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Figure 1: Interactive analysis of the Three Gaussian Vortices dataset. In this session, we investigate the average aggregation function (left

panel), and the corresponding finite-time Lyapunov exponent (FTLE) field (central panel) for time t0 = 145.23 s and advection T = 15.6 s.

The aggregation function captures the appearance of each vortex in the [t0,T ] parameter space (purple, orange and yellow bands). Similarity

contours in this panel (shown with a range of ±7.5% as blue and green lines) aid the visual analysis by delimiting areas with similar

aggregation values. In the FTLE field panel, the six seed points (pale blue) spawn trajectories (green lines) in the underlying vector field.

The height ridges extracted from the FTLE field are shown in yellow. To the right and bottom are the UI controls and the output console.

Abstract

In this paper, we present an integrated visual analytics approach to support the parametrization and exploration of flow vi-

sualization based on the finite-time Lyapunov exponent. Such visualization of time-dependent flow faces various challenges,

including the choice of appropriate advection times, temporal regions of interest, and spatial resolution. Our approach eases

these challenges by providing the user with context by means of parametric aggregations, with support and guidance for a more

directed exploration, and with a set of derived measures for better qualitative assessment. We demonstrate the utility of our

approach with examples from computation fluid dynamics and time-dependent dynamical systems.

CCS Concepts

• Human-centered computing → Scientific visualization; Visual analytics;

1. Introduction

A broad range of physical phenomena involves passive transport
by some sort of time-dependent flow. Although such advection is
typically superimposed with processes such as diffusion or inertia

to some extent, these additional effects are often negligible, making
advection-based flow analysis an important field of research.

In time-dependent flow, such transport does not only depend on
where a tracer material is injected into the flow and for what dura-

tion it is transported, but also at what time it is released. Essentially,

© 2020 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.13984

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6191-2028
https://orcid.org/0000-0001-6316-6831
https://orcid.org/0000-0002-8949-8452


A. Sagristà & S. Jordan & F. Sadlo / Visual Analysis of the Finite-Time Lyapunov Exponent

for an n-dimensional time-dependent vector field u(x, t), which as-
signs a vector u∈R

n to each position x∈Ω⊂R
n within the spatial

domain Ω at time t, advection is defined by the seeding position x,
the chosen seeding time t0, and the advection duration T . Thus, it
has n+2 degrees of freedom, or in other words, n+2 dimensions.

Since exploring the entire (n+2)-dimensional space would be
prohibitively tedious, summarization and reduction strategies have
proven very useful. A very successful approach in this field is vec-
tor field topology, which, instead of depicting all possible transport
paths, shows only the essential ones, which separate regions of the
domain with qualitatively similar flow behavior. In steady (time-
independent) vector fields, this is achieved with traditional vec-
tor field topology [HH91, HH89], which is based on instantaneous
advection curves, known as streamlines. Those streamlines that
converge in forward or reverse time to saddle-type critical points,
which are isolated zeros of u(x), separate such regions, and are thus
named separatrices. In time-dependent flow, Lagrangian coherent
structures (LCS) take over the role of separatrices. As motivated by
Haller [Hal01] and shown by Shadden et al. [SLM05], LCS can be
obtained as ridges, i.e., typically codimension-one manifolds with
locally highest value, in the finite-time Lyapunov exponent (FTLE)
field. The FTLE field σT

t0(x) is a scalar field in the n-dimensional
domain Ω, and the (n− 1)-dimensional LCS provide such a sum-
marization and reduction—however, only for the seeding time t0
and advection time T used to compute the FTLE field.

Although the FTLE is a very powerful tool for understanding ad-
vection in time-dependent flow, it has not reached wide application
yet. Its comparably high computational cost (a trajectory has to be
computed for each of its sample points in space and time) might
not be the main reason for that, since several acceleration strategies
have been proposed [GGTH07, SP07, SRP11]. It is much more its
highly intricate parametrization and difficult interpretation that im-
pede successful application by the non-expert. For example, T has
to be chosen large enough to capture the phenomenon of interest,
but small enough to prevent aliasing at the chosen spatial resolution
of σT

t0(x). Also, analysis of the two-dimensional space spanned by
t0 and T for relevant structure is not amenable by direct interactive
exploration without supporting context. It is the goal of this paper to
provide an approach that overcomes such issues and helps FTLE-
based flow analysis reach its deserved applications by making it
easier to apply and interpret. Although large parts of our technique
generalize to any dimension, we focus on two-dimensional vector
fields and leave the extension to 3D for future work.

The contributions of this paper include:
• The concept of aggregation functions in the t0–T space, and
• aggregation function definitions to analyze: basic properties,
• height ridge configurations,
• aliasing and resolution issues, and
• the overall “connectedness” of FTLE fields.
• Finally, an integrated framework to aid in the exploration and

analysis of these aggregation functions and the FTLE.

2. Related Work

To the best of our knowledge, this is the first work that applies vi-
sual analytics methods to aid in the application and interpretation of

FTLE-based flow analysis. A good introduction to time-dependent
vector field topology is provided by Pobitzer et al. [PPF∗11],
and an overall survey on topology-based methods by Heine et
al. [HLH∗16]. For steady vector field topology, Asimov [Asi93]
can provide a starting point to the literature. The seminal paper by
Haller [Hal01] presented a computation of the FTLE based on the
flow map, and proposed LCS to be ridges in the FTLE field, which
has later been confirmed by Shadden et al. [SLM05], with quanti-
tative guarantees. Eberly [Ebe96] introduces the concept of height
ridges, and Peikert et al. [PS] explore and assess different meth-
ods for their computation and filtering. The current work makes
extensive use of these techniques, and presents a framework for
interactive exploration and analysis of both the FTLE field and the
LCS as height ridges. Combining FTLE and flow visualization with
integrated interactive systems has also been addressed before, for
example, as a framework to aid in the topological analysis of iner-
tial particles [SJJ∗17] but also in the realm fluid dynamics in gen-
eral [SRBE]. Our work also borrows from Weiskopf’s [Wei07] in
his exploration of GPU-based interactive visualization techniques
of scalar and vector fields. In the field of visualization systems,
the Topology ToolKit [TFL∗18] implements most of the techniques
mentioned above and offers an open-source platform for topolog-
ical analysis in visualization, while VisTrails [BCC∗05] offers a
provenance infrastructure which maintains a detailed history of
data and workflows in the visualization process. The latter would
certainly represent a fine companion to our system in order to en-
sure the persistence and reproducibility of results.

