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Figure 1: A dataset with three clusters and two different clutter levels is sorted by similarity (a–b) and dissimilarity (c–d) of neighboring axes
pairs. Clusters are more salient when arranging dissimilar dimensions next to each other. We show that in cluttered datasets, participants are
more accurate and more confident when performing cluster identification tasks on such a layout.

Abstract
The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions.
While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an
appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which
PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with
31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification
quality, and the users’ confidence for two different strategies using both synthetic and real-world datasets. Our results show that,
somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and
are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these
findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.

CCS Concepts
• Human-centered computing → Empirical studies in visualization;

1. Introduction
Parallel coordinates plots (PCPs) [Ins85, Ins09b] are a popular and
well-researched technique to visualize multi-dimensional data. Di-
mensions are represented by vertical, equally spaced axes. Data
records are encoded by polylines, connecting the respective val-
ues on each axis. PCPs have been applied to practical applica-
tions of various domains [JF16], such as finance [AZZ10], traffic
safety [FWR99], and network analysis [SC∗05]. As discussed by
Andrienko and Andrienko [AA01], PCPs are suited for a multitude
of analysis tasks, such as cluster, correlation, and outlier analysis.

Compared to other visualizations for multi-dimensional data (e.g.,
RadVis [HGM∗97], MDS and PCA projections, scatter plots, and
scatter plot matrices), PCPs have the advantage to trace data records
and patterns across a large set of dimensions. Empirical studies have
shown that PCPs outperform scatter plots in clustering tasks, outlier,
and change detection [KAC15], but are less suited for correlation
analysis [LMvW10, HYFC14] and value retrieval [KZZM12].

A major challenge of visualizations is visual clutter, which in-

fluences the perception of visible patterns [SKKAJ15]. This prob-
lem is particularly given in PCPs, as line crossing and overplot-
ting distort salient structures. Therefore, the community has pro-
posed a multitude of enhancements, such as sampling [ED06], edge
bundling [MM08], interactive highlighting [MW95], and the usage
of transparency [JLJC05] to reduce the impact of visual clutter.

The ordering of axes plays a fundamental role in the design of a
PCP and has a strong effect on the overall pattern structure [JJ09].
In contrast to data preprocessing, sampling, dimension filtering,
and other enhancements, reordering does not remove data from the
PCP [PWR04, PL17], but changes the visual structure among neigh-
boring axes. Depending on the user’s analysis goal, some patterns
are more interesting than others [DK10]. As a result, more than 30
different ordering strategies have been developed by the community
to support a multitude of tasks. Some of these strategies group simi-
lar dimension pairs [ABK98], try to avoid line crossings [DK10],
or put the most important dimensions first [YPWR03]. However,
our community lacks empirical guidance and recommendations for
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choosing an appropriate strategy for a given task [BBK∗18]. In this
paper, we address this limitation by summarizing the state-of-the-art
in axes reordering strategies, as well as presenting a first empirical
user study that measures the performance of two ordering methods
for cluster identification in PCPs. Our study focuses on cluster anal-
ysis as the majority of ordering strategies are designed for this task.

We claim two main contributions. First, we provide guidance
in selecting reordering strategies based on their intended patterns.
Many existing algorithms follow similar concepts but differ in their
implementation. To support users, we introduce a classification
of the existing layout algorithms, group them according to their
inner workings, and summarize their intended patterns and meta-
characteristics. For more practical support, we implemented a set of
14 strategies in JavaScript and made them along with the source code
available on our website for testing: http://subspace.dbvis.de/pcp.

Second, we measure the performance of two reordering strategies
for cluster identification tasks by an empirical user study with 31
participants. We realized that the often proposed similarity-based
axes arrangement (e.g., [ABK98,YPWR03,AdOL06]) is not always
the most effective solution to identify clusters. As shown in Figure 1,
arranging axes with a high dissimilarity next to each other produces
more salient clusters, in particular in cluttered and noisy datasets.
A reason for this effect is that lines with strong slopes are moving
closer together, making clusters visually more prominent [PDK∗19].
To find out whether this arrangement is more useful than a similarity-
based layout, we conducted a user study and measured performance
with respect to cluster quality, completion time, and users’ confi-
dence using synthetic and real-world datasets. Our results show that
participants tend to focus on dissimilar axes pairs when selecting
clusters and are more accurate and confident when doing so.

As a secondary contribution, we provide a benchmark dataset
with 82 synthetic and real-world datasets for clustering analysis.
For reproducibility, we make all our material and results, statistical
analysis, and source code publicly available at https://osf.io/zwm69.

The remainder of this paper is structured as follows: In the next
section, we summarize important related work. Then, in Section 3,
we survey existing reordering strategies for PCPs and classify them
based on their intended patterns and inner workings (first contribu-
tion). Afterwards, in Section 4, we describe our user study design
and report the statistical analysis results in Section 5 (second contri-
bution). Finally, we discuss our findings and derive design consider-
ations for axes orderings in cluster identification tasks.

2. Background and Related Work
In the following, we summarize the challenges of axes reordering,
the results of existing user studies, and the relation of automatic
ordering to interactive and semi-automatic analysis support.

2.1. Challenges of Axes Reordering of Parallel Coordinates
Linear ordering of an n−dimensional dataset in PCPs faces two main
challenges. First, computing and evaluating all dimension permuta-
tions is computationally expensive. Ankerst et al. [ABK98] show
that the ordering of axes according to some useful objective function
is NP-complete. Therefore, the exhaustive search for a useful order-
ing is tedious, even for a modest number of dimensions [PWR04].
Second, the usefulness of a particular ordering highly depends on
the analysis task of the user [DK10, PL17], and is influenced by the

complexity of the data [TAE∗11]. More importantly, optimizing the
axes ordering to highlight a particular pattern may even obstruct
other patterns [JJ09], which are of relevance in a different scenario.
Therefore, it is vital to carefully choose an appropriate strategy to
arrange the axes in parallel coordinates.

More than 30 reordering strategies have been developed (see Sec-
tion 3), many of which follow similar concepts but differ in their im-
plementation affecting, for example, the runtime and quality of the
results. Quality metrics and layout algorithms for PCPs have been
summarized before: Heinrich and Weiskopf [HW13] give a compre-
hensive overview of the state-of-the-art for PCP research, including
manual and automatic reordering approaches. Bertini et al. [BTK11]
and Behrisch et al. [BBK∗18] summarize quality metrics to optimize
the visual representation. Ellis and Dix [ED07] discuss reordering
from a clutter perspective. While Behrisch et al. [BBK∗18] group
the quality metrics by their analysis task, the literature still misses a
summary of the different PCP patterns and a discussion on which
reordering algorithms favor or avoid particular patterns [TAE∗11].
In our paper, we close this gap by introducing a classification along
with a characterization of the reordering algorithms.

