorithms [QE00, HJ04]
use an approximation of the repulsion force computation based on
the Barnes-Hut n-body method [BH86], reducing the runtime to
O(n logn) in practice.

Recently, the RVS (Random Vertex Sampling) force-directed al-
gorithm which uses random vertex sampling to compute repulsion
forces in linear runtime was presented [Gov19b]. Instead of com-
puting repulsion forces for all pairs of vertices, RVS select a subset
of the vertex set, the update set U with size |U | = |V |0.75 and for
each vertex u in U , repulsion forces are computed with vertices in
a random sample set S with size |S|= |V |0.25. Furthermore, a fixed
subset repulsion force computation is performed for each vertex
with a fixed-sized subset of O(1) size in each iteration. However,
this method does not reduce attraction force computation, resulting
in O(|V |2) runtime for dense graphs.

More recently, a similar random edge sampling to reduce the
runtime of attraction force computation was presented [Gov19a].
However, the runtime reduction obtained by the edge sampling ap-
proach is small in proportion to the loss in quality of the results.

In this paper, we present a new framework for sublinear time
force computation for visualization of big complex graphs, which
combines graph analysis and smart initialization with sampling-
based force computation to reduce the runtime while producing
high quality drawings, improving limitations in [Gov19b,Gov19a].

Roughly speaking, we use U with size |U | = |V |0.5 and S with
size |S|= |V |0.2 to achieve sublinear time repulsion force computa-
tion with respect to the number of vertices, where our experiments
have shown that these sizes for U and S obtain significant runtime
improvement over RVS while still obtaining better quality metrics.
We use the spectral sparsification method, which reduces the num-
ber of edges in a graph to O(n logn), to achieve sublinear time at-
traction force computation with respect to the number of edges for
dense graphs with |E|= O(n2).

To maintain the quality of the graph drawing, we use initializa-
tion using the radial drawing of the BFS spanning tree rooted at the
center, as well as geometric sampling and combinatorial sampling
methods to sample more important vertices.

Our experiments demonstrate that our sublinear time force com-
putation algorithms both run faster than existing linear time force
computation algorithms and obtain significant improvements in
quality metrics.

More precisely, we present the following contributions:

1. We present a framework for sublinear time force computation,
which consists of analysis, initialization, and force computation.
We use spanning trees and spectral sparsification for analysis,
radial tree drawing of BFS spanning tree rooted at the center for
initialization, and sampling for force computation.

2. We present the SL (SubLinear) family of algorithms, combin-
ing BFS (Breadth-First Search) tree rooted at the center of a
graph and radial tree drawing for initialization with vertex sam-
pling with size |U |= |V |0.5 and S with size |S|= |V |0.2 to reduce

the runtime of the repulsion force computation to sublinear in
the number of vertices. We present SLR (Sublinear Random),
SLG (Sublinear Geometric), and SLC (Sublinear Combina-
torial) algorithms which use random sampling, geometric sam-
pling, and combinatorial sampling respectively in the force com-
putation step.

3. We present the SS (Spectral Sparsification) family of algo-
rithms, which utilizes spectral sparsification as an analysis step
to reduce the runtime of attraction force computation. Spectral
sparsification reduces the number of edges to O(n logn), which
reduces the attraction force computation to sublinear in the num-
ber of edges for dense graphs. The SS family includes SSR (SS
Random), SSG (SS Geometric), and SSC (SS Combinatorial)
algorithms, which combines the different vertex sampling meth-
ods. We also present the SS-G family of algorithms, which adds
back all edges of a graph to the drawings produced by SS algo-
rithms.

4. We implement and evaluate the SL, SS, and SS-G algorithms
using experiments with a variety of benchmark datasets and
compare with RVS, using runtime, quality metrics and visual
comparison. Experiments showed that the SL algorithms attain
average runtime improvements on the force computation steps
with 20% over RVS, while achieving average improvements of
104.5% for shape-based metrics and 30% for edge crossing. SS
algorithms obtain average runtime improvement of 28%, aver-
age 57.5% improvement on shape-based metrics, and average
28.5% improvement on edge crossing. SS-G obtains average
130% improvement on shape-based metrics and average 26%
improvement on edge crossing.

Figure 1 shows example comparisons of our algorithms and
RVS. Figure 1 (a) and (b) show the sierpinski3d graph drawn with
RVS and SLG respectively, showing that our method detangle the
mesh structure better. Figure 1 (c) and (d) show the 1138_bus graph
drawn with RVS and the spectral sparsification of the graph drawn
with SSC-G, showing that SSC-G shows the graph structure better
while requiring less time to compute.

2. Related Work

2.1. Spring algorithm

Spring, or force-directed, algorithms model a graph as a system
with attraction forces between neighboring vertices and repulsion
forces between all pairs of vertices. Traditional spring algorithms
include those presented by Eades [Ead84] and Fruchterman and
Reingold [FR91]. Although spring algorithms are able to produce
high quality graph layouts, traditional spring algorithms do not
scale well to larger graphs due to the repulsion force computation
taking O(n2) runtime.

