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Abstract
Training data plays an essential role in modern applications of machine learning. However, gathering labeled training data is
time-consuming. Therefore, labeling is often outsourced to less experienced users, or completely automated. This can introduce
errors, which compromise valuable training data, and lead to suboptimal training results. We thus propose a novel approach
that uses the power of pretrained classifiers to visually guide users to noisy labels, and let them interactively check error
candidates, to iteratively improve the training data set. To systematically investigate training data, we propose a categorization
of labeling errors into three different types, based on an analysis of potential pitfalls in label acquisition processes. For each of
these types, we present approaches to detect, reason about, and resolve error candidates, as we propose measures and visual
guidance techniques to support machine learning users. Our approach has been used to spot errors in well-known machine
learning benchmark data sets, and we tested its usability during a user evaluation. While initially developed for images, the
techniques presented in this paper are independent of the classification algorithm, and can also be extended to many other
types of training data.

CCS Concepts
• Information systems → Expert systems; • Human-centered computing → User centered design; Information visualization;

1. Introduction

While most of the latest breakthroughs in deep learning have
been achieved by means of supervised algorithms, these algorithms
have one essential limitation: they require large amounts of la-
beled training data. When learning image classification tasks, this
means that a large set of correctly labeled images needs to be
available [NOPF10, PTPP06]. Since the labeling process is time-
consuming and labor-intensive, acquiring labeled training data is,
however, a cumbersome process. To speed this process up, label-
ing is often outsourced to less experienced annotators or crowd
workers, for instance via Amazon’s Mechanical Turk [KLA17,
RYHH10]. In the context of deep learning, crowd workers are hu-
man labor, getting paid for labeling large data sets. Sometimes,
even automatic label assignment tools are used [UCOT11]. Unfor-
tunately, such a label acquisition process usually leads to noisy la-
bels, i.e., a training data set which contains many wrongly assigned
labels. This can compromise training results [ZBH∗16]. Thus, to be
able to benefit from these approaches for training data acquisition,
dedicated quality control mechanisms must be in place.

To address the problem of noisy labels, we propose a classifier-
guided visual correction approach, which combines automatic error
detection with interactive visual error correction (see Figure 1). To
enable the automatic detection, we have systematically categorized

error types, that can be potentially present in noisy label data sets.
Our categorization led to three such error types: Class Interpreta-
tion Errors, Instance Interpretation Errors, and Similarity Errors.
Tailored towards these error types, we further introduce detection
measures, which are based on the classifier’s response. Therefore,
we first train with the potentially noisy labels, and subsequently
classify all training and validation images with the trained classi-
fier. The classifier’s response can then be analyzed using our error
detection measures to guide the user to potential errors. These po-
tential errors are visualized in a way that supports an interactive
visual correction. To visually guide the user during the correction,
we propose to employ linked list visualizations with importance
sorting. By using our approach, the number of required inspections
is bound by – and usually much lower than – the classification er-
ror, i.e., for a classifier that reaches an accuracy of 92%, only 8%
of the data has to be reviewed at maximum. While this is the up-
per bound for investigated training samples per iteration, all sam-
ples that have already been inspected can additionally be ignored
in the error detection process in future iterations. This means that
for each subsequent iteration of data-cleanup, only those samples
where the classifier disagrees with the label and that have not been
already revisited need to be reviewed. Without our classifier-guided
approach, instead, an inspection of the entire labeled data set would
be necessary.
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Figure 1: We propose a classifier-guided Automatic Error Detec-
tion for noisy labels, to visually guide the user to erroneous labels,
which can then be inspected and corrected during the proposed Vi-
sual Error Correction. The two proposed components seamlessly
integrate with standard machine learning workflows, as they oper-
ate downstream from Training and Classification. After a visual
inspection, the classifier can be deployed for Productive Use, or
trained again to be iteratively improved through the proposed pro-
cess.