2.2. Evaluation of Axes Reorderings and Empirical Studies
There is a lack of empirical studies to measure the performance
of specific axes orderings for different analysis tasks [JF16]. Most
strategies are “evaluated” using examples of synthetic or real-world
data (see Table 1) instead of comparing it to previous approaches.
Exceptions are the works by Ferdosi & Roerdink [FR11] and Tatu
et al. [TAE∗11], which compare the resulting orders with competing
approaches. However, no feedback from real users is provided.

Many reorderings claim to be useful for cluster analysis, but we do
not know yet which patterns are most effective in identifying clusters.
There is no user study that compares different reorderings for clus-
ter identification in particular or different analysis tasks in general.
Therefore, we want to push PCP reordering towards an empirically-
driven research field by evaluating two axes reordering techniques
for cluster identification. The works most closely related to ours are
the empirical studies by Holten & van Wijk [HvW10] (measuring
response time and cluster identification correctness for nine PCP
variations), Kanjanabose et al. [KAC15] (measuring response time
and clustering accuracy in PCP, scatter plots, and classical tables),
and the study by Johansson et al. [JFLC08] evaluating clutter thresh-
old for the identification of patterns. However, none of these studies
consider different axes orderings as an independent variable.

2.3. Relation to Interactive and Semi-Automatic Analysis
Besides axes reordering, countless enhancements have been devel-
oped to support the understanding of patterns in parallel coordi-
nates. A comprehensive overview is out of the scope of this paper
but can be found in the surveys by Ellis & Dix [ED07], Bertini
et al. [BTK11], Heinrich & Weiskopf [HW13], and Behrisch et
al. [BBK∗18]. Many techniques involve users within an interac-
tive exploration workflow or combine the representation with au-
tomatic algorithms for pattern detection. Examples are the usage
of clustering algorithms [FWR99, JLJC05, Mou11], automatic sam-
pling techniques [ED06], and interactive highlighting [MW95]. In-
selberg [Ins09a], and Hurley & Oldford [HO10] propose to clone
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Figure 2: Comparison of visual patterns in parallel coordinates and their scatter plot representation.

and arrange dimensions such that all pairwise permutations are visi-
ble, similar to a scatter plot matrix. Based on this initial view, the
user can then start the exploration.

While the usefulness of such interactive and visual analytics
approaches have been shown in many user studies, they are facing
two challenges: First, most algorithms rely on sensitive parameters
which influence the quality of the result. For example, k-means
clustering [HKP11] requires the number of clusters as user input,
which is typically unknown for a new dataset. Second, interactive
exploration and highlighting are difficult if users do not know what
they are searching for, and the initial configuration of a PCP does not
show (parts of) interesting patterns. Often, this results in trial-and-
error interactions, in which patterns are only detected ‘by accident’.
This is particularly true if the dataset contains a large number of
dimensions, and relevant patterns only exist in smaller subspaces.

Therefore, we need methods to give analysts good starting condi-
tions for their (interactive) analysis. Hereby, an important aspect is
the arrangement of axes, as it significantly changes the visual pat-
terns among neighboring axes [JJ09]. In our paper, we provide a
categorization of reordering algorithms and their intended patterns,
which helps analysts to make an educated selection.

3. Classification of Reordering Strategies
This section addresses two questions: Which patterns are empha-
sized by which reordering strategy? And which algorithms have
been implemented to solve the reordering problem? Before answer-
ing these questions, we provide an overview of important patterns.

3.1. Visual Patterns
Figure 2 shows five groups of the most common patterns in parallel
coordinates and their representation in scatter plots:

Clusters & Neighbors A – E . Typical cluster structures show
one or more groups of dense lines in a similar direction. While A &
B seem similar in scatter plots, the visible structure in PCP differs
significantly. C shows clusters that change their density (cluster
compactness) and D , a cluster that splits up into sub-clusters.

Structures, preserving neighborhood information, are a special
case of clusters. A (small) set of data records similar (close) to each
other in one dimension are also similar in the neighboring dimension,
which results in groups of parallel lines E .

Correlations F – H . Positive and negative correlations look simi-
lar in a scatter plot. However, the PCP patterns differ: lines are par-
allel for positive F , and in a star-like pattern for negative correla-
tions G . Variations of non-linear correlations may look different in
both scatter plots and PCPs. H shows only an example as the pat-
tern depends on the type and degree of change in both dimensions.

Outliers I . Outliers squeeze the majority of PCP lines together,
resulting in a cluster-like pattern, hiding the underlying structure.
Dimension Properties J – K . show patterns of dimensions, or-
dered by variance and skewness. The lines’ slope indicates whether
patterns stay consistent (parallel) or change across axes.
Clutter & Noise. Randomly distributed data without a clear pattern
is considered noise or clutter in the data. The lines in the PCP cross
without any particular structure M . The fan pattern L describes a
cluster transitioning into clutter, a special case of density change C .

Our selection of patterns is based on the work by Dasgupta &
Kosara [DK10], Wegman [Weg90], Heinrich & Weiskopf [HW13,
HW15], and Zhou et al. [ZYQ∗08]. The cluster variations (i.e., pat-
terns A – D ) are inspired by Pattern Trails [JHB∗17], which intro-
duces a taxonomy of pattern transitions between multi-dimensional
subspaces. These patterns can be adapted to PCP, as two neighbor-
ing axes show a transition between one-dimensional subspaces. Fi-
nally, we add variance J and skewness K , which is produced by
the algorithms described in [LHZ16, SCC∗18, YPWR03]. We limit
our patterns to 2D PCPs and ignore patterns in 3D PCPs (e.g., dis-
cussed in [PL17, AKSZ13]. We also consider only patterns among
the two axes. Multi-dimensional patterns can be achieved by con-
catenating multiple two-dimensional patterns.

3.2. Ordering Strategies
To find ordering strategies, we took the 502 references of recent state-
of-the-art reports [HW13, JF16, BBK∗18] and combined it with 497
papers resulting from a search on the ACM, IEEE Xplore, EG, and
DBLP digital library (see keywords and details in the supplementary
material). We recursively scanned references and excluded papers
that (1) did not propose an automatic axes ordering strategy (e.g.,
purely interactive approaches), (2) “just” apply a reordering method
which has been proposed before, or (3) approaches which do not
focus on “standard” parallel coordinates (e.g., 3D PCPs). Using this
approach, we collected 18 papers with 32 different strategies.

Table 1 summarizes all reordering strategies, grouped by their
ordering concept: strategies transforming the reordering into an op-
timization problem (Section 3.3), implementing efficient or sophisti-
cated algorithms (Section 3.4), and approaches focusing on proper-
ties of single dimensions (Section 3.5). For each approach, we indi-
cate the favored patterns, the involved axes, and the performed eval-
uation to show the usefulness (see caption of Table 1 for details).