Some faster spring algorithms are available. For example,
Quigley and Eades presented FADE [QE00] which reduces the re-
pulsion force computation to O(n logn) runtime. Hachul and Junger
presented FM3 using a method to compute the repulsion forces be-
tween vertices, where subgraphs with small diameter, called solar
systems, are partitioned and collapsed to obtain a multi-level rep-
resentation [HJ04].
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2.2. Graph Sampling Approach

Graph sampling can be used as a method to address scalability is-
sues in graph drawing. Hong et al [HNM∗18] presented a sampling
algorithm for drawing graphs, which combines random sampling
with biconnected graph decomposition to reduce the runtime of
graph drawing algorithms. Another approach utilizes spectral spar-
sification with topological graph decomposition to attain high qual-
ity samples produced by spectral sparsification with better runtime
efficiency [MHH∗19].

Another way to use sampling is to reduce the number of force
computations required to compute a layout. Gove [Gov19b] pre-
sented the RVS (Random Vertex Sampling) force-directed algo-
rithm. The algorithm utilizes a phyllotaxis initialization. For a
graph G = (V,E), a random subset of vertices is selected as the
update set U with size |V |0.75 and for each vertex in the update set,
repulsion forces are computed between the vertex and another ran-
dom subset of vertices, the sample set S of size |V |0.25. This is re-
peated at most 300 steps, which was found to achieve convergence
by experiment. In addition, each vertex is assigned a fixed-size sub-
set of vertices Cu of size min(15, |V |), where in every iteration of
the force computation, repulsion forces are also computed between
each vertex and its assigned fixed-size subset.

Gove [Gov19a] also presented edge sampling to reduce the run-
time of attraction force computation, where in each computation, a
percentage of the edges are selected, and attraction forces are com-
puted only on the selected edges. However, compared to RVS, the
runtime reduction obtained by the edge sampling approach is small
in contrast to the loss in quality of the resulting drawing.

3. Framework for Sublinear Time Force Computation

This section presents our framework for sublinear time force com-
putation. The framework consists of the following three steps:

1. Analysis: This step is a preprocessing step for graph analysis.
2. Initialization: This step is to compute an initial layout for the

force-directed algorithm.
3. Force computation: This step consists of repulsion force com-

putation and attraction force computation.

We now explain the details of each step. Let G = (V,E) be a
graph with vertex set V and edge set E. G is called a sparse graph
if it has O(n) edges or a dense graph if it has O(n2) edges.

3.1. Analysis

Graph analysis can be combined with force-directed algorithms to
reduce the runtime of the layout computation while retaining qual-
ity. The results of the analysis can be used in the initialization step,
the force computation steps, or both. The graph analysis methods
considered include:

Spanning tree: We compute a BFS spanning tree T rooted at the
center of a graph G, both of which can be computed in linear
time. The center of a graph is a vertex with minimum distance to
all other vertices in the graph. In latter steps of the framework,
the tree T can be used in creating a good initialisation for draw-
ing the graph G, or the position of the vertices in the hierarchy

of the spanning tree can be used in the computation of repulsion
forces.

Spectral sparsification: Spectral sparsification samples edges
while preserving the structural properties of the original graph.
Spielman and Teng proved that every n-vertex graph has a
spectral approximation with O(n logn) edges, and presented
a stochastic sampling method using the concept of effec-
tive resistance, which is closely related to the commute dis-
tance [ST11]. Spectral sparsification can be computed in near
linear time [T∗16].

3.2. Initialization

Initialization is an important part of force-directed algorithms that
can greatly affect the resulting layout. The drastically different lay-
out may be computed for the same graph when starting from differ-
ent initial positions for the vertices, which gives rise to a need for a
method to select a good initial position.

For initialization, we use the radial tree drawing algo-
rithm [Ead91], which can be computed in O(n) time. We use this
algorithm to draw the BFS spanning tree rooted at the center and
use the position of the vertices in the drawing as the initial posi-
tions for the force-directed algorithm. By putting the graph center
and its neighbors near the center of the drawing and peripheral ver-
tices further from the center of the drawing, we expect to obtain an
initial position that places the vertices at a distance that is closer to
their graph theoretic distance than with random initialization.

3.3. Sublinear Time Force Computation

We present algorithms for sublinear time force computations, oper-
ated as the third step of our framework. For repulsion force compu-
tation, we present vertex sampling methods which sample a sublin-
ear number of vertices in each iteration, while for attraction force
computation, we present a spectral sparsification method that re-
duces the number of attraction force computations to sublinear in
the number of edges.

3.3.1. Repulsion Force Computation

For repulsion force computation, we show RepulsionSample (Al-
gorithm 1), a vertex sampling algorithm based on RVS. While RVS
uses update size |U | = |V |0.75 and sample size |S| = |V |0.25, Re-
pulsionSample uses sizes such that |U |× |S| < |V |, giving the run-
time complexity as sub-linear in the number of vertices. Moreover,
fixedSubsetRepulsion in line 10 of Algorithm 1, which represents
the fixed subset repulsion routine from RVS, is only run on a sub-
set of vertices of size |U | × |S| rather than all of |V |, keeping the
runtime complexity sublinear.

FisherYates in line 3 of Algorithm 1 is used to sample the con-
tents of an array in place in linear time and space complexity with
regards to the size of the sample, similar to RVS.