As illustrated in Figure 1, the proposed approach can be used it-
eratively to further improve classification accuracy, whereas users
have to inspect fewer images for each subsequent iteration, as al-
ready inspected images do not require further consideration. While
the contributions made in this paper address automatic error de-
tection and visual error correction, no modifications are necessary
for collecting labels, or training and testing the classifier, as our
approach is to correct training data independent of the labeling or
training process, allowing data experts to review data sets that have
been fully labeled. This is in contrast to active learning, which mod-
ifies the label acquisition process during training [SOS92, Set10],
as well as more recent fully automatic techniques, which modify
the training process, and also reduce the amount of training data by
sorting out noisy labels [TIYA18, LHZY18, HQJZ19]. We propose
an error correction approach that is based solely on classification
results of the trained model, and integrates seamlessly with modern
deep learning workflows without reducing the size of the training
data set.

To this end, we make the following contributions throughout this
paper:

• Categorization of label error types potentially occurring in clas-
sification training data.
• Measures to identify error candidates by means of classifier re-

sponse analysis.
• Interactive visual error guidance and correction by means of

classifier result measure visualization.

We have realized these contributions within an interactive visual-
ization system, with which we were able to identify errors in stan-
dard machine learning benchmark data sets, such as MNIST and
CIFAR10 (see Figure 2). We have further evaluated this system,
whereby our findings indicate, that it enables users to intuitively
clean noisy label data in order to achieve higher classification ac-
curacies.

2. Related Work

Work on handling noisy labels for datasets can be delineated into
two main categories. On one side, some approaches aim at inspect-
ing datasets, often through visualization. On the other, there are
training setups that aim at providing robust classifiers that cope
with noisy labels. The following will provide an overview of both
those lines of research.

Data labeling. One area of deep learning where data labeling is a
central aspect is active learning [Set10]. Here, candidates for label-
ing assignments are selected, often through a query-by-committee
strategy, where the output of several classifiers is used to inform
candidate selection [SOS92]. The line of work by Bernard et.
al. [BHZ∗17,BZL∗18,BHR∗19] investigates how label acquisition
in active learning scenarios can be improved. They also employ
the classifier directly to suggest new items to be labeled and use
dimensionality reduction techniques to visualize these proposed
items and their distribution. What separates active learning from
our work is, that active learning does not aim at improving noisy
data sets, but rather works towards improving the labeling process
itself. Thus, active learning is placed before label acquisition has
been performed, while our approach is designed to work with read-
ily labeled data sets.

There also exist numerous techniques to ensure a better qual-
ity of crowdsourced training data while labels are being gener-
ated [HKBE12,CAK17,Set11]. They use multiple workers [KH16],
provide monetary benefits for good work and specialized task
framing [RKK∗11], or select workers with predefined require-
ments [MHG15]. All of these approaches are focused on quality
assurance while labels are acquired. Approaches to examining data
quality after labeling through crowd services are analyzing how
the worker interacted with the system [RK12, LCL∗19], or hav-
ing workers review the work of other workers [HSC∗13]. A work

Figure 2: Examples of errors we discovered by applying our tech-
niques to widely used machine learning benchmark data sets. On
the left, one can see possible Class Interpretation Errors. While the
top one was labeled as one, the bottom one was labeled to be a
seven. The frog in the center is labeled as a cat and the three as
a five, thus, single instances were clearly misinterpreted. On the
right, one can see almost equal images. One might question if they
should both be in the data set. (Original resolution of 32 by 32 for
Cifar10/animals and 28 by 28 for MNIST/digits)
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published by Chang et. al. combines multiple of these aspects to
ensure data quality by grouping multiple workers and letting them
interactively reason about label decisions [CAK17]. However, they
do not incorporate the classifier feedback in their visualizations,
which is the building block of our guidance system and can help re-
duce the samples to be revisited. Additionally, their techniques are
only applicable if all annotations are present and can be assigned
to individual workers. Yet, correcting labels for readily provided
data sets where original labelers are not accessible anymore can be
valuable to support already processed data sets. Current tools are
targeted more towards analyzing worker performance than correct-
ing already labeled data sets. However, it can often be of great value
for domain experts to be able to validate and correct their training
data themselves as sometimes the data is specific and cannot be
perfectly labeled by laymen. Additionally, for all of these data im-
provement methods in the context of crowdsourcing, one needs to
either hire more crowdworkers, refine the requirements or conduct
a separate, second task to verify the generated labels, which comes
with a greater investment of money and time during label acquisi-
tion [SPI08, IPSW14], and sometimes even makes crowdsourcing
more expensive than conventional approaches [KLA17]. In these
scenarios, it is therefore helpful if domain experts can review and
resolve label errors quickly. Our approach is thus focused on cor-
recting erroneous labels.

