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Abstract
Scientific visualization deals with increasingly complex data consisting of multiple fields. Typical disciplines generating mul-
tivariate data are fluid dynamics, structural mechanics, geology, bioengineering, and climate research. Quite often, scientists
are interested in the relation between some of these variables. A popular visualization technique for a single scalar field is the
extraction and rendering of isosurfaces. With this technique, the domain can be split into two parts, i.e. a volume with higher
values and one with lower values than the selected isovalue. Fiber surfaces generalize this concept to two or three scalar vari-
ables up to now. This article extends the notion further to potentially any finite number of scalar fields. We generalize the fiber
surface extraction algorithm of Raith et al. [RBN∗19] from 3 to d dimensions and demonstrate the technique using two exam-
ples from geology and climate research. The first application concerns a generic model of a nuclear waste repository and the
second one an atmospheric simulation over central Europe. Both require complex simulations which involve multiple physical
processes. In both cases, the new extended fiber surfaces helps us finding regions of interest like the nuclear waste repository
or the power supply of a storm due to their characteristic properties.

1. Introduction

Isosurfaces are some of the most frequently used tools in scien-
tific visualization. Together with direct volume rendering, they are
probably the most popular basic visualization technique for scalar
field data over three-dimensional domains. An important property
is their ability to split the domain into two parts, one with values
higher than the isovalue, and one with values lower than the iso-
value. Another important property is that isosurfaces are described
as surfaces, so they are often used to obtain surfaces which are pro-
cessed further. Also, they are easily understood by scientists and
engineers.

Unfortunately, isosurfaces work only for a single scalar vari-
able. The first generalization was given by Carr et al. [CGT∗15],
when they defined fiber surfaces. Two scalar fields define a two-
dimensional range or attribute space. If one selects a polygon in
this attribute space, the preimage is a surface with properties simi-
lar to an isosurface, like the separation of parts in the domain which
lie in the inside or outside of the polygon. This concept has been
generalized even further by Raith et al. [RBN∗19], where they de-
fined fiber surfaces for the three scalar invariants of symmetric,
second-order tensor fields. As can be seen in the paper by Blecha
et al. [BRS∗19], this algorithm can also be applied to three arbi-
trary scalar fields over a three-dimensional domain. This raises the
natural question if the number of dimensions of the domain limits
the number of scalar fields that can be used to define fiber surfaces

in a meaningful way. Many highly relevant application domains of
scientific visualization, like climate research, geology, material sci-
ence, or bioengineering, deal regularly with more than three scalar
fields. Scientists also want to see the relation between these fields
and ask questions, where certain constraints on these variables are
fulfilled.

This article shows that fiber surfaces can be defined in a natural
way. We also present an algorithm to compute a fiber surface for
more than three scalar variables. In principle, the algorithm can deal
with any number of scalar fields, but we show only results for up to
six variables. The new algorithm assumes that we are in a piecewise
linear setting, despite the fact that all definitions can be given in
a continuous way. Therefore, we assume that d scalar fields are
given over some tetrahedral grid in our three-dimensional physical
domain. Furthermore, we assume that there is a piecewise linear
hypersurface in the d-dimensional attribute space. The preimage of
this object defines the fiber surface on the given tetrahedral grid.

The algorithm considers the tetrahedral grid as a set of tetra-
hedra in the d-dimensional attribute space by using the values of
the scalar fields at each vertex as coordinates. A convex object,
hereafter called interactor, is defined as the subspace which is con-
strained through the intersection of several hyperplanes defined us-
ing a d-dimensional normal and a distance to some point. The algo-
rithm clips each tetrahedron against each hyperplane in the attribute
space. The result is split into tetrahedra which will be clipped with
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the remaining hyperplanes. The key idea is that the mapped tetra-
hedron defines a three-dimensional affine subspace of the attribute
space. Therefore, we can project the hyperplane into this subspace.
This means that we are actually computing the intersection between
a plane and a tetrahedron in three dimensions. The algorithm com-
putes this intersection and refines the tetrahedron into a set of new
tetrahedra such that the actual intersection is a set of faces of the
new tetrahedra. In the end, we simply project all intersection faces
back to the physical space and render the resulting triangles. As
one can see, the number of scalar fields is only important for the
intersection of a hypersurface and the subspace and for storing co-
ordinates, so it does not substantially affect the overall complexity.

However, a working interactive system needs a mechanism to de-
fine the hypersurface in an efficient way without confusing users.
Since an intuitive visualization of more than three dimensions in a
single image is difficult, we use several three-dimensional views for
this purpose. In our current implementation, users can select triplets
of scalar variables and look at the corresponding three-dimensional
projection of the attribute space. Here, they can define the hyper-
surface with respect to these three variables. We consider these as
constraints and allow to add additional constraints in other such
views of three variables. We allow simple geometric objects, like
planes, cubes, and triangulated balls as selection objects. The ac-
tual constraint is the intersection of all these objects in attribute
space. In the end, we use data from a simulation of a generic nu-
clear waste repository, which was also described in the work of
Blecha et al. [BRS∗19], and an atmospheric simulation to demon-
strate our algorithm using up to six scalar fields.

2. Related Work

The method presented in this paper can be classified as multivariate
visualization technique. Fuchs and Hauser [FH09] wrote a survey
about existing visualization techniques for multivariate scientific
data in 2009. They showed the advantages of existing visualiza-
tion techniques if they were applied to multivariate data and iden-
tified the most important approaches for dealing with multivariate
scientific data. A further overview of research challenges, and the
state of the art in visualization was presented at a Dagstuhl Sem-
inar in 2011 [DHCRJ∗14]. The visualization of multivariate data
was mentioned as one of the challenges at this seminar. They pre-
sented, for example, techniques like glyphs [CLKH14], which are a
default technique for the visualization of multivariate data. Further-
more, the importance of feature-based techniques, like the work of
Obermaier et al. [OP14], and Carr [Car14], was clarified.