More specifically, we define three versions of the algorithm with
different U and S as below:

Algorithm 0702: U = |V |0.7, S = |V |0.2, O(n0.9) runtime.
Algorithm 0602: U = |V |0.6, S = |V |0.2, O(n0.8) runtime.
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Algorithm 1: RepulsionSample
Input: Vertices V , array of indices I, starting index jprev,

starting index lprev, update size |U |, sample size |S|
1 for i = jprev to jprev +U do
2 v =V [i mod |V |];
3 R = FisherYates(I,S);
4 for r in R do
5 repulsionForce(v ,V [r]);
6 end
7 end
8 for i = lprev to lprev + |S|× |U | do
9 v =V [i mod |V |];

10 fixedSubsetRepulsion(v);
11 end

Algorithm 2: SLR (Sublinear Random)
Input: Graph G = (V,E), update size |U |, sample size |S|
Output: Drawing D of G

1 Initialize D using the radial drawing the BFS tree of G
rooted at the center;

2 I: array of integers from 1 to |V |; // for random sampling
3 jprev = 1; // starting index of update set
4 lprev = 1; // starting index for fixed set fixed-size subset

computation
5 for iterations in 1 to 300 do
6 RepulsionSample(V , I, jprev, lprev, |U |, |S|);
7 AttractionForce(V , E);
8 jprev = ( jprev + |U |) mod |V |;
9 lprev = (lprev + |U |× |S|) mod |V |;

10 end
11 return D

Algorithm 0502: U = |V |0.5, S = |V |0.2, O(n0.7) runtime.

These algorithms run the same as SLR, described in Algorithm
2, only with differing sizes for U and S.

Based on RepulsionSample, we present the SL (Sublinear) fam-
ily of algorithms to compute repulsion forces in sublinear time:

Algorithm SLR (Sublinear Random): uses a random sampling
to compute the sample set S.

Algorithm SLG (Sublinear Geometric): uses a geometric sam-
pling to compute the sample set S.

Algorithm SLC (Sublinear Combinatorial): uses a combinato-
rial sampling to compute the sample set S.

SLR runs exactly the same as 0502 described previously. In ad-
dition, we define two other sampling methods: geometric and com-
binatorial sampling. The geometric sampling performs weighted
random sampling such that vertices located in denser areas of the
drawing are sampled at a higher probability than vertices located
in sparser areas, with the aim of better untangling dense areas of
the graph. The combinatorial sampling partition the vertices based
on their position in the BFS tree level hierarchy, i.e., sample ver-
tices closer to the center c at a higher rate, aiming to untangle the
“hairball” structures of vertices close to the center.

Algorithm 2 describes the SLR algorithm for computing repul-
sion forces. The algorithm uses random sampling to select the sam-
ple set, and the array of indices I used to sample the vertices sim-
ply contains integers from 1 to |V | such that each vertex may be
sampled at the same probability. For all SL algorithms, we use
|U |= |V |0.5 and |S|= |V |0.2.

The SLG algorithm, described in Algorithm 3 defines a 10-by-
10 grid overlaid on the drawing area and group vertices by the grid
cell they belong to. A fixed-size grid has been chosen as the space
partitioning method as it can be computed in constant time, and
determining which cell a vertex falls into when it is moved takes
constant time as well.

We represent the grid using an array R, and in position R[i][ j], we
have an array of indices of vertices located in the grid cell at row i
and column j. We then use weighted random sampling to select the
sample set: vertices in dense cells, where density is defined by the
number of vertices in the cell, are sampled at a higher probability
than vertices in sparse cells.

Lines 4-6 of Algorithm 3 describe the method used to simulate
this weighted random sampling: given an array Ac, we populate the
array with indices of the cells, with denser cells having their indices
repeated more than sparser cells (e.g. we repeat the indices of the
25% densest cells of R to fill out 65% of Ac). The ratios used to
weight the sampling probabilities of cells by their density has been
selected through preliminary experiments, where these ratios were
seen to obtain drawings with better quality.

During the repulsion force computation stage, we sample |V |0.2
indices from Ac, and for every occurrence of the index of a cell r in
the sample, we sample that many vertices to be added to the sample
set - this is shown in lines 10-15 in Algorithm 3.

At the end of every force computation iteration, we recompute
which cell a vertex that had its position changed by the force com-
putation belongs to. We then update Ac as required.

The SLC algorithm in Algorithm 4 partitions the set of vertices
into groups based on the level of the BFS hierarchy. Similar to ge-
ometric sampling, we perform weighted random sampling in se-
lecting the sample set, with vertices belonging to lower levels of
the hierarchy (i.e. closer to the root) given more weight than those
belonging to higher levels of the hierarchy (i.e. closer to leaves).
Vertices closer to the center are likely to be located in the center of
“hairball” structures, and by sampling these vertices more, we aim
to be able to untangle the hairballs better.