3.3. Optimization Problem and Objective Functions
The largest group of reordering strategies transforms the axes ar-
rangement into an optimization problem. These approaches measure
the quality of a particular ordering by an objective function, which is
then either minimized or maximized by an optimization algorithm.
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Table 1: Reordering Classification summarizing the inner workings of reordering strategies for parallel coordinates. For each technique, we
mark if it favors or avoids a particular pattern, if present in the data. Empty cells mean that the technique is not designed for this pattern and
produces/avoids it primarily by change. Approaches are grouped by their concept and sorted according to the similarity of patterns that they
favor and avoid. Additionally, we indicate the number of dimensions that are taken into account for the reordering and mark techniques which
can be combined with dimension filters and subspace analysis. Finally, we mark the evaluation type used in the paper. Due to space limitations,
we only show the name of the first author.

Patterns: algorithm favors  or avoids ⊗ pattern, or it depends on data properties and algorithm parameters .
Axes considered for ordering: each dimension separately ( ), two neighboring dimensions ( ), or the majority of dimensions ( ).
The technique can be combined with: dimension filters (DR) and subspace analysis (S).
Evaluation: case study or example , comparison with other techniques , and empirical study .

Reordering Technique
A B C D E F G H I J K L M

Axes Dim. Eval.
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m

Tatu (no label) [TAE∗11]    ⊗
Tatu (given label) [TAE∗11]   ⊗
Long (class consist.) [Van15]   ⊗ ⊗
Zhou (cluster trace) [ZYYC18]   ⊗ ⊗
Peltonen (neighbor) [PL17]    ⊗ ⊗
Dasgupta (overpl.) [DK10]   ⊗
Dasgupta (parall.) [DK10] ⊗  ⊗ ⊗
Ankerst (similar) [ABK98]  ⊗  ⊗ ⊗
Yang (similarity) [YPWR03]  ⊗  ⊗ ⊗ DR +S

Xiang (clus. interac.) [XFJ∗12]  ⊗ ⊗
Ankerst (correl.) [ABK98]  ⊗  ⊗ ⊗
Artero (clutter) [AdOL06] ⊗  ⊗ ⊗ ⊗
F Blumenschein (dissimil.) ⊗  ⊗  ⊗
Dasgupta (cross.) [DK10] ⊗ ⊗  

Dasgupta (angle) [DK10] ⊗ ⊗  

Dasgupta (mut. i.) [DK10]    ⊗
Makwana (struc.) [MTJ12]    

Peng (outlier) [PWR04]  

Dasgupta (entropy) [DK10] ⊗
Dasgupta (diverg.) [DK10]  ⊗

R
eo

rd
er

in
g

A
lg

or
ith

m Johansson (cluster) [JJ09]     ⊗ DR

Ferdosi (subspace) [FR11]     ⊗ DR +S

Huang (set theory) [HHJ11]    ⊗
Artero (similar) [AdOL06]  ⊗  ⊗ ⊗ DR

Johansson (correl.) [JJ09]  ⊗  ⊗ ⊗ DR

Lu (non-lin. corr.) [LHH12]  ⊗
Johansson (outlier) [JJ09]  ⊗ DR

D
im

en
si

on
Q

M Schloerke (class) [SCC∗18]    ⊗ –

Schloerke (outlier) [SCC∗18]  ⊗ –

Lu (svd) [LHZ16]    ⊗ DR

Yang (variance) [YPWR03]    ⊗ DR +S

Schloerke (skewn.) [SCC∗18]  ⊗ –
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3.3.1. Objective Functions Measuring Cluster Structures
Tatu et al. [TAE∗09,TAE∗11] argue that clusters consist of lines with
a similar position and direction (patterns A , B , and D ). The au-
thors take a rendered image of a PCP and apply a Hough space trans-
formation [Hou62]. Each PCP line segment is mapped into one point
within the Hough space. The point’s location represents the position
and slope of the line segment. The objective function measures dense
areas (clusters) of points in the Hough space. Long [Van15] first
computes a centroid for all given clusters. Then for each data record,
the nearest centroid is identified (using the area between the lines as
similarity function), and the objective function measures the ratio
of correctly classified records. Cluster patterns A and B are high-
lighted, while a cluster split D is avoided. Zhou et al. [ZYYC18]
aim at clusters that can be followed across neighboring axes ( A
and B ). They compute a hierarchical clustering on every dimension
and use the cluster similarity as quality. Dasgupta & Kosara [DK10]
introduce seven different metrics, known as pargnostics. A metric
aiming for clusters like A and B is overplotting. It measures the
number of pixels that are not visible due to overlapping lines. When
maximizing this measure, there is a high information loss, but a
high-density of lines, i.e., clusters. Finally, Xiang et al. [XFJ∗12]
try to avoid intersecting clusters B by measuring the crossing of
clusters among axes. This results in horizontal cluster structures A .

Peltonen & Lin [PL17] aim to preserve the neighborhood distri-
bution of records (pattern E ). The objective function measures the
similarity of nearest neighbors for all data records across two dimen-
sions. Clusters like A and B are a special case of neighborhood
relationships and are therefore considered as well.

3.3.2. Similarity-based Metrics for Clusters and Correlation
The main idea of the following approaches is to arrange similar di-
mensions next to each other. This results in cluster- and correlation
patterns. The definition of similarity differs across the techniques.
Ankerst et al. [ABK98] use a Euclidean distance and Pearson cor-
relation for the similarity computation. The approach by Yang et
al. [YPWR03] follows the same idea. However, they structure the di-
mensions into a hierarchy using a hierarchical clustering algorithm
to highlight also clusters in subspaces of the dataset. The hierarchi-
cal structure also helps to speed up the computation time, as each
subtree can be sorted independently. Depending on the similarity
function, and whether the objective function is minimized or maxi-
mized, these approaches aim for the patterns A , B , F , and G .

Other metrics try to order axes such that lines are most parallel
or diverging a lot. These patterns can help to identify correlations,
but may also favor clusters to some extent. Artero et al. [AdOL06]
propose the total length of poly-lines as metric for pattern F . Simi-
larly, there are four pargnostic [DK10] measures: (1) Maximize the
number of line crossings to identify inverse relationships G in the
data. (2) Maximizing G the angle of crossings. (3) Maximizing par-
allelism, resulting in less cluttered PCPs, which highlight positive
correlations F . (4) Maximizing the mutual information, which mea-
sures the dependency between variables, i.e., optimizing for positive
F , negative G , and non-linear correlations H .

3.3.3. Objective Functions for Clutter and Outliers
The pargnostic metric maximizing divergence results in fan pattern
L , which helps to identify cluster-to-noise relationships. Maximiz-
ing the entropy of neighboring axes corresponds to a high informa-

tion density, highlighting many line crossings and inverse relation-
ships. The metric does not favor specific patterns, but results in busy,
but very readable charts, according to the authors [DK10]. The met-
ric by Makwana et al. [MTJ12] differs from previous metrics. The
authors propose to order dimensions such that neighboring axes con-
tain lines with different slopes, resulting in cluttered M PCPs.