Sauber et al. [STS06] introduced multifield graphs to visual-
ize the relationships between multiple scalar fields defined on the
same domain. The standard approach during correlation analysis is
to calculate correlation fields for multiple combinations of scalar
fields. This leads to a high number of computed fields, whereby
not every combination exhibits some interesting or important cor-
relations. They used their graph to give an overview of this large
number of correlation fields. Nagaraj et al. [NNN11] improved this
approach by introducing a comparative measurement to reduce the
overrepresentation of the minimum correlation between two scalar
fields from Sauber et al. [STS06]. Liu and Shen [LS16] followed
a different approach using association rules to generate a parallel

coordinate diagram for the analysis of multivariate data sets. This
diagram can be used to analyze isovalues and the associated values
in other fields but in the end, they are only visualizing the relation-
ships between multiple scalar fields.
The work of Jänicke et al. [JWSK07] outlines another method for
analyzing multivariate data. In that work, interesting regions are
automatically identified using local statistical complexity described
by partial differential equations. Nagaraj et al. [NN11] introduced
the idea that the interactions between the fields have to be consid-
ered in order to find interesting isovalues of a field. In general, they
investigate the variation of the remaining fields over the isosurfaces
of a selected field.

Additional analysis techniques for multivariate data were intro-
duced by Edelsbrunner et al. in 2004 and 2008. They calculated the
Jacobi sets of collections of piecewise linear continuous functions
on a common triangulated manifold [EH04], and they generalized
Reeb spaces to multivariate, piecewiese linear mappings on combi-
natorial manifolds [EHP08].

Despite much work in the domain of field data visualization,
most techniques refer to univariate data. The investigation of multi-
or at least bivariate data sets is still a challenging research topic.
Carr et al. [CGT∗15] made a significant contribution by intro-
ducing an approach to the extraction of fiber surfaces. These are
the two-dimensional equivalent to isosurfaces of a bivariate field.
In general, fiber surfaces are the inverse image of a polygon (or
polyline) in the bivariate field. Based on this work, Klacansky et
al. [KTCG17] proposed an optimized implementation of their al-
gorithm to allow interactive exploration of bivariate fields. Wu et
al. [WKI∗17] achieved an interactive data analysis using fiber sur-
faces by extending the normal ray casting method to visualize fiber
surfaces of bivariate data. Futhermore, such fiber surfaces are im-
plemented in the Topology ToolKit (TTK) [TFL∗18] which in-
creases their accessibility and usability. The TTK was introduced
to enable easy, general, and time-efficient topology data analysis
through the deployment of a framework for the coding of such
analysis algorithms. Fiber surfaces were extended to flexible fiber
surfaces by Sakurai et al. [SOC∗19]. Analogously to flexible iso-
surfaces, they used the contour tree to track and show only some
components of a fiber surface to reduce visual occlusion. Tierny
and Carr [TC17] used fiber surfaces in their algorithm for an ef-
ficient computation of the Reeb space of bivariate functions on a
tetrahedral mesh. In particular they introduced jacobi fiber surfaces
which are analog to critical contours of scalar fields.

Another approach to extend the concept of isolines and isosur-
faces was published by Jankowai and Hotz [JH20]. They intro-
duced feature-level sets and traits as general approach for the vi-
sualization of multivariate data. Isosurfaces and the fiber surfaces
of Carr et al. [CGT∗15] are special cases of their approach. In their
work, users select some interesting regions (traits) to analyze. The
corresponding feature-level-sets are extracted and visualized in the
physical domain using techniques like direct volume rendering or
Marching Cubes. Traits are defined as geometric objects in the at-
tribute space and features as the preimage of a trait in the spatial
domain. In contrast to the interactive definition of feature-level-sets
of Jankowai and Hotz [JH20] through star plots or parallel coordi-
nates, we define our fiber surfaces using multiple three-dimensional
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convex solids in different three-dimensional subspaces of the whole
multifield data set. Our approach is also different in the way that we
do not only extract the fiber surface, but we also reduce and refine
the tetrahedral input grid.

Sakurai et al. [SSC∗16] developed a tool to help mathematicians
and novices to learn and investigate the topology of fibers of func-
tions from R3 → R2. Their tool visualizes multivariate functions,
extracts fiber singularities, and let the users interactively perform
function perturbations to better understand the fiber topology.

Some work was done in the field of multiphysics visualization,
where the work by Perdikaris et al. [PIG∗16] is an example. They
analyzed a cerebral aneurysm using streamlines to visualize blood
flow and highlighted local stress on the arterial wall to show, if the
flow inside the aneurysm implies high stress on the wall. To put
it in another way, they visualized multiphysics interactions of the
blood flow and the surrounding tissue boundary.

In the context of visualization of multivariate, geological data,
Rocha et. al [RASS17] introduced a new technique called Decal-
Maps. It maps two-dimensional texture quads onto an arbitrary
curved surface, which evades the clipping and detachment prob-
lems of the default quad-based placement of glyphs on such sur-
faces. This technique is used in combination with layering and il-
lustrative techniques to visualize multiple attributes of an oil reser-
voir in the geological subsurface at the same time. But this tech-
nique also has its constraints in the number of visualized fields,
which is not a problem for our algorithm.

Another visualization tool for multivariate, geological data was
introduced by Dasgupta et. al [DKG15]. They want to analyze the
interactions of chemical species and microorganisms over time. To
overcome this problem, they used parallel coordinates as well as
scatter plot matrices to show the vast amount of bivariate attribute
interactions, and density views to show the temporal distribution of
each attribute. In contrast to our approach, they only use the default
techniques to visualize multiple fields at the same time and they
are only able to show the interactions between two attributes per
view, whereby we could show the interactions of three attributes
and could also use the advantages of the three-dimensional space,
like rotation, to focus on regions of interest.

For an explorative visualization of d-dimensional data, it is
necessary to filter them. Parallel coordinates and multiple views
belong to the most common methods for filtering. The articles
by Roberts [Rob07], and Heinrich and Weiskopf [?] present an
overview of existing techniques. The work of Johannsson and
Forsell [JF16] gives an overview of the extensions of parallel co-
ordinates including an evaluation of the usability of them. Another
paper by Lu and Shen [LS17] describes an interactive workflow for
processing multivariate data using connected subspaces. This al-
lows the investigation of volumetric data sets and the identification
of features in the subspaces.