Combinatorial sampling was done using weighted sampling,
similar to geometric sampling, but with the weights based on the
BFS hierarchy. We first divide the array of vertices into partitions,
based on the level in the BFS tree (line 2). Each partition roughly
contains 0.2|V | of vertices. We then assign percentages to each par-
tition, such that when selecting vertices for the sample set, we sam-
ple that percentage of the sample set from that partition - lines 7-9
describes how this is done, with multiple calls to RepulsionSample
with different subsets of vertices to be sampled and different sample
sizes. From experiments, we use the percentages of each partition,
starting from the lowest level of the hierarchy, to be 70,15,7,5,3.
As with SLG, these percentages were selected after preliminary ex-
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Algorithm 3: SLG (Sublinear Geometric)
Input: Graph G = (V,E), update size |U |, sample size |S|
Output: Drawing D of G

1 Initialize D using the radial drawing of the BFS tree of G
rooted at the center;

2 R: array representing a regular 10-by-10 grid over the
drawing area of D where each r = R[i+ j×10] is the array
containing the indices of vertices located in the ith row and
jth column of the grid;

3 Ac: array of size |V |; // used for weighted sampling
4 Repeat the indices of the 25% densest cells of R to fill out

65% of Ac;
5 Repeat the indices of the next 50% densest cells of R to fill

out 25% of Ac;
6 Repeat the indices of the 25% least dense cells of R to fill

out 10% of Ac;
7 jprev = 1;
8 lprev = 1;
9 for iterations in 1 to 300 do

10 Randomly sample |V |0.2 indices from Ac into array Igeo;
11 for r in R do
12 count: occurrences of the index of r in Igeo;
13 RepulsionSample(V , r, jprev, lprev, |V |0.5, count);
14 // sample vertices from r based on the number of

times r was sampled
15 end
16 AttractionForce(V , E);
17 jprev = ( jprev + |U |) mod |V |;
18 lprev = (lprev + |U |× |S|) mod |V |;
19 Recompute Ac based on the updated position of vertices;
20 end
21 return D

periments showed that these percentages obtain good quality draw-
ings.

3.3.2. Attraction Force Computation

With dense graphs, attraction force computation takes O(n2) time.
To reduce the runtime of attraction force computation, we compute
a spectral sparsification G′ of a graph G, reducing the number of
edges to O(n logn). By using spectral sparsification, we ensure that
important edges are kept in the sparsified graph. This sparsification
reduces the runtime of the attraction force computation to sublinear
in the number of edges for dense graphs.

We combine this spectral sparsification approach to reduce at-
traction force computations with the vertex sampling methods used
in our SL algorithms to create the Spectral Sparsification (SS) fam-
ily of force computation algorithms. Depending on the vertex sam-
pling method used, we present the following variations:

Algorithm SSR (SS Random): uses random sampling.
Algorithm SSG (SS Geometric): uses geometric sampling.
Algorithm SSC (SS Combinatorial): uses combinatorial sam-

pling.

Algorithm 4: SLC (Sublinear Combinatorial)
Input: Graph G = (V,E), update size |U |, sample size |S|
Output: Drawing D of G

1 Initialize D using the radial drawing of the BFS tree of G
rooted at the center;

2 Partition V into an array of arrays Vp based on the BFS level
each vertex falls under; // 20% for each partition

3 P : array of percentages summing up to 100%; // percentage
of sample set sampled from each partition

4 jprev = 1;
5 lprev = 1;
6 for iterations in 1 to 300 do
7 for i in 1 to |Vp| do
8 RepulseSample(V , Vp[i], jprev, lprev, U , S×P[i]); //

sample vertices from each partition based on the
percentage for that partition

9 end
10 AttractionForce(V , E);
11 jprev = ( jprev + |U |) mod |V |;
12 lprev = (lprev + |U |× |S|) mod |V |;
13 end
14 return D

Algorithm 5: SSR (Spectral Sparsification Random)
Input: Graph G = (V,E), update size |U |, sample size |S|
Output: Drawing D′ of a spectral sparsification G′ of G

1 G′ : spectral sparsification of G;
2 T ′ : BFS spanning tree of G′ rooted at the center;
3 Initialize D′ using a radial tree drawing of T ′;
4 I: array of integers from 1 to |V |; // for random sampling
5 jprev = 1;
6 lprev = 1;
7 for iterations in 1 to 300 do
8 RepulsionSample(V , I, jprev, lprev, |V |0.5, |V |0.2);
9 AttractionForce(V , E′);

10 jprev = ( jprev + |U |) mod |V |;
11 lprev = (lprev + |U |× |S|) mod |V |;
12 end
13 return D′

Algorithm 5 describes the SSR algorithm. This algorithm is de-
fined by replacing the analysis and initialization of SLG (Algo-
rithm 2) with computing the spectral sparsification G′ = (V,E′) of
G = (V,E) and the BFS spanning tree of G′, as well as by using
E′ instead of E for the attraction force computation. Similarly, the
SSG and SSC algorithms are defined by replacing the analysis and
initialization steps of SLG and SSC respectively.

The SS algorithms only draws the sparsified graph G′. To obtain
a drawing of G based on the drawing D′ of G produced by the
SS algorithms, we present the SS-G family of algorithms. SSR-G
takes D′ produced by SSR and adds back all the edges removed by
spectral sparsification to produce a drawing of G. Similarly, SSG-
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G and SSC-G adds back the edges to the results of SSG and SSC
respectively.