Peng et al. [PWR04] interpret outliers as data points that do not
belong to a cluster. They measure the ratio of outliers against the
number of data points. When maximized, outliers are highlighted
(pattern I ), when minimized, outliers will not be highlighted.

3.3.4. Optimization Algorithms for Objective Functions
Except for [AdOL06], all approaches measure the quality be-
tween neighboring axes and use the average as the objective
function. To minimize or maximize this function, various heuris-
tics are applied: Random swapping (particularly useful for very
large datasets) [YPWR03, PWR04], Ant-optimization [ABK98],
A*Search [TAE∗09, TAE∗11], Nearest-neighbor-based [PWR04],
Branch and bound optimization [DK10, MTJ12], Non-linear opti-
mization algorithm [PL17], and Backtracking [ZYYC18].

3.4. Reordering by Algorithms
The second class of strategies arranges dimensions based on lay-
out algorithms. Compared to optimization procedures, this has two
advantages: (1) Algorithms which approximate the understanding
of an objective function, lead to more efficient but potentially less
accurate results (e.g., [LHH12, AdOL06, JJ09]). (2) Objective func-
tions are typically defined only between neighboring axes. Using
more advanced algorithms (e.g., based on subspace clustering) lead
to PCP, which aims for higher-dimensional patterns [FR11].

3.4.1. Algorithms for Efficient Reordering
Artero et al. [AdOL06] and Johansson & Johansson [JJ09] speed
up the similarity and correlation-based axes arrangement, originally
presented by Ankerst et al. [ABK98]. Both algorithms are identical,
except for the similarity function. Artero et al. use a Euclidean dis-
tance, Johansson & Johansson, a Pearson correlation coefficient. The
algorithm starts with the most similar dimension pair in the center
of the PCP. Iteratively, the next most similar dimension is appended
to the left or right side. While this approach is efficient, it also has
the advantage that the most salient structure (the most similar di-
mensions) typically ends up close to the center of the PCP, which
users are most attracted to [NVE∗17]. Lu et al.’s approach [LHH12]
orders dimensions based on correlation. They use the nonlinear cor-
relation coefficient (NCC), which is sensitive to any relationship
F – H (not only linear ones) and can be used for partial similarity
matching as well [ABK98]. The proposed algorithm combines the
ordering by (non-linear) correlations together with an importance
driven arrangement. The first (left) axis in the PCP is chosen based
on the highest singular value after a singular value decomposition
(SVD, highest contribution of the dataset). Afterwards, all dimen-
sions are arranged from left to right according to their similarity of
the NCC. The approach by Huang et al. [HHJ11] maximizes the uni-
form line crossings of clusters. Their approach is based on Rough
Set Theory [Paw12], and the algorithm sorts the dimensions based
on alternating sizes of high and low cardinality of the equivalence
classes, leading to cluster patterns A – C .
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3.4.2. Subspace Algorithms for Higher-dimensional Structures
Ferdosi & Roerdink [FR11] use a subspace search algo-
rithm [FBT∗10] to identify higher-dimensional clusters with pat-
terns A – D . The quality of one subspace is based on a density dis-
tribution. Subspaces containing multiple clusters that are clearly sep-
arated are considered of high quality. First, the algorithm computes
all one-dimensional subspaces and arranges the one with the highest
quality on the very left of the PCP. Afterwards, all two-dimensional
subspaces, which contain the first subspace, are computed, and the
highest rank is attached as the second axis. The algorithm continues
until all dimensions are part of the PCP, or no more subspace can be
computed. Johansson & Johansson [JJ09] apply the MAFIA algo-
rithm [NGC01], resulting in a set of subspaces, along with cluster
structures and quality measures. The ordering algorithm then finds
the longest sequence of connected variables shared by all detected
subspace clusters. It starts with all dimensions of the first subspace
(no specific ordering). Further subspaces are iteratively added based
on their quality, but only if they share a substantial set of dimen-
sions with the current PCP. The authors use the same algorithm to
identify patterns with (multi-dimensional) outliers (pattern I ).

3.5. Reordering by Dimension-wise Quality Metrics
The third group of reordering techniques computes a quality for each
dimension separately ( ) and sort the axes accordingly. Assuming
the quality can be computed efficiently, reordering can be done in
linear time. The techniques can also be extended by dimension filter-
ing (e.g., considering only dimensions with a quality above a thresh-
old). Relations between dimensions are not considered. Therefore,
patterns may be scattered in different parts of the PCP [PL17].

Lu et al. [LHZ16] sort the axes based on each of their contribu-
tions to the dataset. They compute an SVD and sort the dimensions
according to their singular values. Yang et al. [YPWR03] propose
a similar approach but sort the dimensions by variance. Both re-
orderings result in similar patterns ( J – L ). However, Lu et al.’s
approach takes the distribution of the entire dataset into account.

Schloerke et al. [SCC∗18] propose three different dimension met-
rics: (1) They use skewness for reordering, resulting in a K pattern.
(2) The dimensions are sorted by one of the Scagnostics [WAG05]
measures. In particular, the Outlying measure is useful to highlight
outliers in the data (pattern I ). (3) Finally, the authors order the di-
mensions such that existing clusters or classes are separated as well
as possible. They compute an ANOVA on every dimension based
on a given set of class labels and order the dimensions based on the
F-statistic. Intuitively, the dimensions are ordered according to how
well the given clusters are separated (patterns A – C ).

3.6. Summary
In Table 1, we provide an overview of 32 different reordering ap-
proaches to arrange the axes of parallel coordinates. During our
analysis, we made a few observations: (1) Many reordering algo-
rithms follow similar concepts, but differ in their implementation
and the applied metric. The main reason for this is that axes reorder-
ing is computationally complex, and more efficient approaches are
necessary for interactive applications. (2) There seems to be a differ-
ent understanding of the most important area in a PCP. While some
reordering approaches try to put the most important dimensions up-
front, others try to arrange them in the center. This is in line with

the study by Netzel et al. [NVE∗17], who found out that people pay
the most attention to the center part of a PCP. (3) The evaluation of
novel reordering algorithms is primarily achieved by use cases and
example applications. We are not aware of empirical user studies
that compare different orderings for a particular analysis task. With
our paper, we want to close this gap and provide the first empirical
study to evaluate ordering approaches for a particular analysis task.

4. User Study Design: Reordering for Cluster Identification
Our reordering classification in Table 1 reveals that the majority of
strategies are designed to support cluster analysis. Therefore, we
select this task as the focus of our user study. In particular, we want
to assess the performance of cluster identification, as this is the
foundation for more sophisticated clustering analyses.

For cluster analysis, similarity-based layouts are proposed most
often. Clusters, if present, can be followed across many axes, as
algorithms try to minimize their variance. However, this strategy
does not necessarily highlight clusters. This is especially true if the
dataset contains noise or clutter, as shown in Figure 1a. While we
can identify the clusters, they are visually less salient. In this paper,
we define the term clutter as data records that do not contribute to
a particular pattern (e.g., randomly distributed), often also called
noise. Cluttered datasets often end up in visual cluttered PCP due to
many line crossings and overplotting.