Additional relevant work also addresses the visual analysis of
time-dependent data and flow fields. In this direction, Aigner et
al. [ABM∗07] study the introduction of time as an additional di-
mension in visual analytics, Bürger et al. [BMI∗] integrate local
feature detectors in the visual analysis of time-dependent flow sim-
ulations, Shi et al. [STH∗07] present an approach to visually ana-
lyze time-dependent flow fields through the behavior of the path-
lines, and Doleisch, Hauser and co-authors [DGH, DMG∗] study
the visual analysis of complex time-dependent flow simulations and
real data. In this context, the current work provides an interactive
analysis of trajectories, and introduces the concept of FTLE aggre-
gation fields, which attempt to capture global trends and features in
the seeding and advection time dimensions.

3. Fundamentals

For completeness, we first provide some additional basics on the
FTLE (Section 3.1) and height ridges (Section 3.2), followed by
descriptions of individual challenges of FTLE-based flow analysis
together with our respective solutions (Section 4).

3.1. FTLE

Height ridges (Section 3.2) in the FTLE field represent the coun-
terpart to separatrices, i.e., LCS separate spatial regions of simi-
lar time-dependent advection. Haller [Hal04] proposes to base the
computation of the FTLE field on the flow map φφφT

t0(x), which maps
particles seeded at position x and time t0 to their final position after
advection for time T , i.e., for each pathline (or trajectory), it maps
from the start point to its end point. In this approach, the FTLE
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Figure 2: Height ridge extraction from the Buoyant Flow

dataset with four different FTLE field resolutions of 100× 100 (a),

400× 400 (b), 800× 800 (c), and 1600× 1600 (d), with identi-

cal t0 = 0.09 s and T = 0.088 s. In each case, the ridge filter

threshold τλ has been adjusted according to an expert’s choice to

−0.07 (a), −0.06 (b), −0.04 (c), and −0.03 (d). The resolutions (a)

and (b) are not able to capture the two aligned, very close ridges

in the bottom right quadrant (i) in (a) and (b). However, the ridges

are already present, albeit broken, when we increase the resolu-

tion (c), and they are much better captured at (d), although even

higher resolution would be required. The ridge (ii) is present in (c)

but disappears when we double the resolution (d) due to its insuffi-

cient sharpness with respect to the increased resolution.

computes

σT
t0(x) :=

1
|T |

ln
∥

∥

∥
∇φφφT

t0(x)
∥

∥

∥

2
, (1)

with ‖ · ‖2 representing the spectral norm (the square root of the
largest eigenvalue of A⊤A for a matrix A). Example FTLE fields
are shown in Figure 2. Notice that increasing T typically leads to
a decrease of the overall FTLE values, since the particles would
need to diverge exponentially over the entire duration T to keep the
overall FTLE values constant. We counteract this effect, which can
hinder visual analysis of FTLE behavior, by optional multiplica-
tion of the FTLE values with |T |, prior to, e.g., applying aggrega-
tion functions (see Section 4). Notice also that the sampling of the
FTLE grid does not need to (and typically does not) coincide with
the grid nodes of the vector field u(x, t). In fact, the spatial reso-
lution of the FTLE grid is an important parameter, which needs to
be chosen sufficiently high to prevent aliasing, or in other words, to
appropriately capture the structure of the FTLE. Furthermore, no-
tice that we do not employ acceleration strategies for FTLE com-

putation (except for parallel computation on the GPU), and that we
need to sample it for a region of interest of the space spanned by t0
and T , including derived measures, which leads to very expensive
computation. Thus, we employ preprocessing, which, however, is
carried out as a batch process since it requires no interaction.

3.2. Height Ridges

A codimension-one ((n− 1)-dimensional) height ridge in a scalar
field s(x), with x ∈ Ω, can be obtained according to Eberly [Ebe96]
by extracting the zero-isocontour from a derived scalar field:

∇s(x) ·εεεmin(x) = 0 , (2)

where εεεmin(x) is the minor eigenvector of the Hessian ∇∇s(x),
with the additional requirement of the minor eigenvalue λmin of
the Hessian being negative. In discrete (grid-based) settings, this
isocontour extraction can be accomplished based on the march-
ing squares algorithm [LC87], with an additional step that makes
eigenvector orientation consistent [FP01]. Additionally, it is com-
mon to suppress spurious solutions (noise) by rejecting those parts
of the solutions where λmin is not sufficiently small, i.e., one re-
quires λmin < τλ with a user-defined threshold τλ 6 0. We also
employ such filtering in our examples, and document our choice
for τλ accordingly. As demonstrated in Figure 2, the main issue
with height ridge extraction from FTLE fields is typically not (nu-
merical) noise due to the involved second derivatives, but aliasing
and ridges that are closer together than the support size of the dis-
crete second-derivative operator, affecting estimation of the Hes-
sian. We address both issues in Sections 4.3 and 4.4. Other ap-
proaches to ridge extraction attempt to solve the numerical noise
problem, including the filtered AMR ridge extraction by Sadlo et
al. [SP07], which is based on the determination of the gradient by
least squares and also works for unstructured grids, and the feature
extraction method by Kindlmann et al. [KCH∗18], implemented in
Diderot [KCS∗16], which solves the numerical noise issue by using
ray casting and advanced interpolation schemes.

4. Approach

We now describe our visual analytics approach in terms of derived
measures and their visual representation. In Section 5, we then fo-
cus on interaction and implementation aspects, followed by an eval-
uation (Section 6). Performance and optimization considerations
are discussed in detail in Section 7.

4.1. Aggregation Fields

The most basic challenge with FTLE-based flow visualization is
the selection of a seeding time t0 together with an appropriate ad-
vection time T . In addition, the temporal structure of vector fields
can be very rich, making it difficult to determine relevant instants
of time t0. Notice that it is common practice in FTLE-based vi-
sualization to choose a T and then use it to compute the FTLE
field σT

t0(x) for a finely resolved sequence of t0, leading to respec-
tive animations. Whereas such animated visualizations might work
quite well once the spatiotemporal region of interest, as well as the
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Figure 3: Basic aggregation functions for the Quad-Gyre dataset

with aggregation field resolution Gagg = 200× 200, FTLE resolu-

tion G = 200× 200, t0 ∈ [0,8], and T ∈ [1,8]. fσavg (b) displays a

very soft structure apart from the direct proportionality with T . By

contrast, fσmax (a) captures the periodicity of the dataset surpris-

ingly well. We also provide, for comparison, the 95th percentile (c),

and the sum of squares (d) aggregation fields.

appropriate advection time, has been determined, they do not pro-
vide temporal context, nor do they support finding such relevant re-
gions of interest. Additionally, the exploration of t0 is complicated
by the fact that t0 and T are intertwined—their selections impact
each other. And furthermore, processes at different locations and
different times t0 in a given vector field typically require differ-
ent choices of T , imposing hard challenges in choosing appropriate
combinations of t0 and T .