In this paper, the work of Blecha et al. [BRS∗19] is extended to
d-dimensions. They used fiber surfaces for the analysis of a mul-
tiphysics simulation of a generic, i.e. non-site specific, model of
a repository for nuclear waste, which they extracted from a three-
dimensional attribute space. This space was built by one scalar field
per physical process, i.e., thermodynamics, hydrodynamics, and

solid mechanics. This application uses the fiber surface extraction
algorithm of Raith et al. [RBN∗19], which generalizes mentioned
work by Carr et al. [CGT∗15] to three dimensions in the range.

3. Fiber Surfaces for many Variables: The Smooth Case

We consider a number d of smooth scalar fields over a three-
dimensional domain D⊂ R3,

s : R3 ⊃ D→ Rd . (1)

We are interested especially in the case d > 3. Similarly to
[KTCG17, RBN∗19], we define the fiber fy of s for the value
y = (y1, . . . ,yd) ∈ Rd as the set

fy := s−1(y), (2)

i.e., all points x∈D with s(x) = y. The majority of fibers fy of s will
be empty, as there are more conditions s j(x) = y j from the scalar
variables than the three dimensions xi. Nevertheless, some fibers
are obviously not empty, as there are some values y of the function
s. The basic insight is that we need to combine enough values y
to create a surface in D consisting of fibers. For this purpose, we
use hypersurfaces of values in Rd . Let M ⊂ Rd be a smooth (d−
1)-manifold which is locally defined as being orthogonal to a d-
dimensional normal n : M→ Rd . Then we define the fiber surface
of s with regard to M as

fM := s−1(M), (3)

i.e., the preimage of M under s. The name fiber surface is only
justified if this is a surface in D, at least for regular cases. To see
this, let us consider a point

c = s(a) ∈ Rd (4)

that lies on M with the local normal n(c). We assume c to be a
regular value of s, so the derivative Ds(a) has full rank, i.e.

rk(Ds(a)) = 3. (5)

Since s is smooth, s(D) is a smooth three-manifold inside some
neighborhood U ⊂ R of c and Ds has full rank in the whole
neighborhood. Furthermore, we assume that s(D) intersects M at
c transversally. This means that the defining normal n(c) is not par-
allel to s(D) at c or simply

dim(s(D)∩M) = 2 (6)

in some neighborhood V ⊂ U of c. Since Ds has full rank in this
neighborhood, the preimage

s−1(V ∩ s(D)∩M)⊂ fM (7)

is also a two-manifold. Therefore, our fiber surface is indeed a sur-
face around regular points if the image of s intersects the defining
manifold transversally. This also means, that it splits the domain D
locally into two parts and behaves similarly to an isosurface.

4. Fiber Surfaces for many Variables: The Piecewise-Linear
Case

The previous section uses the usual terms of analysis. However, our
current implementation is based on a piecewise linear setting. We
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Figure 1: Example of a projection of a three-dimensional attribute
space into a two-dimensional physical domain. The green and
orange-brown lines are the intersections of the red hypersurface
with the blue grid.

assume that our data is given on a tetrahedral grid

T = {Ti|i = 1, . . . ,m}, (8)

defining the domain

D =
m⋃

i=1
Ti ⊂ R3 (9)

where Ti describes the different tetrahedra of the grid. d scalar fields
are given by d scalar values at each vertex of the complex. By linear
interpolation over each tetrahedron, we obtain a piecewise linear
multi-scalar field

s : D→ Rd . (10)

In the attribute space Rd , we define our fiber surface by a convex
interactor. We describe this interactor M ⊂ Rd as intersection of n
half spaces

M =
n⋂

j=1
H j . (11)

Each half space is defined by an outward pointing d-dimensional
unit normal n j and a scalar distance to the origin b j , i.e.,

H j := {x ∈ Rd |n j · x−b j ≤ 0} (12)

Please note, that b j needs to be negative if the origin is not inside
H j.

In the range Rd , s(D) is an immersed three-dimensional piece-
wise linear grid consisting of tetrahedra s(Ti) ⊂ Rd , i = 1, . . . ,m,
i.e., a set of tetrahedra where tetrahedra may intersect each other in
the interior. The fiber surface

fM := s−1(M) (13)

is the preimage of the intersection of s(D) with all half spaces
H j defining M. In the regular case, s maps a tetrahedron Ti to a
3D-volume s(Ti) in the range Rd . (This is the case if the four d-
dimensional vectors of scalar values at the vertices of Ti are linearly

independent.) For a single half space H j, we may look at the in-
teresting case, where it actually intersects our mapped tetrahedron
s(Ti). In general, the three-dimensional subspace of Rd spanned by
s(Ti) will not lie inside H j . This is called a transversal intersec-
tion. In this case, H j intersects s(Ti) like a two-dimensional plane.
The preimage of this intersection is a planar piece of our fiber sur-
face if it is inside all other half spaces. Therefore, we repeat this
intersection for each half space and each tetrahedron. The actual
computation of this intersection is described in the next section.

To illustrate these concepts a little bit more, one may look at
Fig. 1. We consider the simpler case of a two-dimensional simpli-
cial grid on the left, where there are three piecewise linear scalar
fields given by assigning three scalar values to each vertex of the
grid. This defines a piecewise linear mapping s of the whole grid
into the three-dimensional range on the right. Now, we use a hy-
persurface consisting of two coplanar red triangles to define our
“fiber surface”. As can be easily seen, our red hypersurface inter-
sects the two-dimensional grid on the right at two piecewise linear
curves marked in orange-brown and green. The preimage of these
two curves can be seen as two piecewise linear curves on the left.
This is our “fiber surface”, which is actually a fiber line in this case.
It can be easily seen that the situation on the left is indeed very sim-
ilar to isolines.

5. Fiber Surface Extraction Algorithm

Our algorithm is based on the idea to reduce all computations to the
intersection of a plane with a tetrahedron in three dimensions. This
may be a bit surprising at first glance, but it should be clear that this
is a geometric problem that can be solved efficiently. Furthermore,
we ensure in the process that all intersections result in replacing
the old tetrahedron by new tetrahedra that have the (hyper-)surface
as part of their faces but do not intersect it in the interior. This
further simplifies the algorithm. Before we can do so, we need some
preparations, and after we are finished, we do some post-processing
to ensure that we are always dealing with tetrahedra.