4. Experiments

We implemented the repulsion force computations in Javascript as
a replacement for D3’s [BOH11] built-in repulsion force imple-
mentation, based on Gove’s implementation [Gov19b]. We used
NetworkX [HSSC08] to compute the BFS tree rooted at the center
of the graph, the radial tree layout of Tulip [AAB∗17], and the ef-
fective resistance implementation of [ENH17]. We used a Dell Op-
tiPlex 7060 desktop with Intel Core i7, 16 GB RAM. We conduct
four experiments to compare the performance of our algorithms
with RVS:

1. Comparison of 0702, 0602, 0502 with RVS
2. Comparison of SLR, SLG, and SLC with RVS
3. Comparison of SSR, SSG, and SSC with RVS’ (RVS on G′)
4. Comparison of SSR-G, SSG-G, and SSC-G with RVS

In each experiment, for each dataset we executed one run each
per algorithm to determine the runtime.

We use the quality metrics for graph layout based on the shape-
based metric and number of edge crossing. The shape-based met-
ric [EHNK17] measures the faithfulness of graph drawing, i.e., how
well the shape of the drawing represents the structure of the graph.
The shape-based metrics are shown to be effective for measuring
quality of drawings of large graphs [EHNK17].

The experiment was conducted with real-world benchmark
data sets including social networks and benchmark graphs used
in [BGKM10, Gov19b, Wal00]. Table 1 shows the details.

4.1. Comparison of 0702, 0602, 0502 vs. RVS

In this experiment, we compare our SL algorithms using different
update sizes to RVS. Based on the analysis, initialization, and up-
date sizes used for the repulsion force computation, we expect our
methods to run faster than RVS without a significant loss in quality.
We formulate the following hypotheses:

Hypothesis 1: 0702, 0602, and 0502 run faster than RVS; 0502
runs faster than 0602, which runs faster than 0702.

Hypothesis 2: 0702, 0602, and 0502 produce drawings with simi-
lar quality to drawings computed by RVS.

We compute the runtime improvement using the formula:

RI =
t(RV S)− t(SL)

t(RV S)

where t(RV S) is the time taken by RVS and t(SL) is the time taken
by our algorithms. Meanwhile, for improvement on both shape-
based and edge crossing metrics, we use the formula:

MI =
m(SL)−m(RV S)

m(RV S)

where m(RV S) and m(SL) are the metrics computed for RVS and
our algorithms respectively.

Figure 2 shows the runtime improvement of 0702, 0602, and
0502 over RVS, with the averages shown in Figure 5(a). It can be

Figure 2: Runtime improvement of 0702/0602/0502 over RVS

Figure 3: Shape-based metrics improvement of 0702/0602/0502
over RVS

seen that all three obtained lower runtime compared to RVS, val-
idating Hypothesis 1. The runtime improvements are more signif-
icant on larger graphs, as seen with the increasing trend in Figure
2. Comparing between 0702, 0602, and 0502, 0502 obtained the
highest runtime improvements over RVS at an average of 27.5%,
compare to 22.5% for 0602 and 18% for 0702.

From the results of shape-based and edge crossing metrics in
Figures 3 and 4 with the averages in Figures 5(b) and 5(c), we
see that 0702, 0602, and 0502 obtain significant improvement in
quality metrics over RVS, at an average of 104.5% for shape-based
metrics and 30% for edge crossing, validating Hypothesis 2. The
most significant improvements for shape-based metrics are seen
with pesa and crack, while for edge crossing metrics, 1138_bus,
pesa, and crack obtain the three largest improvements.

Comparing between 0702, 0602, and 0502, the average improve-
ment on shape-based are better on 0502 and the average improve-
ment on edge crossing metrics of 0502 only has a 3% difference
to 0602 while the runtime improvement is 5% higher. Therefore,
we can fix the update size to |V |0.5 and the sample size to |V |0.2 to
obtain the lowest runtime without significant loss of quality.

In summary, we validate Hypothesis 1 and Hypothesis 2; 0702,
0602 and 0502 runs faster than RVS, with even better results in
quality metrics.