Due to experiments with our implemented reordering algorithms,
we realized that polylines and clusters with strong slopes are visu-
ally more prominent than horizontal ones. There are two reasons, as
discussed by Pomerenke et al. [PDK∗19]: (1) With an increasing
slope, the distance between polylines decreases, and less whitespace
(background) is visible. Hence, neighboring lines have higher con-
trast. (2) Compared to horizontal lines, diagonal lines need more
pixels to encode a single data point, resulting in a low data-to-ink-
ratio [Tuf01]. Both geometric effects make sure that neighboring
lines are more easily perceived as a group or cluster. Interestingly,
strong slopes are produced when dimensions are ordered by dissim-
ilarity. An example can be found in Figure 1c. It shows the same
data as in 1a, but with strong slopes due to reordering. Often this re-
sults in a zig-zag-like pattern, which makes the visual representation
more complex but also ends up in more salient cluster structures.

4.1. Hypotheses
We address the question, ‘whether there is a difference between a
similarity-based (SIM) and dissimilarity-based (DIS) axes ordering
for a cluster identification task’. If yes, ‘which ordering should
be used, and why?’ As the majority of real-world datasets contain
noise and clutter, we also want to investigate its influence generally,
and in combination with the axes ordering. Hence, we analyze two
independent variables: ordering method and clutter level.

To measure the performance, we use three dependent variables:
(i) time to identify clusters, (ii) quality of manually selected clusters
based on similarity to ground truth clusters, and (iii) the confidence
of the users after the cluster identification. Additionally, we analyze
axes-pairs which help to identify the clusters. In particular, we
investigate whether users select clusters in similar or dissimilar axes
pairs. For our study, we formulate the following three hypotheses:

H1. With an increasing amount of clutter, the cluster identification
performance drops (independent of the ordering) as cluster structures
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are less salient in the PCP plot. Therefore, we expect users to be
(a) slower, (b) less accurate, and (c) less confident.
H2. Without clutter, users perform better in a cluster identification
task when the axes are ordered by SIM instead of DIS as clusters
can be followed more easily. In particular, we expect users to be
(a) faster, (b) more accurate, and (c) more confident with SIM.
H3. With clutter, users perform better in a cluster identification
task when the axes are ordered by DIS instead of SIM as clusters
are visually more prominent. In particular, we expect users to be
(a) faster, (b) more accurate, and (c) more confident with DIS.

4.2. Benchmark Dataset and Ground Truth
To evaluate our hypotheses, benchmark datasets with ground truth
information and increasing clutter levels are needed. We are not
aware of such datasets for a cluster identification task. Therefore, we
developed our own benchmark, consisting of ten popular real-world,
and 72 synthetically created datasets along with the ground truth
information. We make our dataset available in order to overcome
the limitation of publicly available benchmark datasets [SNE∗16]
and to support the evaluation of PCP enhancements and reordering
techniques in the future. For comparison, we also present a PCP with
each dataset and reordering strategy in the supplementary material.
Synthetic datasets. We limit the dimensionality of all synthetic
datasets to eight. This allows us to create complex cluster structures
while keeping the expected time for the study in a reasonable time
frame. We alternated the number of clusters between one and four
and varied the structures of the clusters – ranging from linear clusters
towards a high variance on all scales of the different axes.

Using the PCDC tool [BHvLF12], we manually created 24 base
datasets ({1,2,3,4} clusters× 6 variations) which fulfill the fol-
lowing properties: (i) clusters are clearly visible and separated from
each other, (ii) there is only one clustering result per dataset, (iii)
each cluster is present in all eight dimensions, and (iv) no outliers
are added as they would distort the existing patterns [AA01]. In up
to two dimensions, we merged two or more clusters such that partici-
pants need to investigate all dimensions to identify a cluster. To make
the clusters comparable across datasets, we kept the cluster size con-
stant with small randomization in the range of 45−50 data points
and vary the diameter of every cluster in each dimension randomly
in the range 0.15−0.30. All dimensions are normalized in 0.0−1.0.

Next, we designed different clutter levels. Pomerenke et
al. [PDK∗19] show that random clutter (randomly and equally dis-
tributed records in all axes) produces visible patterns in PCPs which
look similar to clusters (Ghost clusters). In order to not accidentally
include ‘fake patterns’ in our dataset, but also be fair w.r.t. random
clutter, we use a mixture of 30% random and 70% linear clutter (for
every record: uniform and random distribution in one dimension
± 0−0.15 in all other dimensions). Using several pilot experiments,
this setting seemed to be complex enough, but also without any unde-
sired patterns. For each base dataset, we created two copies with dif-
ferent clutter levels, one with 150 (150N), one with 300 data points
(300N). We used the same clutter datasets for all base datasets to
make them comparable and ensure we do not encode additional pat-
terns in some of the datasets. After finalizing all 72 datasets (24
base datasets ×{0N,150N,300N}), we randomized the order of
the records to remove potential effects in the drawing process.
Real-world datasets. We added ten frequently used datasets to see

the performance in real settings. We selected the datasets based
on common usage in PCP reordering (i.e., by choosing datasets
used in the techniques described in Table 1). Hence, the number
of dimensions and records differ compared to synthetic datasets.
Dimensions range between 4− 13, and the number of records be-
tween 32− 515. Examples are the wine, mt-cars, and ecoli
dataset. If present, we removed categorical dimensions and out-
liers. We used Ward’s method [WJ63] to retrieve a hierarchical clus-
tering and a visual inspection to determine the clusters in the data.

4.3. Implementation
To compare the ‘optimal’ SIM and DIS layout, we used Ankerst
et al.’s reordering algorithm [ABK98] with an exhaustive search to
find the axes ordering. For the SIM layout, we used the Euclidean
distance and minimized the sum of distances. For DIS, we used the
same algorithm but maximized the distances. We pre-computed the
orderings for all datasets in advance. To run the study, we developed
a web application that is available at http://subspace.dbvis.de/pcp-
study. The parallel coordinates plots have a size of 960×500 pixels
and use color for the polylines to separate them from the axes which
are colored in black. We did not add any design variations to the chart
(i.e., transparency, or edge bundling) to avoid confounding factors.

4.4. Tasks and Data Randomization
Our study consisted of 21 trials per participant, which are grouped
into three tasks that build on top of each other. The tasks were
executed in increasing difficulty: Tasks 1, 2, and 3. Between two
trials of a task, we showed a white screen with the term ‘break time’,
and participants had to click a button to continue with the next trial.