5.1. Reducing the Problem to Plane-Tetrahedron Intersection

As mentioned before, in the range, we have a tetrahedral mesh im-
mersed into d dimensions. Furthermore, we want to compute the
intersection of all tetrahedra Ti with a (d− 1)-dimensional hyper-
plane H j. We have a d-dimensional normal n j for each hyperplane
that defines which side of the hyperplane is considered inside and
which side is considered outside. As we assume that we have a
rather small number of hyperplanes compared to the number of
tetrahedra, we intersect all tetrahedra with one hyperplane after the
other (see Alg. 1). We keep all hyperplanes in a list and take out
one at a time. Furthermore, we intersect each tetrahedron with the
current hyperplane, one by one. This leaves us with the task of in-
tersecting a tetrahedron with a hyperplane in d dimensions. The
next step is that our tetrahedron lives in a three-dimensional sub-
space of the range Rd . Therefore, we project the hyperplane into
this three-dimensional subspace. This results in three cases:

1. If the hyperplane does not intersect the subspace, it cannot in-
tersect the tetrahedron, so we are done.
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Figure 2: Intersection of a tetrahedron with two planes, which pro-
duces a triangular and a quadrilateral cut.

2. If the hyperplane contains the three-dimensional volume of the
subspace, it contains the whole tetrahedron and we are done as
well.

3. We have the interesting case: The hyperplane intersects the sub-
space as a plane.

Overall, we only need to look at a plane intersecting a tetrahedron
in three dimensions. We project the d-dimensional normal of the
hyperplane into the three dimensions to know what is inside and
what outside. Concerning the algorithm there is no projection. It
only helps to understand that the intersection of a tetrahedron with
a hyperplane will always be planar and happens inside a three-
dimensional subspace, so there is no need to think about higher
dimensional geometry here.

The intersection of all hyperplanes with all tetrahedra is numeri-
cally more stable as each intersection point is only computed once.
This guarantees to produce no holes inside our fiber surfaces which
could happen by computing intersection points multiple times with
very small differences due to numerical errors. Also, this leads to
a smaller effort during the retessellation as we have all required
vertices before creating any new tetrahedra.

5.2. Plane-Tetrahedron Intersection

We have to intersect a plane with a tetrahedron in three dimen-
sions. It should be noted that we could adapt the method by Raith
et al. [RBN∗19] in this case. Nevertheless, we operate slightly dif-
ferently as our hypersurface is defined in another way as we are
using hyperplanes instead of triangles. We compute all vertices in
barycentric coordinates relative to the tetrahedron in question, so
we can project these points back into physical space as well as the
range Rd . Each half space is defined using a d-dimensional normal
n j and the (signed) distance b j to the origin. These two elements
are used to form the Hesse normal form (HNF) for this specific hy-
perplane. The following equation allows to check for each vertex
of the tetrahedron if it is inside or outside:

~x · ~n j−b j ≤ 0, ~x ∈ Rd ,b j ∈ R. (14)

Figure 3: Prism-type polyhedron as result of the intersection of
the tetrahedron ABCD with a plane, where vertex D is clipped. The
lines AD, BD, and CD intersect the plane in the points P1,P2,P3. All
quadrilateral faces of the frustum were triangulated, which results
in the dark orange lines P2A and P3A as well as in the blue line
P2C. These new lines were used to create the three new tetrahedra
ABCP2, ACP2P3, and AP1P2P3.

This leads to five different cases (except for the ordering of the
vertices):

1. All vertices lie on the inside.
2. One vertex lies outside.
3. Two vertices lie in- and two on the outside of the hyperplane.
4. Three of the vertices are lying outside.
5. All four vertices are marked as outside.

Cases 1 and 5 are simple as either the tetrahedron is copied to the
new grid or it is excluded from this list of new tetrahedra. Case 2
and 4 produce the same intersection during the clipping of a tetrahe-
dron with a plane (see intersection of orange tetrahedron and grey
plane in Fig. 2). The only difference is whether the tetrahedrization
of the result is trivial, as in case 4 where the result of the clipping
is already a tetrahedron, or not. In case 2, the result of the clipping
is a prism-type polyhedron (see Fig. 2) with a triangular intersec-
tion. Case 3 describes the only case where the intersection, which
is quadrilateral, has to be triangulated as well as the lateral surfaces
(see intersection with blue plane in Fig. 2).

The position of the intersection of the tetrahedron with the plane
is calculated on the basis of the intersection of the edges with the
current plane (see Alg. 2). For the relative position of both vertices
P1 and P2 of an edge, the distance to the plane of each vertex along
the normal is calculated and the exact location of the intersection
point is examined using the following equation:

λ =
~n j · ~OP1−b

~n j · ~OP1− ~n j · ~OP2
(15)

which calculates λ as barycentric coordinate of the intersection
point of the edge P1P2 starting in P2 with λ = 0, and with the origin
O.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

321



C. Blecha et al. / dD Fiber Surfaces

Figure 4: One of two prism-type polyhedra as result of the intersec-
tion of the tetrahedron ABCD with a plane, where vertex C and D
are clipped. The lines AC and AD intersect the plane in the points
P2 and P1 and the lines BC and BD in the points P3 and P4. All
quadrilateral faces of the frustum were triangulated, which results
in the green lines P2B and P1B as well as in the red line P2P4. These
new lines were used to create the three new tetrahedra ABP2P1,
BP2P1P4, and BP2P4P3. The other prism-type polyhedron could be
split in the same way.

5.3. Splitting the Result into Tetrahedra

Our algorithm assumes that we always have a list of tetrahedra to
process with the remaining hyperplanes. Therefore, we need to split
the current tetrahedron, after computing the intersection with the
plane, into several tetrahedra. The general principle is that all new
tetrahedra should not intersect the current hyperplane. In all cases,
we split the tetrahedron with the plane into two parts. As illustrated
in Fig. 2 and mentioned before, we have a triangular or a quadri-
lateral intersection. In the triangular case, one part of the tetrahe-
dron is already a tetrahedron, so there is nothing to do. The remain-
ing part is shown in Fig. 3. We can easily create three tetrahedra
by splitting the three resulting quadrilateral faces of the remaining
prism-type polyhedron.

In the case of a quadrilateral intersection, we are left with two
prism-type polyhedra as shown in Fig. 4. Again, we end up with
three quadrilateral surfaces (one is the actual intersection), and two
triangular faces. We split the three (always convex) quadrilaterals
and create three tetrahedra.