4.2. Comparison of SLR, SLG, SLC vs. RVS

After confirming the efficiency and effectiveness of 0702, 0602,
and 0502, we conduct experiments comparing the SL family of al-
gorithms, SLR, SLG, and SLC to RVS. Based on the results of Sec-
tion 4.1, we use |U | = |V |0.5 and |S| = |V |0.2 for all experiments.
We expect the SL algorithms to obtain both runtime improvement
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Dataset |V | |E| |E′| RVS 0702 0602 0502 SLR SLG SLC RVS’ SSR SSG SSC
netscience 379 914 489 5.82 5.55 5.42 5.36 5.36 5.48 5.43 5.43 5.37 5.45 5.40
dwt_1005 1,005 4,813 3,018 7.00 6.31 5.81 5.71 5.71 5.89 5.70 5.70 5.41 5.26 5.60
cage8 1,015 6,009 3,052 6.84 6.37 5.91 5.73 5.73 5.98 5.68 5.68 5.57 5.67 5.58
bcsstk09 1,083 9,760 3,287 7.12 6.75 6.23 5.90 5.90 6.07 5.98 5.98 5.67 5.78 5.61
1138_bus 1,138 2,596 1,305 6.88 6.56 5.93 5.71 5.71 5.72 5.70 5.70 5.57 5.72 5.65
polblogs 1,222 16,714 3,773 7.25 6.96 6.42 6.12 6.12 6.16 6.16 6.16 5.71 5.84 5.72
G_13 1,647 6,487 5,298 7.42 6.87 6.19 5.85 5.85 5.35 5.84 5.84 5.29 5.33 5.80
plat1919 1,919 17,159 6,301 8.06 7.31 6.68 6.25 6.25 5.98 6.45 6.45 5.94 6.09 5.93
block_2000 2,000 9,912 6,603 7.94 7.14 6.44 6.15 6.15 6.87 5.93 5.93 5.98 6.12 5.86
sierpinski3d 2,050 6,144 7.99 7.15 6.31 6.16 6.16 6.38 5.97
G_4 2,075 4,769 3,442 7.96 7.13 6.32 5.88 5.88 5.44 5.81 5.81 5.78 5.94 5.82
lp_ship04l 2,166 6,379 3,613 8.11 7.23 6.45 6.17 6.17 6.90 5.76 5.76 5.82 5.98 5.83
yeastppi 2,224 6,609 3,723 8.23 7.10 6.50 5.94 5.94 6.30 5.87 5.87 5.90 6.07 5.92
data 2,851 15,093 9,851 8.70 7.57 6.69 6.33 6.33 6.82 6.30 6.30 6.23 6.40 6.20
oflights 2,905 15,645 10,061 8.84 7.67 6.83 6.33 6.33 6.98 6.37 6.37 6.19 6.33 6.20
tvcg 3,213 10,140 5,634 9.22 8.48 6.45 6.13 6.13 8.85 6.24 6.24 6.24 6.48 6.24
facebook 4,039 88,234 14,566 10.46 9.45 8.50 8.02 8.02 8.76 8.97 8.97 6.61 6.86 6.64
eva 4,475 4,652 4,595 9.77 7.91 6.97 6.51 6.51 7.93 6.35 6.35 6.27 6.54 6.34
3elt 4,720 13,722 8,671 9.85 8.22 7.38 6.74 6.74 8.76 6.35 6.35 6.54 6.81 6.73
us_powergrid 4,941 6,594 4,941 10.10 8.47 6.70 6.54 6.54 9.10 6.63 6.63 6.46 6.70 6.42
add32 4,960 14,422 9,165 10.30 8.67 7.56 6.72 6.72 8.84 7.03 7.03 6.57 6.84 6.47
as19990606 5,188 9,930 9,637 10.35 8.88 7.23 6.66 6.66 9.37 6.59 6.59 6.57 6.84 6.63
migrations 6,025 9,378 8,541 10.73 8.79 7.44 6.79 6.79 10.62 6.70 6.70 6.59 6.50 6.58
bcsstk33 8,738 300,321 16.78 13.67 13.12 11.56 11.56 12.86 10.78
crack 10,240 30,380 20,533 14.27 10.55 9.01 7.88 7.88 10.48 8.20 8.20 8.06 8.63 7.57
ca-HepPh 11,204 117,649 45,370 14.06 11.56 10.41 9.95 9.95 15.50 10.18 10.18 8.90 9.41 8.36
pesa 11,738 45,652 23,885 15.70 11.36 10.08 8.37 8.37 11.65 8.58 8.58 8.24 8.69 7.61
chi 13,174 44,384 14.00 10.91 9.36 8.91 8.91 15.49 9.47
ca-AstroPh 17,903 197,031 17.70 13.59 11.61 11.18 11.18 27.83 9.94

Table 1: Data sets and runtime (in seconds) of algorithms.

Figure 4: Edge crossing metrics improvement of 0702/0602/0502
over RVS

and improvement on quality metrics compared to RVS. We formu-
late the following hypotheses:

Hypothesis 3: SLR, SLG, and SLC run faster than RVS.
Hypothesis 4: SLR, SLG, and SLC perform better than RVS on

shape-based and edge crossing metrics.

Figure 6 displays the improvement in the runtime of SLR, SLG,
and SLC over RVS, with the average shown in Figure 9(a). All
SL algorithms obtain runtime improvement over RVS, on average
12.5% by SLG and 27.5% for SLR and SLC, supporting Hypoth-

(a) Runtime (b) Shape-based (c) Edge crossing

Figure 5: Average improvement of 0702/0602/0502 over RVS

esis 3. In general, the improvement is greater on larger graphs.
It should also be noted that the lower average improvement on
SLG compared to SLR and SLC is highly affected by an outlier,
chi, where SLG runs 40% slower than RVS, whereas most other
datasets has SLG running faster than RVS.

Figures 7 and 8 shows the improvements of the SL algorithms
over RVS on shape-based and edge crossing metrics respectively.
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All three SL algorithms obtain significant improvements over RVS
on both metrics, as seen from the average improvements in Figure
9 (b) and (c) of around 104.5% for shape-based metrics and 30%
for edge crossing metrics, supporting Hypothesis 4. SLG and SLC
obtain the highest improvements on edge crossing metrics, with
SLC being significantly faster than SLG, showing the strengths of
SLC.

crack and pesa, two mesh datasets, score particularly well on
shape-based metrics. On edge crossings, mesh datasets such as
add32, crack, chi and 3elt also score particularly well as does
1138_bus. The only outlier to improvements in edge crossing met-
rics is netscience, a smaller, sparse graph, with other datasets pro-
ducing improvements over RVS.