We support the exploration of regions of interest in the space
spanned by t0 and T (denoted Ωt0,T ) by introducing aggregation

fields fα(y):

fα : Ωt0,T → R , (3)

which map each point y ∈ Ωt0,T ⊂ R
2 to the scalar result of an ag-

gregation function α. That is, each point y corresponds to an FTLE
field σT

t0(x), and the aggregation function

α : (Ω → R)→ R (4)

takes the field σT
t0(x) as input and outputs a single scalar value. Ag-

gregation fields are displayed in the aggregation panel (Figure 11)
of our system, providing insight into Ωt0,T in FTLE-based flow
analysis. Notice that we map t0 to the abscissa and T to the ordinate
in the visual analytics framework.

We found the following aggregation functions particularly use-
ful for summarizing properties of FTLE fields and LCS in a sin-
gle scalar value. We divide them into four distinct groups: basic
aggregation (Section 4.2), ridge aggregation (Section 4.3), aliasing
aggregation (Section 4.4), and region aggregation (Section 4.5), ac-
cording to their use.

4.2. Basic Aggregation Functions

As motivated above, a basic need in FTLE-based flow visualiza-
tion is to support the exploration of combinations of t0 and T . We
evaluated the summarization of an FTLE field for each y ∈Ωt0,T by
aggregation functions computing its minimum, maximum, average,
median, sum of squares, root mean square, and 95th percentile—
and identified the maximum and average as the generally most use-
ful ones. The maximum aggregation function is defined as follows:

σmax(σ
T
t0(x)) := max

x̂∈Ω̂
σT

t0(x̂) , (5)

t0

T

(a)

t0

T

(b)

t0

T

(c)

Figure 4: fρlen (a), fρcnt (b), and fρ̂len(k)
(c) aggregation fields, ap-

plied to the Quad-Gyre dataset, with τλ = −0.05 and the same pa-

rameters as for Figure 3. Note that (a) shows a rather continuous

field, while (b) contains only integer numbers of ridges, and (c)

displays a similar structure due to its dependency on the number

of ridges. Additionally, while ρlen increases with T due to longer,

sharper ridges, ρ̂len(k) exhibits in (c), toward higher T values, a

sharp drop in the quality of extracted ridges caused by aliasing.

The rather noisy top part in all fields shows that the chosen spatial

resolution is unable to capture the ridges at high T values well, so

they break up in an unpredictable manner causing these patterns.

with Ω̂ being the discrete domain of the FTLE field, i.e., the set
of sampling grid nodes of our node-based representation of σT

t0(x),
and x̂ representing such a node. An example of the resulting aggre-
gation field fσmax (y) is shown in Figure 3a.

The average aggregation function is defined as:

σavg(σ
T
t0(x)) :=

1

|Ω̂|
∑

x̂∈Ω̂

σT
t0(x̂) , (6)

with |Ω̂| being the cardinality of Ω̂, i.e., the number of nodes in the
FTLE sampling grid. An example for the aggregation field fσavg(y)
resulting from the average aggregation function σavg(·) is shown in
Figure 3b.

4.3. Ridge Aggregation Functions

Since FTLE ridges represent LCS, which in turn are the topological
features of time-dependent vector fields, the total amount of ridges
is a basic measure for the topological structure of a time-dependent
vector field. Thus, our first ridge aggregation function

ρlen(σ
T
t0(x)) := ∑

r∈R

µ(r) , (7)

simply measures the total length of all height ridges extracted from
the FTLE field σT

t0(x), with R being the set of all ridges (in poly-
line representation), and µ(r) measuring the length of ridge r. Fig-
ure 5 shows an example result of the ridge extraction process and is
annotated with the respective ρlen values. Figure 4a shows the ag-
gregation field fρlen(y), resulting from the ridge length aggregation
function ρlen(·).

The number of ridges, on the other hand, can capture if ridges
are disrupted, e.g., due to insufficient resolution of the FTLE field.
This is a major issue in FTLE-based visualization (Figure 2). Thus,
our next ridge aggregation function

ρcnt(σ
T
t0(x)) := |R| , (8)

counts the number of height ridges extracted from the FTLE
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Figure 5: Same dataset as Figures 3 and 4, showing the result

(yellow) of the ridge extraction process with seeding time t0 = 4.0 s

and advection time T = 2.75 s (a), corresponding to the red dots

in Figure 4, and T = 6.25 s (b), corresponding to the blue dots

in Figure 4. The value of ρlen in (a) is 5.09 , and 12.18 in (b). The

aggregation fields show trends which would otherwise be impos-

sible to observe just by looking at the single FTLE fields (higher

values by higher saturation).

field σT
t0(x), with |R| being the number of elements in R. Figure 4b

shows the respective aggregation field fρcnt(y).

Since LCS, i.e., FTLE ridges, separate regions of qualitatively
different time-dependent advection, their individual length is also
important—a long ridge represents a larger barrier in the domain
and thus also represents a more significant topological structure
(Figure 5). This motivates our last ridge aggregation function

ρ̂len(k)(σ
T
t0(x)) :=

1
|R| ∑

r∈R

µ(r)k , (9)

which measures the averaged kth power of the ridge lengths. It pro-
vides a good measure of the overall quality of the ridge extraction
stage, and, implicitly, discretization quality (appropriateness of the
resolution) of the FTLE field. Figure 4c shows the respective ag-
gregation field fρ̂len(k)

(y) for k = 1.

4.4. Aliasing Aggregation Function

The ridge count ρcnt(·) and ridge length power ρ̂len(k)(·) aggrega-
tion functions are already able to indicate aliasing issues in the
FTLE field σT

t0(x). However, they do that only indirectly via the
properties of the ridges extracted from σT

t0(x). Since these ridge ag-
gregation functions also capture the structure of the LCS and are
thus superimposed by LCS properties, we complement them with
a new aggregation function that quantifies aliasing in a direct way.