As final step, we replace the current tetrahedron in our list of
tetrahedra with the new set. It should be noted that the so retessel-
lated grid could also be used as input for other analysis and visual-
ization techniques as it could reduce a big data set to a small subset
of tetrahedra. In addition, we mark the triangular faces of the ac-
tual intersection as intersection faces to allow for drawing the fiber
surface later.

It’s worth pointing out that also the triangles of the previous in-
tersection of the tetrahedra with a hyper plane must be considered
in each of the following refinement steps. The loop in line 12 of Al-
gorithm 1 is used to retriangulate the before marked fiber surface
triangles as they have to be refined also if the corresponding tetra-
hedra will be refined. This is necessary because if a fiber surface
triangle is added to the list, it loses its connection to the tetrahedron

it is a face of. The video of the intersection of a tetrahedron with a
sphere in the supplemental material shows a good use case because
due to the curvature of the sphere earlier fiber surface triangles fre-
quently lie outside another hyperplane.

5.4. Drawing the Fiber Surface

After all tetrahedra and all hyperplanes are processed, we have a
set of tetrahedra in the d-dimensional attribute space that do not
intersect the hypersurface M in the interior. Furthermore, the inter-
sections between the tetrahedral mesh and the hypersurface consist
of a list of faces that are marked. Also, whenever we split a tetrahe-
dron into several tetrahedra, we compute the coordinates of the new
vertices in the physical domain. We draw the fiber surface by pro-
jecting these faces back to physical domain. It should be noted that
the fiber surface will only split the domain into parts, if the hyper-
surface separates the immersed tetrahedra into parts. This means
that our fiber surface might end somewhere in the middle of the
physical domain, which is correct in a theoretical sense. If users re-
quire the separation of the mesh into two parts, they have to extend
the defining hypersurface so that it cuts the immersed tetrahedral
mesh in the range into two parts.

5.5. Avoiding Numerical Errors

If the algorithm is implemented as described above, it works in
principle but it will show some small gaps due to numerical prob-
lems. This happens if the intersection points along lines or faces
of the tetrahedra are computed multiple times for all neighbor-
ing tetrahedra and numerical errors create slightly different coor-
dinates. Furthermore, it is not guaranteed that we are dealing with
a valid triangulation of the domain at all times. This is the case if
we split a quadrilateral on a face into two triangles and do so in
different ways for the two neighboring tetrahedra.

We avoid these problems by keeping lists of all vertices, edges,
faces, and tetrahedra of the mesh including connectivity and a list
of values defined on the vertices at all times (see Alg. 1). In addi-
tion, the intersections are calculated based on the edges (see line 8
in Alg. 1 and Alg. 2). Whenever we compute an intersection of an
edge or split a face into triangles, we look for an existing intersec-
tion or split and use it. If it is not there, we make our choice and
store it, for example, to avoid different triangulations of quadrilat-
eral faces of neighboring tetrahedra. There may be more efficient
ways to resolve the problem but this solution worked for us.

5.6. Complexity

In normal use cases we would expect a complexity of (number-
of-vertices + number-of-edges + number-of-tetrahetra) * number-
of-hyperplanes but extreme cases where each tetrahedron is in-
tersected by each hyperplane which produces alternating one and
three new tetrahedra can be created but are not the normal use
case. This would lead to a duplication of the number of tetra-
hedra in each step which results in a complexity where the ef-
fort (the number of tetrahedra to process) increases exponentially
with 2number−o f−hyperplanes. Normally, in each step some tetrahe-
dra were added due to the retessellation and some were dropped
because they lie completely on the outside.
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Algorithm 1 Generalized Fiber Surface Extraction Algorithm

Require: tetrahedral grid Tet in attribute space, list M of hyper-
planes of the interactor(s)

1: compute set of grid vertices Vertices of Tet
2: compute set of grid edges Edges of Tet
3: compute set of vertex values Values
4: for all hyperplanes H j ∈M do
5: let n j be the outward normal of H j
6: let a j be the center of the corresponding interactor on

which the hyper plane is defined on
7: let b j be the distance of H j to a j
8: for all edges ek ∈ Edges do
9: IntersectEdgePlane(ek, n j, a j, b j, Tet)

10: end for
11: create a new list NewMarkedFaces
12: for all faces fm ∈ OldMarkedFaces do
13: if all vertices of fm lie on the outside of H j then
14: do nothing
15: else if all vertices of fm lie on the inside of H j then
16: add fm to the new list of NewMarkedFaces
17: else if H j intersects 2D subspace of fm as line then
18: extract the inner and outer points of fm
19: extract the intersection points of fm
20: triangulate the result of the intersection with H j
21: add the new triangels to the list NewMarkedFaces
22: end if
23: end for
24: create a new tetrahedral grid NewTets
25: for all tetrahedra Ti of Tet do
26: if all vertices of Ti lie on the outside of H j then
27: do nothing
28: else if all vertices of Ti lie on the inside of H j then
29: add Ti and the values defined on its vertices to the

new grid NewTets
30: else if H j intersects 3D subspace of Ti as plane then
31: extract the inner and outer points of Ti
32: extract the intersection points of Ti
33: triangulate the quadrilateral faces
34: add the faces on the intersection between Ti and H j

to the list NewMarkedFaces
35: create new tets using the inner and the intersection

points
36: add the new tets to the new grid NewTets
37: end if
38: end for
39: set the list OldMarkedFaces to NewMarkedFaces
40: end for
41: project all tetrahedra of NewTets and marked faces back to the

domain D
42: draw all faces of the list NewMarkedFaces

6. Interactive Fiber Surface Definition

This section explains the multiple views of the range and the in-
teractive definition of the fiber surfaces through interactors in these
views. As defined previously, the constraining hypersurface in d
dimensions is a convex object which is defined as intersection of

Algorithm 2 Calculate Edge Plane Intersection

Require: edge e, hyperplane normal n in d dimensions, center
point of the corresponding interactor a, distance of the hyper-
plane to the center b, global grid Tet with lists Vertices, Edges,
Values, EdgeIntersectionMapping