4.4.1. Task 1 (Similarity of Axes-Pairs)
We wanted to find out which visual structures support users in a
cluster identification task. In particular, we were interested whether
users find neighboring axes with a high similarity or dissimilarity
more useful. In each trial, we showed the participants a PCP in
which the number of clusters had to be counted. Users selected the
number which they identified using four radio buttons (i.e., 1, 2, 3,
4) and a can’t tell option. After the selection was confirmed, we
showed a single radio button between each neighboring axes (see
Figure 3 left) and asked the participants to select the pair which
supported them best. Only one pair could be selected.
Randomization. We randomly picked three synthetic datasets with
a different number of clusters. In the first trial, we showed 0N clutter,
in the second 150N, and finally 300N (increasing difficulty). As we
are interested in whether participants prefer (dis-)similar neighbor-
ing axes, we arranged dimensions such that the PCP contains both
similar and dissimilar axes pairs. To do so, we computed the simi-
larity of neighboring axes using the Euclidean distance and used the
maximal variance of similarities (MaxVar) as an objective function
(see example in Figure 4). In summary:

3 levels of clutter (0N, 150N, 300N) ×

31 participants =

93 trials in total
Post-processing. We collected the time to identify the number of
clusters along with the similarity value of the selected axes pair. For
comparison across datasets, we applied a linear min-max normaliza-
tion to the similarity values of all neighboring axes pairs within each
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Figure 3: User study interface for Task 1 (left) and Task 2 (right).

dataset. Pairs with the highest similarity are represented with 0.0,
while high-dissimilarity pairs are represented by a value close to 1.0.

4.4.2. Task 2 (Cluster Identification and Selection)
We wanted to find out if participants are better and more confident
using a particular ordering strategy. In each trial, we presented the
participant one PCP, which was sorted by either SIM or DIS. The
participant had to mark all clusters by choosing a pair of neighboring
axes and marking every cluster in both axes using a brush feature
(Figure 3 right). Brushing is applied by pressing the mouse button
and marking the cluster along the axis. The selection can be moved,
resized, or deleted. We do not highlight any data lines during or after
brushing. After confirming their selections, participants rated their
confidence in a correct clustering on a 5-point Likert scale.
Randomization. We selected 12 synthetic base datasets, three for
each number of clusters, and randomized the order. Then, we dis-
tributed the datasets into three equal-sized groups: 0N, 150N, and
300N. Finally, we added four randomly selected real-world datasets
in a new group RW. Within each group, we randomly applied twice a
SIM and twice a DIS ordering. Participants worked on each group
in order of increasing difficulty (i.e., clutter level). In summary:

4 levels of clutter (0N, 150N, 300N, RW) ×

2 repetitions ×

2 ordering strategies (SIM, DIS) ×

31 participants =

496 trials in total
Post-processing. We collected the time to mark the clusters and
divided this by the number of clusters to be comparable across
datasets. We also collected the selections and confidence levels.

We ignored clutter for the quality computation. We checked
whether participants selected clusters in two neighboring dimen-
sions and whether the number of clusters is therein consistent. In
132 trials, this was not the case, and we removed them from the
data. The results are, however, still trustworthy as the removed tri-
als are not skewed towards a particular reordering (66 trials each)
or a clutter level (32, 28, 28, and 44 trials). For all correct trials,
we then mapped the clusters between the selected axes together.
First, we compute the Overlap coefficient [Szy34] between all clus-
ter combinations and then merge the clusters with the highest over-
lap together. For each cluster combination, we keep the intersected
set of data records as cluster members. The Overlap coefficient
measures the overlap of members of the two clusters Ci and C j:
overlap(Ci,C j) = |Ci∩C j|/min(|Ci|, |C j|).

The quality of an entire clustering is based on the Jaccard in-
dex [Jac01] between each selected cluster Ci and the corresponding
ground truth cluster Gi. The Jaccard index measures the similarity
between the clusters (record sets) Ci and Gi on a data record level:

(a) no clutter (0N) (b) 150 clutter points (150N)

Figure 4: Dimensions are ordered by MAXVAR (maximizing the
variance of similarities among neighboring axes). The result com-
bines similar and dissimilar dimension pairs in one PCP.

jaccard(Ci,Gi) = |Ci ∩Gi|/|Ci ∪Gi|. As participants can also se-
lect too few or too many clusters, our quality computation is a two-
step process: First, we compute the average Jaccard index of each
cluster to their best match in the ground truth. Second, we compute
the average Jaccard index of every ground truth cluster to their best
match of our selection. Our final clustering quality is then the aver-
age score of both steps.

4.4.3. Task 3 (Ordering Strategy Preferences)
We wanted to find out if participants have preferences for a particu-
lar reordering and why this is the case. We presented them two PCPs
with the same dataset next to each other – one with SIM, one with
DIS ordering. Using two radio buttons, participants had to select
the preferred plot and then explain their choice in a free-text field.

Randomization. We randomly picked two synthetic datasets with a
different number of clusters. In the first trial, we did not show any
clutter (0N); in the second, we used either 150N or 300N (equally
balanced across the participants). In the first trial, we used SIM
ordering in the left, and DIS ordering in the right plot. In the second
trial, we swapped the positions. In summary:

2 levels of clutter (0N, (150N ∨ 300N)) ×

31 participants =

62 trials in total
Post-processing. We stored the preferred ordering and the text for
each trial. Four participants reported not to see any preference be-
tween the options in one of the trials. We removed these participants
from the statistical analysis, but report their choices in Section 5.3.

4.5. Participants and Procedure
Prior to the study, we conducted several pilot runs in order to deter-
mine appropriate clutter levels and the number of trials for each task.

Participants. To have participants with basic knowledge in informa-
tion visualization and parallel coordinates, we conducted our user
study during two lectures at the University of Konstanz, Germany.
Both courses teach foundations in information visualization, one
course for undergraduates, the other for graduates. The courses were
taught by the same lecturer (not the authors), who also introduced
and discussed the PCP technique two weeks prior to the study. We
recruited 31 participants (17 male, 13 female, 1 NA). Their ages
ranged from 19–31 years (median age 23). Each participant had fin-
ished high school, and 17 held a Bachelor’s degree. The academic
background was in the area of data analysis with 24 computer sci-
ence, and 7 social and economic data analysis students. All partici-
pants reported having normal or corrected to normal vision.
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Figure 5: Similarity of preferred neighboring dimensions (Task 1).
With clutter, axes pairs with dissimilarity are preferred. Without
clutter (0N), the preferences are almost equally balanced.

Training and Procedure. All participants had to fill out a data
privacy form in which we describe the data collected during the
study. The participants sat scattered across the room and were not
able to talk to each other. One of the authors started the study with
a 30-minute recap on PCPs and comparing its visual patterns with
scatter plots, discussing the advantages and disadvantages of the
two techniques, and arguing about the effects of clutter, noise, and
outliers. During the training, we did not provide strategies on how to
identify clusters (or any other pattern) in PCP. Instead, we showed
patterns in scatter plots and let all participants draw the respective
patterns in a PCP (see training material). After this recap, we started
the training. All participants opened their laptops and used a browser
of their choice to access our online study. We provided a training
platform, including all three tasks, but only two trials per task. We
explained to the participants how to interact with the tool, and let the
participants play around with the different trials. After answering
the remaining questions, we made sure that all participants activated
the full-screen mode within their browser and checked that the entire
study could be conducted without scrolling for the different tasks.
Participants needed between 20–30 minutes to complete the study.