Aliasing in FTLE fields, as apparent in Figure 2a, is caused by a
too low FTLE field resolution compared to the gradients (frequen-
cies) of the FTLE field. It is in particular the very low width of
FTLE ridges that makes the FTLE field so hard to sample. This is
all the more challenging as this width is related inversely to the ad-
vection duration T . That is, the larger T , the longer typically the
LCS, and the sharper the FTLE ridges become. In confined do-
mains, the flow has to turn at some point and will cause the ridges
to fold, leading to closely adjacent ridges by the so-called stretch-
ing and folding mechanism [Sma67]. To the best of our knowledge,

there is no analytic result on the relation between FTLE advection
time and ridge width, but due to the underlying assumption of expo-
nential divergence, and motivated by our observations, we assume
that ridge width decreases exponentially, too, which imposes a very
hard challenge on appropriate FTLE sampling. That is, increasing
T typically requires much stronger increase of the spatial sampling
resolution, otherwise aliasing will appear.

Motivated by the Nyquist–Shannon sampling theorem, we in-
dicate aliasing by analyzing the frequency spectrum of the FTLE
field. That is, we use the Fourier transform to obtain the 2D spec-
trum of the field, and measure the amplitude of the highest fre-
quencies in that spectrum. Our motivation to do so is that if the
original signal (in our case the underlying true FTLE field that we
are discretizing using the discrete flow map) had frequencies higher
than the Nyquist frequency, it would be very likely that the highest
frequencies in the discretized signal (our sampled FTLE field) have
non-negligible amplitudes. Conversely, negligible amplitudes in the
highest frequencies in the FTLE can indicate appropriate sampling.

We realize such a quantification of the amplitude of the high-
est frequencies of an FTLE field σT

t0(x) by first transforming it
to the 2D frequency domain Ω̃ ⊂ R

2 using the fast Fourier trans-
form [CT65], resulting in the spectrum σ̃T

t0(ξξξ) for ξξξ∈ Ω̃. Notice that
in this representation, zero frequency is at the origin ξξξ0 = 0 and Ω̃
is symmetric about the origin. As a consequence, points ξξξ at equal
distance ν from the origin, i.e., ‖ξξξ‖ = ν, represent equal frequen-
cies, or in other words, circles in Ω̃ ⊂ R

2 (about the origin with ra-
dius ν) represent all amplitudes belonging to the frequency ν. Thus,
to quantify the amplitude of the m highest percent of frequencies in
the FTLE field σT

t0(x), we define the following aliasing aggregation
function, which integrates the spectrum σ̃T

t0(ξξξ) along these circles:

νsum(m) :=
∫∫

ξξξ∈X

σ̃T
t0(ξξξ)dξξξ , (10)

with

X :=
{

ξξξ′
∣

∣

∣
‖ξξξ′‖ ≥ 100−m

100 ν̂
}

, (11)

and with ξξξ′ ∈ Ω̃, and ν̂ being the Nyquist frequency, i.e., the spatial
resolution of our discretized σT

t0(x).

Figure 6 shows the resulting aliasing aggregation field fνsum(m)(y)
for choices of increasing FTLE resolution. One can see that as the
FTLE resolution increases, the area within Ωt0,T with negligible
highest frequencies (low aliasing) extends to the top, i.e., our ag-
gregation indicates that longer advection times T can be used.

Typically, a correlation between the amount of aliasing and the
ridge length aggregation ρlen(·) can be observed. The main cause
for this is that aliasing is typically caused by very sharp (thin)
ridges, that cannot be resolved with the chosen spatial resolution.
As discussed above, such long and sharp ridges appear in particu-
lar with longer advection times—and if the resolution is chosen too
low, ridge extraction typically produces disrupted lines, which re-
flects in low ρ̂len(k) values (top in Figure 4c). Our system provides
the option to map aggregation fields to different color channels for
combined analysis for such purposes, as demonstrated in Figure 7.
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Figure 6: Aliasing aggregation field fνsum(2) for the Quad-Gyre dataset with resolution G = 25× 25 (a), 50× 50 (b), 100× 100 (c),

200× 200 (d), 400× 400 (e), and 800× 800 (f). Gagg is, in all cases, 200 , T ∈ [1,8], and t0 ∈ [0,8]. Note the dependency of the aliasing

aggregation field on advection time T , and how the aliasing pattern moves to larger T (top) as the field resolution G increases.

t0

T

(a)

t0

T
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Figure 7: Aliasing aggregation field fνsum(2) mapped to the green

channel, and fρ̂len(k)
(a), and fρlen (b) mapped to the red channel for

the dataset from Figures 4a, 4c, and 6d. Note that in (a), the fields

are somewhat complementary because the ridge quality decreases

as the aliasing problems increase, whereas in (b), they both show

the same increasing trend with T .

4.5. Region Aggregation Functions

Our final aggregation function goes one step further and focuses
on the interpretation of FTLE fields. As discussed, FTLE ridges,
the LCS, separate regions of qualitatively different time-dependent
flow behavior. However, whereas separatrices in steady vector field
topology indeed separate such regions entirely (assuming integra-
tion time of the streamlines goes to infinity), LCS typically do not.
That is, LCS do generally not partition the domain—they typically
leave gaps (see Figure 5b). The reason for that is that topology of
aperiodic time-dependent flow does usually not have the opportu-
nity to consider the limit case T →∞. Instead, finite-time consid-
erations (with respect to finite advection time T ) have to be em-
ployed, leaving gaps between LCS due to the time-local nature of
the topological processes.