1: calculate distances of vertices of edge e to hyperplane
2: if both distances are smaller or equal to 0 then
3: add both vertices to Vertices
4: add edge e to Edges
5: add values defined on both vertices to Values
6: else if only one distance is smaller or equal to 0 then
7: compute intersection point of edge e with plane
8: compute corresponding value for the intersection point
9: add the inner vertex to Vertices

10: add new intersection point to Vertices
11: add value defined on the inner vertex to Values
12: add value defined on the intersection point to Values
13: create new edge using the inner and the intersection point
14: add new edge to Edges
15: add mapping for edge e to intersection point and value to

EdgeIntersectionMapping
16: else if both distances are greater 0 then
17: do nothing
18: end if

multiple half spaces given by a set of hyperplanes. It has to be con-
vex as our algorithm works analogously to a classical clipping tech-
nique where it cuts off parts of a tetrahedron. This is not possible
with a non-convex interactor. In such a non-convex case, clipping
with one half space Hi may cut off parts of the mesh that are in-
side the interactor. However, as the algorithm refines the tetrahedral
grid incrementally in each step, cut off parts are not available in a
later refinement step. Nevertheless, a non-convex interactor may be
split into convex parts which can be processed separately. How-
ever, we do not show the high-dimensional range in one view, so
the convex object is not manipulated directly. Instead, we let users
select regions of interest in several three-dimensional subspaces of
the range. In each space, we offer the same solids as interactors
as Raith et al. [RBN∗19] in their work, i.e., tetrahedra, cubes, tri-
angulated balls, regular cylinders, pyramids, and prisms. All other
usual primitives of constructive solid geometry (CSG) could also
be used as interactors because they are all convex. They only have
to be approximated by a triangulation. If CSG set operators, like in-
tersection, union, etc., are used to create more complex solids, one
would need to compute the effects on the fiber surface as well. An
alternative would be to split the CSG result into convex parts. The
final hypersurface is defined as intersection of all the hyperplanes
(from interactors in all views), so they basically serve as constraints
on the region of interest in the various subspaces.

6.1. Fiber Surface Definition for Many Variables

The actual definition of our fiber surfaces starts with the creation
of the first subspace defined as combination of three attributes.
Following this, the tetrahedral grid is mapped from the physi-
cal domain into this subspace. The structure of the grid and the
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Figure 5: Extraction of a fiber surface in a generic model of a nuclear waste repository 160 years after the start of the simulation, i.e.,
after the start of the construction of the repository. The left-hand side of the image shows the σ

′
eq-p-T attribute space of the system (σ′eq:

9.13 ·105 Pa - 8.52 ·107 Pa, p:−4.38 ·102 Pa - 3.73 · 107 Pa, T : 8.0◦C - 142.8◦C). The distribution of all values of the data set used is shown
as blue wireframe and the tetrahedra with values which differ from their initial values at time step 0 are marked in yellow. An interactor
(green box) is used to select the yellow bulge, which has formed. The right-hand side illustrates in the physical domain (Euclidean space)
the bounding surface of the region marked by the interactor in attribute space. The background colors clarify the geological layers for
context. For information on the geological layers, see [JBB∗17,JBH∗17,JBJ∗17]. This image and further visualizations of the nuclear waste
repository can be found in the paper by Blecha et al. [BRS∗19].

neighborhood of the cells are preserved during this projection,
which also could be done in the opposite direction. Basically, this
means that we do piecewise linear interpolation on our tetrahe-
dral grid. For further information about the mathematical defini-
tion and the feasibility of this mapping, we refer to the paper of
Raith et al. [RBN∗19]. The next step is to create an interactor in-
side the current subspace and use it to select a region of interest.
If we stop here, we get the same fiber surface as the algorithm of
Raith et al. would produce under the same conditions.
To create fiber surfaces for more than three restricted attributes, a
new three-dimensional subspace must be created. This one could be
based on any combination of scalar variables. Each subspace ben-
efits from the zooming, panning, and rotation of its own view with
respect to the identification of attractive regions. A new interactor
could be defined in this new subspace, whereby the intersection of
all interactors defines one restraining hypersurface. Of course, each
interactor may also define its own hypersurface to get a visual im-
pression of its impact on the data.

7. Examples

In the first two cases we demonstrate our method on a data set
from geotechnical engineering. This data set has also been used by
Blecha et al. [BRS∗19]. It shows a generic, i.e., not site-specific,
model of a nuclear waste repository in a claystone/ clayey marl for-
mation (see Fig. 2.6 [JBH∗17, p. 21] and Fig. 2.7 [JBH∗17, p. 22]).
The numerical simulation of the physical processes occurring in
this repository has been realized within the framework of the AN-
SICHT project [JBB∗17, JBH∗17, JBJ∗17]. The simulation began
with the excavation of the repository area (see Fig. 2.4 [JBH∗17, p.
18]). This is followed by the storage of the waste and the subse-
quent post-closure phase. The representation of the heat produc-

ing waste packages in the repository was carried out with the aid
of prescribed heat sources. For the simulation of the processes, a
thermo-hydro-mechanical model is chosen as the process model,
since it can capture the rock deformations and fluid movements in
response to temperature changes. The numerical model consisted
of eleven geological layers, each with its own material proper-
ties. The system was simulated with the scientific, open-source,
finite element framework OpenGeoSys [KBB∗12, BFK∗19]. For
more details on the model, its context, and the parameters used,
see [JBB∗17, JBH∗17, JBJ∗17]. We show the correctness and the
possibilities of our algorithm using this data. In the first case, we
compare the results of our new algorithm with the results of Blecha
et al. [BRS∗19]. Their results serve as a reference to verify the cor-
rectness of the new approach. In the second case, we show what
is possible with the new algorithm. The third example applies our
fiber surfaces to data from a regional weather simulation. Each
use case ends with some statistics, for example, about the time to
produce the results, and the number of intersected tetrahedra. All
these information were acquired using a standard workstation with
two Intel Xeon E5-2630 v3 with 2.40 GHz, 32 GB RAM and a
Nvidia GeForce GTX 980. The algorithm was implemented inside
our framework using C++.