5. User Study Results
We now report the summary statistics and highlight significant re-
sults (p < .05) in the data. For all tests, we checked the necessary
preconditions, which can be found in the supplementary material
along with the R scripts to reproduce the results. We used a one-
sample Kolmogorov-Smirnov test to check if the data follows a nor-
mal distribution and Mauchly’s test to check for sphericity.

5.1. Task 1 (Similarity of Axes-Pairs)
We used a repeated-measures ANOVA for the analysis of completion
time. The post hoc analysis was done with a Bonferroni corrected
t-test for dependent samples. As the similarity of axes-pairs was not
normally distributed, a non-parametric Friedman’s test was used.

Efficiency to Identify the Number of Clusters
There was a significant effect of clutter on completion time (F(2,60)
= 6.07, p < .01, η

2 = .10). Post hoc comparisons revealed that
completion time was significantly lower for the clutter condition 0N
(µ = 9.44s) compared to 150N (p < .01, µ = 16.67s), and 300N
(p < .01, µ = 17.47s), but not between 150N and 300N (p = 1.0).

Similarity of Selected Axes-Pair
No significant results can be reported (χ2(2) = 4.77, p = .09). As

Figure 6: Time to select clusters (Task 2).

shown in Figure 5, the mean of the distances for the different clutter
conditions were 0N (µ = .53), 150N (.71), and 300N (.75).

5.2. Task 2 (Cluster Identification and Selection)
For the comparison between clutter levels (independent of the or-
dering), we used a Kruskal-Wallis test, and a Bonferroni corrected
Wilcoxon signed-rank test for post hoc analysis. For the confidence,
we applied a Pearson’s Chi-square test. To analyze the differences
between the ordering strategies within each clutter level, we used a
Wilcoxon signed-rank test for the analysis of completion time, clus-
ter quality, and confidence. Data were split according to levels of
clutter to compare the differences between SIM and DIS.

Efficiency to Identify and Mark Clusters
Between clutter levels, the medians of completion time for 0N,
150N, 300N, and RW were 10.79, 9.53, 10.26, and 15.02, respec-
tively. A Kruskal-Wallis test showed a significant effect on clutter
level (χ2(3) = 23.31, p < .001). A post hoc test using Wilcoxon
signed-rank tests showed only significant differences between RW
and 0N, 150N, and 300N (all p < .01).

As shown in Figure 6, the medians of the completion time for
the 0N clutter condition, for SIM and DIS were 8.9s and 12.35s,
respectively. A Wilcoxon signed-rank test showed that there was a
significant effect of ordering strategy (W = 1, Z =−2.46, p < .05,
r = .25). For the other clutter conditions, no significant results can be
reported. For the 150N clutter condition, the medians of completion
time for SIM and DISwere 10.67s and 8.58s, respectively (p= .05),
for the 300N clutter condition, the medians of completion time for
SIM and DIS were 11.12s and 9.62s, respectively (p = .05), and
for the RW condition, the medians of completion time for SIM and
DIS were 15.07s and 14.79s, respectively (p = .82).

Quality of Identified and Marked Clusters
Between clutter levels, the medians of quality for 0N, 150N, 300N,
and RW were .98, .91, .85 and .37, respectively. A Kruskal-Wallis
test showed a significant effect on clutter level (χ2(3) = 181.56,
p < .001). A post hoc test using Wilcoxon Sign-rank tests showed
the significant differences between 0N and 150N (p < .001), 300N
(p < .001), and RW (p < .001). Also, there were significant effects
between 150N and 300N (p < .05), and RW (p < .001). Finally,
300N and RW were also significantly different (p < .001).

The results of the cluster quality are summarized in Figure 7. For
the 150N clutter condition, the medians of quality for SIM and
DIS were .87 and .94, respectively. A Wilcoxon signed-rank test
showed a significant effect of ordering strategy (W = 1, Z =−2.62,
p < .001, r = .27). For the 300N clutter condition, the medians of
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Figure 7: Quality of selected clusters (Task 2).

quality for SIM and DISwere .79 and .90, respectively. A Wilcoxon
signed-rank test showed a significant effect of ordering strategy (W
= 1, Z =−3.36, p < .001, r = .34). The other levels of clutter did
not show a significant difference. The medians of the quality score in
the 0N clutter condition were .99 for SIM and .97 for DIS (p= .33),
and in the RW condition .37 for both SIM and DIS (p = .25).

Confidence of Marked Clusters
An overview of the participants’ confidence is shown in Figure 9.
Between clutter levels, the medians of confidence for 0N, 150N,
300N, and RW were 2, 1, 1, and 0, respectively. A Pearson Chi-
square test showed a significant effect of clutter level on confidence
(χ2(12) = 120.97, p < .001). Post hoc analysis revealed significant
differences between 0N and 150N (p < .001), 300N (p < .001),
and RW (p < .001); between 150N and 300N (p < .05), and RW
(p < .001); and between 300N and RW (p < .005).

For the 150N clutter condition, the medians of confidence for
SIM and DIS were both 1. A Wilcoxon signed-rank test showed a
significant effect of ordering strategy (W = 1, Z =−2.52, p < .05,
r = .26). For the 300N clutter condition, the medians of confidence
for SIM and DIS were 0 and 1, respectively. A Wilcoxon signed-
rank test showed a significant effect of ordering strategy (W = 1, Z =
−3.75, p < .001, r = .38). The remaining levels of clutter did not
show a significant difference between ordering strategies with the
same medians for SIM and DIS (0N = 2, p = .25; RW = 0, p = .48).

5.3. Task 3 (Understanding Preferences)
The distribution of preferences is shown in Figure 8. Two partici-
pants selected SIM, ten participants DIS for both clutter conditions.
Twelve participants preferred SIM without clutter and changed their
preference to DIS for the second trial, which included clutter. Vice
versa, three participants changed from DIS to SIM. A binomial test
showed a significant difference (p < .05) in the proportion of pref-
erence (χ2(1,N = 27) = 12). The probability of success was .8.

Three out of four of the removed participants (see Section 4.4.3)
did not have a preference for 0N, but preferred DIS for cluttered
datasets. One participant preferred SIM for clutter-free datasets and
had no preference for the dataset with clutter.

6. Discussion
We discuss the participants’ performance according to our hypothe-
ses and highlight findings from the qualitative feedback of task 3.