We account for these circumstances by introducing a measure to
quantify the connectedness of the domain Ω with respect to “ob-
stacles”, which in our case are the FTLE ridges. Due to the high
computational complexity of this measure, we define a separate
(typically lower-resolution) sampling grid in the FTLE domain Ω,
whose grid nodes we denote ŷ ∈ D (Figure 8 contains a compari-
son of different ŷ-resolutions). We then discretize the FTLE ridge
set R at the resolution of the FTLE (at nodes ẑ), by setting ridge
nodes as “background” (white in Figure 8) and non-ridge nodes

x

y

(a)

x

y

(b)

x

y

(c)

Figure 8: The same connectedness field of the Quad-Gyre

dataset with FTLE resolution G = 50× 50 and different ŷ-

resolutions Gs = 5× 5 (a), Gs = 10× 10 (b), and the same as G,

Gs = 50× 50 (c). Observe the small difference between the version

where Gs = G (c) and the version using a hundred times less sam-

ples (a). This example shows that the connectedness of the dataset

is equally well captured by all sampling resolutions.

to “foreground”. In other words, we binarize the ridge lines into
the grid ẑ, and collect its foreground nodes in a set F and its back-
ground nodes in a set B. Based on that, we define our connectedness
field γ(ẑ) at a given node ẑ as follows:

γ(ẑ) :=
1
|F| ∑

ŷ∈ D

µ
(

A
∗(ẑ, ŷ)

)

, (12)

with |F| being the number of foreground, i.e., non-ridge nodes,
A∗(ẑ, ŷ) being the shortest path between nodes ẑ and ŷ according
to the A∗ algorithm (avoiding the background, i.e., ridge obstacles),
and µ(·) being the length of such a path. If such a shortest path
between two foreground nodes ẑ and ŷ does not exist (e.g., because
it is completely blocked by LCS and/or boundaries), the distance is
set to the perimeter of the domain Ω. If one of the nodes (or both)
are contained in B, the respective length is set to zero. Figures 9c
and 9d show an example of the connectedness field resulting from
the respective ridge configurations (orange lines).

To obtain an aggregation field, we need to combine all values
of the connectedness field γ(ẑ) into a single scalar value. We ac-
complish this by employing the basic aggregation functions (Sec-
tion 4.2) to γ(ẑ) instead of σT

t0(x), resulting in the region aggrega-
tion fields fγmax (y) (Figure 9a) and fγavg(y) (Figure 9b).

Even though there is a correlation between the total ridge
length aggregation field fρlen(y) and the connectedness aggregation
field fγ(y) (Figure 10), the latter is able to account for almost iso-
lated or even closed regions, in contrast. Additionally, fρlen(y) does
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Figure 9: Region aggregation fields (a)–(b) and connected-

ness fields (c)–(d) for the Quad-Gyre dataset. Resolutions are

Gagg = 200× 200 and G = 50× 50. fγavg (b) shows a strong de-

pendency on T , but also some changes along t0, indicating differ-

ent degrees of connectedness for different time settings. By contrast,

fγmax (a) clearly displays the fields which have closed areas in yel-

low. The red marker corresponds to the connectedness field (c), at

t0 = 2.3 s and T = 5.0 s, which exhibits no closed regions. On the

other hand, the blue marker in (a) corresponds to (d), at t0 = 5.3 s

and T = 5.6 s, which has four isolated regions. In the connected-

ness fields, the ridge lines (orange) are rasterized in white.

not take into account the configuration and layout of the ridges in
terms of topological structure.

5. System Description

The system is composed of a modular, interactive and customiz-
able front-end and a versatile computing back-end, which enable
the user to analyze, examine, and understand the temporal and spa-
tial properties of the system under study. The software can be set
up using command line arguments, to compute a user-selected list
of aggregation fields, or it can load precomputed runs from files.
Additional options include starting an interactive session or only
compute in the background, and persisting the results to disk. The
software will be open sourced and published at a later date. In the
following, we describe its capabilities and features in detail.

Main layout. Our system consists of two panels laid out side-by-
side (Figure 11), plus a set of UI elements and controls in charge of
receiving and presenting information to the user. The left panel ①

contains the aggregation field displaying one or more of the aggre-
gation functions, optionally with logarithmic scale. The panel right
next to it ② displays the FTLE field for a selected location in the
aggregation space. The FTLE field panel is automatically updated
as the user hovers the cursor over the aggregation field.

Aggregation panel. The aggregation panel ① contains the cur-
rently selected aggregation field with the user-selected resolution
Gagg = Nt0 ×NT . Two timelines are available to the left and bot-
tom of the aggregation panel ③. These contain six “field icons” at
different positions in t0 (bottom) and T (left) space. The timelines
are also automatically updated with the active mouse position in
the aggregation field. Additionally, we display integrated hyperbol-
icity det(∇u(x)) of the vector field (which tends to quantify the
separating dynamics causing LCS) aligned with the seeding time
on the horizontal axis, below the timeline ④. A color legend is pro-
vided to the right of the aggregation panel ⑤, and it is updated
automatically when the aggregation field changes.
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Figure 10: Scatterplot with density coloring of ρlen (yellow =

high), with respect to the average region aggregation field fγavg ,

for the Quad-Gyre dataset. Note that for shorter ridge lengths, the

relation is quasi-linear, but as the total ridge length increases, the

values of the average region aggregation field spread out, giving

rise to very different connectedness configurations for fields with

the same total ridge length. The clusters centered around differ-

ent average connectedness values (0.02, 0.045, 0.055) correspond

to different closed-region configurations. For instance, the topmost

cluster contains all configurations where the map is vertically di-

vided into two similarly-sized disconnected regions. The second

cluster corresponds to configurations where roughly a quarter of

the map is a closed region (see Figure 9d). The rest corresponds to

different configurations of smaller-sized closed regions. Note that

within each cluster, there is a considerable deviation in average

connectedness, proving that this aggregation function is actually

able to measure the connectedness quite well, even when closed

regions are present.

FTLE panel. The FTLE panel ② displays the finite-time Lya-
punov exponent field for the active coordinate in the aggregation
panel, with the user-selected resolution G = N ×M . It is recom-
puted and updated automatically whenever this coordinate changes.
Moving the pointer within the FTLE panel, while pressing the con-
trol key, spawns a trajectory seed, which follows the pointer move-
ment. Clicking on the field while pressing the control key cre-
ates permanent trajectory seeds. All used colormap schemes can
be changed at runtime using the View menu. The system allows
for global and local scaling of colormaps. All images in this paper
use local scaling. The colormaps used by default include the blues

colormap (white to blue, used in regular FTLE fields), the inferno

colormap (black to purple to orange to yellow, used in the aggre-
gation fields) and the viridis colormap (purple to blue to green to
yellow, used in the region aggregation fields).

Contours and ridges. Similarity contours can be computed in the
aggregation panel in order to aid in the visual exploration of the
aggregation field. Ridge extraction can be applied to either the ag-
gregation or the FTLE fields. The ridge extraction threshold (τλ)
defaults to the one used for the computation of the ridge aggre-
gation fields. The system also supports interactive exploration of
different values for τλ.
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Figure 11: Illustration of the components in our system. Ag-

gregation panel ①, FTLE panel ②, vertical and horizontal time-

lines ③, vector field hyperbolicity panel ④, aggregation field color

legend ⑤, UI controls ⑥, contextual information pane ⑦, output

console ⑧, main menu ⑨, and status bar ⑩.