7.1. Coupled thermo-hydro-mechanical simulations of a
generic nuclear waste repository in clay rock

The first case shows the correctness of our new method with the
data set from the work of Blecha et al. [BRS∗19]. Here a three-
dimensional attribute space is mapped to a three-dimensional phys-
ical domain. For the analysis we choose three physical variables to
represent the thermo-hydro-mechanical model which are also used
in the work of Blecha et al. [BRS∗19]. We use the temperature T
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Figure 6: Extraction of a fiber surface with the new extraction algorithm in the same setting and with the same interactor as in Fig. 5.

Figure 7: Extraction of a fiber surface with the new extraction algorithm in the same setting as in Fig. 5. Furthermore, a second interactor
is used to restrain the region of interest even further. The second subspace is built of the eigenvalues of the stress tensor in the order: major,
intermediate, and minor.

in ◦C (thermodynamics), the fluid pressure p in Pa (hydrodynam-
ics), and the equivalent effective stress σ

′
eq in Pa (solid mechanics)

defined by:

σ
′
eq =

√
3
2

devσσσ′ : devσσσ′ (16)

where : is the double “Überschiebung”. Each of these variables de-
scribes a scalar field defined on the given grid.

Fig. 6 shows the state of the repository after 160 years. The at-
tribute space with the tetrahedral grid in blue and the cuboid in-
teractor as a green, shaded wire-frame is shown in the left part of
Fig. 6. Regarding the used visualization techniques and the discus-
sion of their usefulness in Raith et al. [RBN∗19], it would also be
possible to visualize the attribute spaces using these techniques as
the the algorithm is implemented inside the same framework. Nev-
ertheless, in our opinion the wire-frame visualization is currently
the best one, as sharp features can be seen inside the attribute space

which were blurred by a density-based volume rendering or a re-
lated visualization in the spirit of continuous scatterplots. The right
part of Fig. 6 shows the physical domain with the extracted fiber
surfaces. The fiber surface is colored by the temperature field. Ad-
ditionally, the geological layers are displayed in the background in
order to better classify the detected areas for data analysis. In this
time step, the inserted disturbance is recognizable as a bulge sep-
arated from the normal curvature/ natural gradient in the attribute
space. In this space, we set the interactor to the same position as in
the paper by Blecha et al. (see attribute space in Fig. 5). The posi-
tion of the repository in the physical domain can be clearly identi-
fied, which can also be seen in Fig. 6. An exact comparison of the
surfaces shows that the surfaces are the same except for minimal
numerical errors.

The data set has 498712 tetrahedra which were reduced to
216849 tetrahedra in about 1:08 minutes on average (starting with
the import of the data and ending with visualization of the result-
ing fiber surface) using 12 hyperplanes specified by the interac-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

325



C. Blecha et al. / dD Fiber Surfaces

Figure 8: Application of fiber surfaces to atmospheric model data. A: The red box denotes the selected subset of the data used for our
further analysis. The ParaView rendering shows cloud water (grey volume rendering), cloud ice (magenta isosurface), and rain water (semi-
transparent blue isosurface). A set of streamlines illustrates the wind field. The vertical wind velocity is shown by the color mapping on the
streamlines. B: After filtering the data in attribute space with regard to strong positive vertical velocity, regions of updraft are visible in
physical space. C: In the second step, the data is further cut with respect to high values of cloud water and cloud ice in attribute space. The
resulting fiber surfaces show regions with high upward moisture transport.

tor (green box on the left side of Fig. 6). The resulting fiber sur-
face consists of 94464 triangles. During the refinement of the grid
and the calculation of the fiber surface 121723 tetrahedra were
clipped (only tetrahedra which were intersected by a hyperplane
were counted) and no triangle of the fiber surface had to be refined.

7.2. Extended analysis of the THM data set

The second case shows the possibilities of the new method. The
same data set as before in subsection 7.1 is used. The simulation
contains further variables of interest for the engineers, which mo-
tivated an extended analysis compared to the one in 7.1. In addi-
tion to the previously used variables T , p, and σ

′
eq, the eigenval-

ues of the stress tensor are used, which correspond to the principal
stresses. Consequently, we have a setting with six scalar variables
on a three-dimensional physical domain, creating a six-dimensional
attribute space. In principle, many more variables can be consid-
ered in a coupled THM simulation, for which the interpretation of
the results themselves can be an iterative process. Having visual
data exploration tools at one’s disposal can thus be of great benefit.

In Fig. 7, we show both attribute spaces. In the left part of the
image, the attribute space for the three variables σ

′
eq (equivalent

effective stress), p (fluid pressure), and T (temperature) is shown.
Here, we select again the region with the introduced disturbance.
Thereupon in the middle part of Fig. 7, the second attribute space
consisting of the principal stresses (eigenvalues of the stress ten-
sor) is visualized. With the help of a new cube-shaped interactor
in red, a subdomain is again selected. Finally the restricted area is
mapped back into the physical domain. The extracted (generalized)
fiber surface can be seen in the right part of Fig. 7. The differences
between the extracted fiber surface with one and two interactors can

be seen in the right parts of Fig. 6 and Fig. 7. It can be seen, that a
smaller region is selected, if the region is further constrained by the
second interactor in the space of principal stresses. This smaller re-
gion is in the interior of the repository and, therefore, very close to
the emplacement area, whereby a higher temperature is displayed
on the fiber surface. This example illustrates the general purpose of
this method: The generalized fiber surface allows engineers to ex-
tract areas based on constraints with respect to all scalar variables
of interest in an explorative manner with immediate feedback.

In this example the algorithm reduces the number of tetrahedra
to 206131 tetrahedra in about 1:39 minutes on average using 24
hyperplanes specified by the two interactors (green and red boxes
on the left side of Fig. 7). The resulting fiber surface consists of
124466 triangles. During the refinement of the grid and the calcu-
lation of the fiber surface 160431 tetrahedra were clipped and 1547
triangles of the fiber surface were refined.