Influence of Clutter (H1). Increasing the amount of clutter has a
negative effect on the quality of the cluster identification and confi-
dence of participants. These findings confirm H1 (b) and (c). While

Figure 8: Preference of reordering strategy (Task 3). No prefer-
ence for datasets without clutter. Participants strongly preferred a
dissimilarity-based layout with an increasing amount of clutter. The
figure shows both clutter levels combined (‘clutter’) and separately.

we see an increasing completion time for higher clutter levels in
task 1, we cannot verify this finding in the second task. Hence, we
cannot make a final judgment on H1 (a). As expected, clutter nega-
tively influences the cluster identification. Patterns may vanish due
to overlapping data lines, making the identification more difficult.
Therefore, visualization experts need to carefully design PCPs and
reduce the amount of clutter if possible (e.g., sampling).

Reordering for Clutter-free Datasets (H2). Similarity-based or-
dering strategies are a good choice for datasets without clutter. Our
results show that participants perform the identification of clusters
more efficiently when working with a SIM layout, which confirms
H2 (a). It seems as if participants are faster in combining straight
data lines into clusters in contrast to data lines with strong slopes.
A possible explanation could be the Gestalt law [Wer23, War20] of
continuation, which could help participants in tracking data lines
across dimensions. Kellman and Shipley [KS91] support this argu-
ment: the angular parameters, determining the grouping of lines to
clusters, may support the ability to find clusters across multiple sets
of axes. The qualitative feedback also confirms our findings. Par-
ticipants reported, for example, that “The structure of clusters is
clearer”, “[clusters] don’t cross very often”, or they prefer SIM

“[...] since they do not intersect with each other in the majority of ar-
eas between each two dimensions [...]”. We cannot support hypothe-
ses H2 (b) and (c). There are no significant differences in the cluster
identification quality or the confidence of the participants (see also
Figure 7 and 9). Also, participants did not have a subjective prefer-
ence for a particular reordering strategy, as shown in Figure 8.

Reordering for Cluttered Datasets (H3). For datasets with clutter,
there is strong evidence that DIS layout strategies are more suitable.
The quality of marked clusters is significantly better when partici-
pants used a DIS ordering strategy, confirming H3 (b). This finding
coincides with the reported confidence of participants (see Figure 9),
who are also significantly more confident when working with DIS
in clutter conditions. Even if both options are available (SIM and
DIS), there is statistical proof that participants will choose a DIS
ordering in clutter conditions providing evidence for H3 (c). The
Gestalt law of grouping by orientation similarly [Wer23, War20]
might be a reason for this preference. The orientation of the lines is
more salient in the DIS ordering, which facilitates a stronger group-
ing compared to a SIM ordering.

We cannot see significant differences in the similarity values of
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Figure 9: Confidence of marked clusters (Task 2). Participants have higher confidence in their cluster selection using dissimilarity ordering.

the selected axes pairs in task 1. However, Figure 5 illustrates the
distribution of similarity values, providing evidence that participants
believe that DIS axes pairs support them better in a cluster identifica-
tion task. These findings are also in line with the qualitative feedback.
The majority stated a preference for DIS over a SIM layout (see
Figure 8). The participants said, for example, “the spikes make the
clusters more obvious”, “clearer [in A] because the zig-zag makes it
easier to see among the noise.”, or “The lines are closer together”.

As shown in Figure 6, participants performed the cluster identifi-
cation task faster with a DIS layout compared to a SIM layout in
cluttered datasets. However, the differences in the completion time
are not significant (p = 0.05). Therefore, we cannot confirm H3 (a).

6.1. Design Considerations
With the results gained from our study, we derive the following
design considerations for using PCPs in a cluster identification task.

Whenever possible, clutter should be removed in a pre-
processing step. Results from tasks 1 and 2 indicate that participants
working with PCPs need more time, are less accurate, and are less
confident in identifying clusters with an increasing amount of clutter.

For datasets without any clutter, a SIM layout should be pre-
ferred over a DIS layout. Participants working with a SIM order-
ing strategy were faster in identifying and marking clusters com-
pared to a DIS layout, as results indicate in task 2. There is, how-
ever, no difference in the quality of the clustering or confidence.

When clutter is an issue, a DIS ordering strategy should be
preferred over a SIM layout. As we can see in the results from
tasks 2 and 3, participants performed more accurately and were
more confident in their selection when working with a DIS layout.

Although we used two clutter conditions in our study, it is chal-
lenging to derive specific guidelines when a dataset is considered
as cluttered. It depends on many properties, such as the number of
records, the general density of data and patterns, and the size of the
PCP. Therefore, this needs to be analyzed in follow-up studies.

6.2. Limitations and Future Work
In our study, we focused on cluster identification. Therefore, the
proposed design considerations need to be considered with caution
for other tasks like correlation analysis. There might be changes in
performance due to different patterns of interest. The same is true for
the cluster structures. Our synthetic benchmark consists of a strong
cluster structure throughout all dimensions. The results of our study
might not be representative if cluster structures are less compact or
not present across all dimensions. The results of our study already
show that real-world datasets perform significantly worse than the
synthetic benchmark data, although we selected datasets, commonly
used in PCP research. The reasons for this effect might be that (1) all

records of the real-world data belong to a cluster (no clutter was
present), (2) the clusters in the real-world dataset were less compact
than in the synthetic datasets, and (3) the real-world trials were
done right after the 300N trials. Hence, participants selected only a
subset to be part of a cluster and interpreting the remaining points
as clutter. To generalize our results further, a follow-up study with
different datasets should be conducted.

Further limitations of the study are (1) The number of dimen-
sions and records: while we believe that results are independent of
the number of dimensions, we restricted ourselves to eight dimen-
sions to keep the trials throughout the study comparable. With an
increasing number of dimensions, the computation of ordering al-
gorithms will take longer; however, this was out of the scope for
our study to investigate. (2) The population of participants: The
study was conducted during two InfoVis lectures at our university.
Therefore, participants were recruited from an InfoVis-trained, lo-
cal student population, limiting the generalizability of the results.
(3) Study setup: Participants used their own laptops with different
screen space and resolution. Although we manually checked that the
study was displayed correctly on each laptop, the experience might
change due to different screen settings or selected internet browser.

7. Conclusion
This paper advances the field of axes reordering in parallel coordi-
nates plots (PCPs). First, we classified existing reordering techniques
based on their inner workings, preferred patterns, and meta charac-
teristics. Using this classification, we provide guidance in selecting
an appropriate approach for a given task. Second, we pushed the
evaluation of axes reordering techniques towards empirical justifica-
tion. We conducted the first controlled user study to assess the perfor-
mance of PCPs with two different ordering strategies. Specifically,
we investigated whether the often proposed similarity-based axes
arrangement (SIM) is better to identify clusters than a dissimilarity-
based layout (DIS), which produces more salient cluster patterns.
Our results show that, depending on the clutter level, participants
performed differently based on the used ordering strategy. When
no clutter was present, a SIM layout was more efficient, whereas,
for cluttered datasets, a DIS layout led to better results. The subjec-
tive preference of participants supported these findings. Thus, our
study shows that the performance of participants can be increased
by choosing the correct layout strategy based on the underlying task.
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