Three-way exploration. The system supports a three-way simul-
taneous exploration mode (Figure 7) for aggregation fields. Any
two or three aggregation fields may be mapped to the red, green,
and blue channels, in order to explore their combined properties.
More interestingly, a three-way exploration mechanism is also of-
fered in the FTLE field panel. Once enabled, the user can succes-
sively click on positions in the aggregation panel to map the corre-
sponding fields to the red, green, and blue channels.

Input/output controls. The controls are positioned to the right of
the FTLE panel ⑥, and contain the necessary elements to manage
the behavior and settings of the current session. In order to guide
the user through the visual analysis process and improve under-
standing, the system offers a contextual information box ⑦, which
shows comprehensive information of the currently selected/high-
lighted elements. The current output log is shown in the console
output panel ⑧. The top menu bar ⑨ contains shortcuts to many
functions, such as saving the current session, or pausing the up-
date thread. Finally, a summary of the state of the current session is
displayed at the bottom of the window, in the status bar ⑩. We re-
fer the reader to the accompanying video, which contains extensive
demonstrations of all these features and more.

6. Results

Our recommended exploration flow, as gathered by the experts’ ex-
perience with the tool, starts by analyzing the basic aggregation
in order to get a sense of the general trends that may be captured
by the fast statistical functions, followed by the ridge and aliasing
aggregation fields, which help narrow down the most interesting
parameter subspaces, to end with the region aggregation to gain
insight into the connectedness properties of the dataset. The sys-
tem allows, if required, interactive exploration of the FTLE fields
in context with the aggregation space, as well as interactive fine-
tuning of key parameters such as the ridge extraction threshold.
Additionally, recomputation of interesting sub-spaces at different
resolutions and with different parameters may also be required.
With these guidelines in mind, we analyze an analytic example

(Section 6.1), a 2D fluid dynamics simulation (Section 6.2), a con-
structed dataset based on appearing Gaussian vortices (Section 6.3),
an inertial n-body system (Section 6.4), and an atmospheric wind
dataset based on real measurements (Section 6.5).

6.1. Quad-Gyre

This example was introduced by Shadden et al. [SLM05] for the
analysis of Lagrangian coherent structures. The vector field is de-
fined by the following analytic representation:

a(x, t) =

(

−πA sin(π f (x, t))cos(πy)

πA cos(π f (x, t)) sin(πy) d f
d x

)

, (13)

with f (x, t)= a(t)x2+b(t)x, a(t) = ε sin(ωt), b(t)= 1−2ε sin(ωt),
x = (x,y)⊤, ε = 0.25, ω = π/5, and A = 0.1. We sampled the field
at a resolution of 50× 50 and 100 time steps in the spatial range
x ∈ [−1,1]× [−1,1] and temporal range [0,20]. Note that we use
this y-range instead of the often employed [0,1], leading to a y-
symmetric field with four time-dependent vortices instead of two.

We compute all basic, ridge, aliasing, and region aggregation
fields for T ∈ [1,8] and t0 ∈ [0,8]. Starting with the basic aggre-
gation fields in Figure 3, we can see in fσavg (Figure 3b) very vague
recurring features in t0 and a strong dependency on T . This peri-
odicity is captured much better by fσmax (Figure 3a). A particular
feature of this dataset is that when the main vertical LCS crosses
from right to left and vice-versa, it is less sharp, resulting in lower
FTLE values. This is captured by fσmax and shown as a valley. fρlen

shows an obvious proportionality with T (Figure 4a), and some ex-
tra periodic structure that shows variations in the total length of
ridges. Figure 5 shows the actual FTLE field and ridges with two
different advection times for this dataset. fρ̂len(k)

(Figure 4c) shows
that the central values of T (between 3 s and 5 s) are the best can-
didates for high-quality ridges. An interactive exploration with the
system reveals that at higher T values, the ridges break up, and
the current resolution is not able to capture them well. The alias-
ing aggregation field supports this analysis. Figure 6a shows that
the field resolution of 25 × 25 is unable to properly sample the
field anywhere in the aggregation space, whereas Figure 6e shows
that the resolution of 400 × 400 does not present problems when
T < 4s. In particular, looking at the aliasing field for the resolu-
tion of 200× 200 (Figure 6d) for which fρ̂len(k)

has been computed
(Figure 4c), we discover that areas with lower fρ̂len(k)

values (i.e.,
low-quality ridges) coincide with regions with high aliasing indica-
tion. Figure 7a shows both aggregation fields in the same image for
comparison. We determine that we would need a higher resolution
to effectively capture the ridges in that area. Finally, the maximum
region aggregation field (Figure 9a) is able to separate the config-
urations which have disconnected areas from the rest and provides
a clear picture of the degree of connectedness of the fields in the
aggregation space.

6.2. Buoyant Flow

The Buoyant Flow dataset is a fluid dynamics simulation of air cur-
rent moving around in a container with a heated bottom wall and
a cooled top wall. Figure 12 shows basic and ridge aggregation
fields for this dataset. We can see in fρlen (Figure 12b) that most
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Figure 12: Buoyant Flow dataset with Gagg = 500× 500 and

G = 400× 400, t0 ∈ [0,0.3], and T ∈ [0.01,0.1]. All fields fσmax (a),

fρlen (b), and fρcnt (c) show a similar structure with this dataset. The

ridge aggregation fields, however, show that the LCS are only sharp

enough to be detected as ridges at high T values.
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Figure 13: Aliasing aggregation fields (Gagg = 500× 500)

for the Buoyant Flow dataset with G = 100× 100 (a) and

G = 400× 400 (b). Observe how the aliasing values decrease sig-

nificantly with the increased resolution.

of the structure is concentrated away from low t0 and T values,
but once it shows up, it exhibits little variation. We can infer that
the Lagrangian coherent structures, represented by the ridges, move
around with the field but the total number stays more or less con-
stant, which indicates their high quality. Figure 13 contains a com-
parative analysis of the aliasing aggregation field with two different
resolutions, 100 × 100 (Figure 13a) and 400 × 400 (Figure 13b).
Observe how the aliasing problems diminish considerably with this
factor of four increase in field resolution. We can be quite confi-
dent that the field is sampled correctly across the whole aggrega-
tion space, except for a very small problematic zone close to the
bottom left. Figure 14 shows the Buoyant Flow FTLE with vary-
ing resolutions and identical τλ. Our system, as demonstrated in
the accompanying video, supports interactive exploration of such
parameters.