7.3. Application of Fiber Surfaces in Atmospheric Modeling

The third example uses data from a regional weather simulation
that was performed at the DKRZ using the ICON (ICOsahedral
Non-hydrostatic) model, and which was made available as part
of the IEEE SciVis Contest 2017 [dkr]. The data originates from
the HD(CP)2 project and shows the weather situation above Ger-
many for April 26, 2013. ICON is jointly developed by the Max
Planck Institute for Meteorology (MPI-M) in Hamburg and the
German Weather Service (DWD) in Offenbach. It is a framework
that is defined on an icosahedron with an equal area projection
on which data is sampled via primal triangular cells, dual hexag-
onal cells and hybrid quadrilateral cells [LL11]. Beneficial for em-
ploying ICON is that it exhibits no poles, allows an easy mesh re-
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finement in local areas, and – for running as Earth-System-model
– the coupling between the oceanic and atmospheric components
is much easier, as both models share the same grid layout, albeit
with different resolutions. Within the last years, ICON has been
extended to permit large eddy simulations at cloud resolving reso-
lutions as part of the HD(CP)2 project [HDH∗17]. The project’s
aim was high resolution, regional simulations that could explic-
itly resolve clouds and precipitation processes. More recently, as
part of the DYAMOND initiative and within the EU funded project
of ESiWACE, the atmosphere has been globally simulated with
a resolution of 2.5 km [SSA∗19]. As goal of the recently started
project ESiWACE2, the spatial resolution will be further refined
down to 1.25 km horizontal grid resolution. In order to access
the simulation output for data analysis or visualization, alterna-
tives to the classic post-visualization strategy have to be developed.
Here the DKRZ is exploring in-situ visualization strategies using
ParaView/Catalyst [RE19], as well as a progressive rendering ap-
proach using a wavelet decomposition and the visualization soft-
ware Vapor [JAR∗16].

For this application case, we chose to focus on a regional subset
of the simulation data. In the selected region, a strong cumulonim-
bus system has formed. The visualization is shown in Fig. 8 and
illustrates the meteorological and spatial setting. The red box de-
notes the subset of the data we used for our fiber surface analysis.
The image depicts cloud water (grey volume rendering), cloud ice
(magenta isosurface), and rain water (semitransparent blue isosur-
face). A set of streamlines illustrates the wind field. The vertical
wind velocity is visualized via colormapping on the streamlines.

We intended to apply the fiber surface methodology to visual-
ize relations between hydrometeorological quantities and the wind
field. In the first step, we used a three-dimensional attribute space
which consists of the three wind velocity components u, v, and w.
Here, we selected only the upward wind (of 7 m/s and above) to
extract updraft regions. The visualization in Fig. 8 B shows the ex-
tracted fiber surfaces.

In the second step, we extended our attribute space by the cloud
water, cloud ice and rain water, where we selected high values for
cloud ice and cloud water to further cut the fiber surface derived
in the first step. The resulting chimneys shown in Fig. 8 C can be
understood as the central "power supply" of this actual storm; here
large amounts of energy and moisture are transported to higher al-
titudes. To illustrate the difference between the fiber surfaces ex-
tracted in the first and the second step, we have color mapped the
vertical wind velocity onto the resulting fiber surfaces.

The extracted fiber surfaces in Fig. 8 B and C were calculated
using one interactor with 12 hyperplanes, and two interactors with
12 hyperplanes each. For the results in Fig. 8 B the algorithm needs
about 5:33 minutes to compute only the intersection of each hyper-
plane with the tetrahedra, and about 6:59 minutes starting with the
import of the data, some prepossessing, and ending with the visual-
ization of the resulting fiber surfaces. For the results in Fig. 8 C the
algorithm needs about 5:54 minutes to compute only the intersec-
tion of each hyperplane with the tetrahedra, and about 7:19 minutes
in total. The number of tetrahedra were reduced from 4522500 to
56630 tetrahedra in B and to 39513 tetrahedra in C. During the re-
finement in B, 22085 tetrahedra were clipped to produce the fiber

surfaces with 27512 triangles where 40 of these triangles had to
be refined. In C 27935 tetrahedra were clipped to produce the fiber
surfaces with 24423 triangles where 1392 of these triangles had to
be refined.

8. Conclusion and Future Work

In this article, we generalized the fiber surface extraction algorithm
by Raith et. al [RBN∗19] from 3 to d dimensions in the attribute
space to extend the concept of isosurfaces even further. To define a
generalized fiber surface, we use a convex (d−1)-dimensional hy-
persurface. It is represented as intersection of multiple hyperplanes
in the d-dimensional attribute space (the range) with a grid defined
by the values of all scalar fields at each vertex of a tetrahedral grid.
Our algorithm clips each tetrahedron against each hyperplane, one
by one. We show that we can reduce the complexity of this calcu-
lation even more by using the fact that each tetrahedron defines a
three-dimensional subspace where the hyperplane typically appears
as plane. Thus, the actual intersection reduces to the intersection of
a tetrahedron and a plane in three dimensions. Furthermore, we re-
fine the tetrahedral mesh to represent the fiber surfaces as unions
of faces in the mesh, which makes the algorithm even simpler to
implement. Our algorithm does not only produce fiber surfaces but
also extracts and refines the tetrahedral grid to the part inside the
hypersurface. Therefore, it can be easily inserted into a pipeline
or used to select a part of the grid with specific constraints. Users
define the hypersurface using multiple three-dimensional views of
the attribute space. As scientists and engineers are used to three-
dimensional views, this works quite nicely and avoids any direct
representation of higher-dimensional spaces in a single view.

We presented three examples to evaluate and demonstrate our
algorithm. In the first example, we used the same data set and inter-
actor as Blecha et al. [BRS∗19] to confirm that our output is iden-
tical (up to numerical errors) with the results of the method from
Raith et al. [RBN∗19]. In the second example, we extended the hy-
persurface of the first example by defining a second interactor in
another subspace defining a hypersurface in six dimensions as in-
tersection of these two interactors. In the last example, we applied
our new algorithm to a regional weather simulation, where two in-
teractors in two different three-dimensional subspaces helped us to
select the central "power supply" of the simulated storm inside a
cumulonimbus cloud.

Directions for further research and improvement are a general-
ization of our piecewise linear scalar field requirement and a bet-
ter visualization technique for the attribute spaces. The subspaces
of the attribute space suffer from self-intersection of the tetrahe-
dra, which was also mentioned by Raith et al. [RBN∗19]. Another
point of further research may concern improvement of the whole
algorithm to enable a fast interactive exploration of large data sets
and to improve the usability. One may also investigate the struc-
ture of the attribute space itself and its relationship to the extracted
fiber surfaces. Also the visualization of multiple variable distribu-
tions on the extracted fiber surface(s), like the work by Nagaraj et
al. [NN11], is of interest.
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