Figure 17 shows the visual comparison of layouts computed by
SLR, SLG, SLC, and RVS. We see that the SL algorithms are able
to untangle mesh structures better than RVS, such as dwt_1005,
sierpinski3d, and data. These results are consistent with the im-
provements in shape-based metrics. Thus, the results show that the
SL algorithms may be better suited for mesh structures.

In summary, we validate Hypothesis 3 and Hypothesis 4; SLR,
SLG and SLC run faster than RVS, with significant improvement in
quality metrics.

Figure 6: Runtime improvement of SLR/SLG/SLC over RVS

Figure 7: Shape-based metrics improvement of SLR/SLG/SLC over
RVS

4.3. Comparison of SSR, SSG, SSC vs. RVS’

We also conduct experiments to compare the SS algorithms, SSR,
SSG, and SSC, to RVS’ (RVS on G′), to examine the effective-
ness of our spectral sparsification-based approach. As with the ex-
periments in Section 4.2, we use |U | = |V |0.5 and |S| = |V |0.2 for
all experiments. In this experiment, we only draw G′ = (V,E′), a
spectral sparsification of a dense graph G = (V,E), with O(nlogn)
edges, for attraction force computation in sublinear time. Table 1
shows the details of the differences in size between E and E′.

Figure 8: Edge crossing metrics improvement of SLR/SLG/SLC
over RVS

(a) Runtime (b) Shape-based (c) Edge crossing

Figure 9: Average improvement of SLR/SLG/SLC over RVS

As with the SL experiments, we expect that the SS algorithms
will obtain improvements on runtime, shape-based metrics, and
edge crossing metrics over RVS, with visual comparisons showing
similar quality to RVS. We formulate the following hypotheses:

Hypothesis 5: SSR, SSG, and SSC run faster than RVS’.
Hypothesis 6: SSR, SSG, and SSC achieve significant improve-

ment on shape-based and edge crossing metrics over RVS’.

Figure 10 shows the runtime improvement of SSR, SSG and SSC
over RVS’, and Figure 13(a) shows the average runtime improve-
ment. All SS algorithms achieve significant runtime improvement
of average 28% over RVS’, supporting Hypothesis 5. This improve-
ment is more notable among large datasets, as shown in Figure 10
where the curve shows an increasing trend in general. One dataset,
G_13, is an outlier with less improvement than other datasets, how-
ever this is less drastic than that of chi in the SL experiments.

Figures 11 and 12 show the improvement on the shape-based
and edge crossing metrics over RVS’, where on average all SS al-
gorithms obtain significant improvement over RVS, with 58% on
shape-based metrics (Figure 13 (b)) and 28% on edge crossing met-
rics (Figure 13 (c)), which supports Hypothesis 6. SSC and SSR
obtain the two highest average improvements in metrics.

The highest shape-based metrics improvements can be seen on
mesh datasets such as crack, pesa, and 3elt, while us_powergrid
also obtain one of the highest edge crossing metrics improvements.

Figure 18 shows visual comparisons between the layouts com-
puted by RVS’, SSR, SSG and SSC. In these visual comparisons,
only edges that are included in G′ are drawn.

Clearly, SSR, SSG and SSC layouts perform significantly better
than RVS’, highlighting the mesh structure of bcsstk09 and crack,
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Figure 10: Runtime improvement of SSR/SSG/SSC over RVS’

which is consistent with the improvement in quality metrics and
exceeds the expectations. With regards to the comparison between
SSR, SSG, and SSC, there are not much differences in quality met-
rics and visual comparison.

In summary, the experiments support Hypotheses 5 and 6, show-
ing that SSR, SSG, and SSC run faster than RVS’ with signifi-
cant improvement in shape-based and edge crossing metrics. Vi-
sual comparisons show that the SS algorithms can visualize mesh
structures better than RVS.

Figure 11: Shape-based metrics improvement of SSR/SSG/SSC
over RVS’

Figure 12: Edge crossing metrics improvement of SSR/SSG/SSC
over RVS’

4.4. Comparison of SSR-G, SSG-G, and SSC-G vs. RVS

After confirming the effectiveness of our SS algorithms, we con-
duct experiments with the SS-G algorithms to examine the per-
formance of the spectral sparsification-based approach to draw the
original graphs. We take the results of the SS experiments presented
in Section 4.3 and add back all the edges that were removed. We
then compute the shape-based and edge crossing metrics and com-
pare them to RVS.

Figures 14 and 15 shows the improvements on the shape-based

(a) Runtime (b) Shape-based (c) Edge crossing

Figure 13: Average improvement of SSR/SSG/SSC over RVS’

Figure 14: Shape-based metrics improvement of SSR-G/SSG-
G/SSC-G over RVS

and edge crossing metrics over RVS, with average improvements
shown in Figures 16 (a) and (b). SS-G on average obtains shape-
based metrics improvements of around 130% and edge crossing
metrics improvements of about 26% over RVS - these shape-based
metrics improvements are higher than that of SL (Figure 9 (b)) and
SS (Figure 13 (b)). Overall, SSC-G obtains the highest average im-
provements in metrics, followed by SSG-G.