6.3. Three Gaussian Vortices

The Three Gaussian Vortices dataset is a constructed vector field
based on a blend of simpler fields generated using a mixture of pro-
grammatic rules and time-dependent analytical functions. It con-
sists of three vortices, each spatially masked with a Gaussian func-
tion, that appear at different times and positions on top of a uniform
velocity field to the right. The basic aggregation fields fσmax (Fig-
ure 15a) and fσavg (Figure 15b) capture the general trend quite well.
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Figure 14: FTLE fields extracted from the Buoyant Flow dataset

with G = 100× 100 (a), G = 400× 400 (b), G = 800× 800 (c),

and G = 1600× 1600 (d) with identical t0 = 0.09 s, T = 0.088 s

(red marker in Figure 13), and τλ = −0.04 in all cases. Observe

how the same τλ value leads to very different ridge configurations,

depending on the resolution.

t0

T

(a)

t0

T

(b)

t0

T

(c)

x

y

(d)

Figure 15: Three Gaussian Vortices dataset with

Gagg = G = 400× 400, t0 ∈ [40,170], T ∈ [1,20], and τλ = −0.04

fσmax (a) captures the maximum value in the FTLE field, only show-

ing the boundary where the first vortex appears, while fσavg (b)

captures the average of all values, clearly displaying additional

structure as each of the three vortices appears. fρlen (c) shows the

contribution of each of the three vortices, as they appear, in the

form of ridge length. The red, green, and blue markers correspond

to the same T = 18 s and different t0 of 100 s, 133 s, and 160 s,

respectively. (d) shows the three FTLE fields corresponding to the

three points in (c), mapped to the red, green, and blue channels.

The bottom vortex appears at around t0 = 75 s and stays there

until the end, thus showing white (red + green + blue). The middle

vortex is still present when the top-most one appears, thus showing

in cyan (green + blue).

fσavg captures the moment when each vortex appears. Figure 15c
shows that fρlen additionally captures the location of the vortices
in the aggregation space in terms of ridges, providing a very good
picture of interesting parameter combinations for this dataset. To
that effect, the illuminated areas represent the subspaces of (t0,T)
where one, two, and three vortices are in the field and cause suffi-
cient sharpness in the FTLE field so that the ridge extraction algo-
rithm succeeds.

6.4. 5-Body

We now demonstrate the utility of our approach to handle fields
other than traditional FTLE. In this example, we use an inertial n-
body system with five bodies. The simulated bodies start more or
less evenly distributed in space and interact freely over time (Fig-
ure 17). We use the phase-space finite-time Lyapunov exponent
field (PS-FTLE) [SJJ∗17], which extends the regular FTLE to the
dynamics of inertial systems, with initial velocity constrained to
000 (PS-FTLE-P). The aggregation fields (Figure 16) exhibit more
structure than most previous datasets. fσmax and fρlen clearly show
the dispersion of the bodies toward higher t0, i.e., the bodies exit
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Figure 16: Aggregation fields for the 5-Body dataset. fσmax (a),

fρlen (b) with G = 300× 300, and aliasing aggregation fields

with G = 100 (c) and G = 300× 300 (d). Gagg = 300× 300,

t0 ∈ [0,6.5], and T ∈ [1,3] in all cases. The aliasing aggregation

fields suggest that the chosen resolution is too low for this dataset,

irrespective of (reasonable) advection times.

the region of study toward the end of the time range. Figure 17 pro-
vides a PS-FTLE-P sequence for this dataset. The aliasing aggrega-
tion fields for G = 100×100 (Figure 16c) and G = 300×300 (Fig-
ure 16d) show that, even though the aliasing decreases considerably
in some regions, a resolution of 300 is still insufficient. The PS-
FTLE-P folds over and over close to the bodies, which the shown
resolution is not able to capture appropriately. The region aggre-
gation fields for this dataset (Figure 18) hint at configurations at
which the ridges isolate disconnected regions (yellow zones in Fig-
ure 18b), and configurations where the ridges do not quite close at
the given resolution and thus produce lower connectedness values.

Stefan Jordan, one of our coauthors and an expert astrophysi-
cist, has evaluated the tool with the 5-Body dataset: The system
is able to guide to some interesting events like close-body inter-
actions around t0 = 1.6, showing up as a valley in the maximum
and ridge length aggregation fields. Even though, to the best of our
knowledge, FTLE has never been used in astronomy, the identifi-
cation of relevant events and features with such a tool could aid
in the interpretation and understanding of theoretical astronomi-
cal data like n-body and hydrodynamic simulations, the merging of
galaxies, the dissolution of star clusters, star and planetary system
formation and, convection in stars.

6.5. Atmospheric Wind

This dataset was generated by the Copernicus Climate Change
Service (2020) and contains observations of wind velocity in the
area of longitudes between 30° and 60° east and latitudes be-
tween −15° and 15°, corresponding to the region around the horn
of Africa, for December 1 to 3, 2019. This is a rather complex
dataset, but it is easy to identify the day–night cycles by investi-
gating the aggregation fields in Figure 19. The maximum aggre-
gation field Figure 19a proves to be the poorest at capturing it,
but it shows some interesting additional structure. However, both
fσavg (Figure 19b) and fρ̂len(k)

(Figure 19c) show that periodic trend,
with the latter revealing the nights as times of higher activity with
more pronounced ridges.

7. Implementation and Performance

The reference application is implemented using Python and the Qt5
GUI library via PyQt5. Much of the computationally intensive op-
erations ((PS-)FTLE fields, trajectories, connectedness, ridges, re-
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Figure 17: PS-FTLE-P fields for the 5-Body dataset with

G = 300× 300, T = 2.8 s, and t0 = 0.25 s (a), t0 = 2.25 s (b),

t0 = 4.25 s (c), and t0 = 6.26 s (d). The radius of the bodies (yel-

low dots) is proportional to the mass. The five bodies start evenly

spread, with different initial velocities, then interact with each other

and disappear to the right.
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Figure 18: Average (a) and maximum (b) region aggregation fields

for the 5-Body dataset with Gagg = 100× 100 and G = 50× 50,

together with the actual connectedness fields at t0 = 0.057 s,

T = 2.68 s (c), and t0 = 3.44 s, T = 1.87 s (d), corresponding to

the red and green dots in the aggregation fields, respectively.

verse integration, etc.) are implemented in highly parallel CUDA
kernels and managed via PyCuda [KPC∗13]. These are laid out and
structured using a tailor-made templating system that is able to con-
struct and compile the needed kernel on-demand from a large set of
templates. The templating system produces 67 different single ker-
nels, amounting to 20 thousand lines of CUDA code in total. The
graphical representation in the panels is handled by the OpenGL
abstraction layer, provided by the library VisPy [Vis], and extra
care was put into implementing efficient and speedy updating and
streaming solutions for all graphical components. The project has
11540 lines of code in total, 8421 of which are in Python, 2580 in
CUDA, 179 in Bash scripts, 220 in GLSL, and 140 in HTML.

7.1. Performance Analysis

The computational complexity of this project resides mainly in
the computation of the field matrix in the aggregation space. The

Table 1: Interactivity performance results with the Quad-Gyre

dataset in average frame time, and sample time for different G val-

ues, and fixed ∆t = 0.001 s and T = 4.0 s. The ‘Steps’ column refers

to the integration steps per seed (i.e., T/∆t). Timings in seconds.

G Steps Samples Frame time Sample time
50× 50

4 000

2 500 0.038 0.152 ·10−4

100× 100 10 000 0.108 0.108 ·10−4

200× 200 40 000 0.364 0.091 ·10−4

400× 400 160 000 1.281 0.080 ·10−4

800× 800 640 000 4.988 0.078 ·10−4
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Figure 19: The Atmospheric Wind dataset represents wind data

of a region close to the eastern coast of Africa (d). We apply

our system with Gagg = 300× 300 and G = 400× 400, t0 ∈ [0,60],
T ∈ [1,10], and τλ =−0.08 fσmax (a) shows maximum FTLE values

increasing with t0 and T , with some additional substructure caused

by the ever-changing wind patterns, while fσavg (b) reveals periodic

structure. fρ̂len(k)
(c) exhibits three vertical regions with high quality

ridges. The FTLE fields are captured at the same T = 9.5 h and dif-

ferent t0 = 15.8 h (e), and t00 28 h (f), corresponding to the red and

blue markers in the aggregation fields, respectively. We seed pairs

of trajectories at close locations to aid exploration. For instance,

the ridge (i), not present in (e), appears in (f) (see the lower seed

spiraling into the vortex causing a larger separation). Other trajec-

tories also reveal greater separation in (f). Interactive exploration

reveals that this trend is maintained along the bright bands in (c).

grid resolution of both the aggregation field (Gagg) and the FTLE
fields (G), plus the current advection duration Ti and integration
step ∆ti, define the number of operations to compute to obtain the
flow map as Nt0 ·NT ·N ·M · (Ti/∆ti). The interactivity performance
analysis (Table 1) shows that the FTLE field frame time is pro-
portional to the number of samples, but the sample time actually
decreases slightly as the resolution increases. This may hint at a
better GPU occupancy rate with higher resolutions, thus leading to
lower sample times.

Table 2: Precomputation performance results with the Quad-Gyre

dataset in total compute time for different aggregation field reso-

lutions, and using only the basic and aliasing aggregation func-

tions (B), additionally the ridge aggregation functions (R), and ad-

ditionally the region aggregation functions (D). The fixed param-

eters for this analysis are G = 50× 50, Gs = 10× 10, t0 ∈ [0,8],
and T ∈ [1,8]. All timings are in seconds.

Gagg B B+R B+R+D
5× 5 0.5 0.7 (+47%) 348.6 (+45651%)

50× 50 11.9 40.1 (+236%) 29 990.2 (+74508%)
100× 100 39.6 149.5 (+276%) 135 627.0 (+90610%)
200× 200 142.3 590.3 (+314%) 480 310.5 (+81261%)

The precomputation performance analysis (Table 2) measures
the computation of the aggregation fields. We run different aggrega-
tion field resolutions of the same dataset with three different cumu-
lative aggregation function sets: the basic and aliasing aggregation
functions (B), the ridge aggregation functions (R), and the region
aggregation functions (D). Each set contains the previous, as the
ridge extraction is a prerequisite for computing the connectedness,
and the basic aggregation fields are always computed. The ridge
extraction and connectedness operations are done per field, with-
out batching (see Section 7.2), and that reflects in their cost, with
increments of a few hundreds percent for ridge extraction, and tens
of thousands percent for region aggregation.

7.2. Optimization

Optimizations have been implemented in order to maximize paral-
lelism on the GPU, improve core occupancy, and minimize CPU
synchronization points. In order to do so, we batch the T dimen-
sion of the aggregation space into the main kernels, so that each
computes NT FTLE fields. We found that batching T is the most
beneficial, because we can significantly shorten the computation
time of the flow map by choosing an integration step ∆t, NT , and T

extent [T0,T1], so that (T1 −T0)/NT is divisible by ∆t. This allows
us to compute the flow map only once for the highest T setting (i.e.,
the top of the aggregation field) and sample it for the rest.

Other, more straightforward, optimization strategies include full
GPU implementations of A* and ridge extraction. The resolution
at which the connectedness fields can be computed is limited by
per-thread memory constraints. We found that connectedness fields
more than Gs = 50× 50 could not be computed on the GPU with
the available hardware (Nvidia GTX 970 and 1070).

8. Conclusion

In this paper, we presented a novel approach to the visual analysis
of finite-time Lyapunov exponent based flow visualization, and we
have demonstrated its usefulness with a variety of simulated and
analytical datasets. We have introduced a set of aggregation func-
tions that are able to capture different aspects of the underlying
fields. We have found that the basic aggregation captures general
trends very well, while the aliasing aggregation helps determine
whether the discretization is sufficient, especially when the LCS
are sharp. The ridge aggregation is able to identify areas with high-
quality ridges and the region aggregation helps assess the topolog-
ical “connectedness” of the dataset under study.

We leave as future work the determination of an approximate op-
timal resolution by means of heuristics that use information from
the aliasing and ridge aggregation functions. Also, we plan to add
more aggregation functions and extend the current ones, possibly
with extra dimensions. A three-dimensional ridge aggregation field
with τλ as an additional dimension could prove useful at analyz-
ing the ridge extraction threshold subspace. Another obvious can-
didate for an additional dimension is the FTLE resolution G, but
that would imply deep changes in the current precomputation en-
gine. We also plan to support 3D datasets, since all aggregation
functions should be directly applicable in 3D.
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