Mesh datasets pesa and 3elt obtain the highest improvements
on shape-based metrics, while 1138_bus obtain the highest edge
crossing metrics improvement.

Figure 19 shows the drawings obtained by SSR-G, SSG-G, and
SSC-G compared to RVS. It can be seen that by drawing all
edges, we obtain drawings that display the shapes of the graph
more clearly than RVS, especially for the graphs 1138_bus and
us_powergrid which look almost tree-like in the SS versions where
only G′ was drawn (see Figure 18).

4.5. Discussion

Our experiments show that our sublinear force computation algo-
rithms draw graphs faster than RVS, with SL and SS achieving
average runtime improvements of 20% and 28% respectively over
RVS. Our algorithms also obtain significant improvement on qual-
ity metrics over RVS, with 104.5% on shape-based metrics and
30% on edge crossing metrics for SL and 130% on shape-based
metrics and 26% on edge crossing metrics for SS-G.

Our smart initialization may have contributed to the improved
quality metrics. As opposed to RVS’s phyllotaxis initialization
which does not consider the topology of the graph when assigning
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Figure 15: Edge crossing metrics improvement of SSR-G/SSG-
G/SSC-G over RVS

(a) Shape-based (b) Edge crossing

Figure 16: Average improvement of SSR-G/SSG-G/SSC-G over
RVS

initial coordinates, our initialization with the radial tree drawing of
the BFS spanning tree places the graph center in the middle of the
drawing and its neighbours close by, with peripheral vertices fur-
ther away. This may help to position vertices with smaller graph
theoretic distance closer to each other.

From visual comparisons in Figures 17, 18, and 19, we see that
our SL, SS, and SS-G methods generally produce more aestheti-
cally pleasing results compared to RVS, in particular for grid-like
structures such as 3elt and dwt_1005. This may have arisen also
from the use of the radial tree drawing of the BFS spanning tree
rooted at the center, giving an initialization that is closer to the grid
structure of the graph. We also see that in some cases, geometric
sampling manage to unfold the grid structures better, such as with
the SLG results for data and crack in Figure 17.

Our experiments demonstrate the strengths of our geometric and
combinatorial sampling methods. With the SL algorithms, SLG and
SLC obtain the two highest average improvements in edge crossing
metrics, at 31% and 30.7% respectively.

The improvements over random sampling are more evident in
the results for SS-G, which combines the sampling methods with
spectral sparsification, where SSC-G clearly obtains the highest im-
provements in shape-based and edge crossing metrics at 137% and
27% respectively and SSG-G with the second highest - most no-
tably, the shape-based metrics improvements are at around 15%
better than SLR, which only uses random sampling, for SSC-G and
10% better for SSG-G. Therefore, we demonstrate that our geomet-
ric and combinatorial sampling methods, combined with spectral
sparsification, perform significantly better than random sampling.

5. Conclusion

We present a framework for sublinear time force computation for
big complex network visualization. We utilize a smart initialization
method based on radial drawing of a spanning tree rooted at the
center and vertex sampling methods for reducing the runtime of
repulsion force computation, and spectral sparsification approach
for reducing the runtime of attraction force computation.

Experiments showed that our SL, SS, and SS-G algorithms
achieves significant runtime improvements over RVS on force com-
putation, while achieving significant improvement on quality met-
rics (i.e., shape-based and edge crossing metrics) and visual com-
parisons. We also show that the combination of our new sampling
methods, geometric and combinatorial, with spectral sparsification
obtains higher improvements in metrics than random sampling.

Our future work is to consider a variety of analysis and initial-
ization methods to further improve quality metrics. Furthermore,
extensive experiments are required to draw more specific conclu-
sions based on the structures of graph data sets. Another direction
is to incorporate weighted edge sampling using effective resistance
as the weights to reduce attraction force computations.
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dwt_1005_RVS dwt_1005_SLR dwt_1005_SLG dwt_1005_SLC

sierpinski3d_RVS sierpinski3d_SLR sierpinski3d_SLG sierpinski3d_SLC

data_RVS data_SLR data_SLG data_SLC

3elt_RVS 3elt_SLR 3elt_SLG 3elt_SLC

us_powergrid_RVS us_powergrid_SLR us_powergrid_SLG us_powergrid_SLC

crack_RVS crack_SLR crack_SLG crack_SLC

Figure 17: Visual comparison of RVS, SLR, SLG and SLC
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bcsstk09_RVS’ bcsstk09_SSR bcsstk09_SSG bcsstk09_SSC

1138_bus_RVS’ 1138_bus_SSR 1138_bus_SSG 1138_bus_SSC

us_powergrid_RVS’ us_powergrid_SSR us_powergrid_SSG us_powergrid_SSC

Figure 18: Visual comparison of RVS’, SSR, SSG and SSC

bcsstk09_RVS bcsstk09_SSR-G bcsstk09_SSG-G bcsstk09_SSC-G

1138_bus_RVS 1138_bus_SSR-G 1138_bus_SSG-G 1138_bus_SSC-G

us_powergrid_RVS us_powergrid_SSR-G us_powergrid_SSG-G us_powergrid_SSC-G

Figure 19: Visual comparison of RVS, SSR-G, SSG-G and SSC-G
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