Visualization has been used for data cleaning in several publica-
tions, which shows how effective visualization can be when data is
to be cleaned. Kandel et. al. worked on improving data by visually
exploring data sets and directly manipulating them whenever a user
spots a problem in the data [KPHH11, KPP∗12]. Gschwandtner at.
al. [GAM∗14] as well as Arbesser et. al. [ASMP16] use visualiza-
tion to clean up time-oriented data. Wilkinson developed measures
and visualizations to detect and inspect outliers in data sets [Wil17].
However, these and related [PNMK16, WGS∗13] tools are not tai-
lored towards use with machine learning data sets, which often ex-
ceed the amount of data used in these contexts, contain labels that
are to be corrected instead of direct data properties and offer addi-
tional guidance usable for visualization designs, such as classifica-
tion results.

In a publication by Xiang et. al., visualization is directly used to
improve the quality of neural network training data sets [XYX∗19].
They use a projection of the whole high dimensional data set to de-
fine trusted items, which are then propagated to more items using an
approach by Zhang et. al. [ZZW18]. However, while this approach
combines human interaction with network-based label correction,
they do not use the network predictions as guidance to potential
errors. Similarly, Alsallakh et. al. [AJY∗18] developed a visualiza-
tion method to analyze class hierarchies in training scenarios. The
purpose of this approach is to identify class hierarchies that are of-
ten confused by the classifier, and upon this knowledge, improve
the classifier or label definitions. As a side-product, they were also
able to find labeling errors in the data. However, their visualization
design and especially the lack of tools to directly investigate and
correct mislabeled samples shows, that this is not the main goal of
their application.

Robust training. One way to approach noisy data sets is to train
a classifier that is robust against such noisy labels. Here, some ap-

proaches rely on modifications of said classifier to introduce fea-
tures that can filter noisy labels [TIYA18, ZS18, HQJZ19]. This
introduces additional overhead and does not improve the general
label quality so that the data set remains erroneous. Others rely
on additional, clean data to filter for noisy samples [PRKM∗17,
HMWG18]. These methods remove potentially noisy labels from
the data set entirely [NNL∗19], or reduce the importance of poten-
tially false labels for training [RLA∗14, JZL∗17, RZYU18], which
might reduce diversity in the data set. Such approaches can help cir-
cumvent some of the downsides of data sets that contain labeling
errors, however, they do not tackle the underlying problem. Clean-
ing up data sets is still fundamental, as this is the only way a data
set can be reliably reused, shared and published. At the same time,
these approaches effectively make the data set smaller, which is not
desirable. Some of these approaches also require using adjusted
classifiers, which is neither desirable nor easy to use, especially by
data-experts who are less experienced in ML.

Other authors introduce additional label cleaning networks to
be trained to remove or relabel potentially compromised sam-
ples [VAC∗17, LHZY18]. Han et. al. even propose to use a self
learning approach to clean up noisy labels using extracted features
from the data points [HLW19], however, all these automatic ap-
proaches do not guarantee correct labels. They either reduce the
data set size, require modified training with another classifier, or
both. Additionally, they do not allow data-experts to verify their
data sets.

We propose an approach to improve the training data set without
having to look at every individual sample by using the classifier as a
guide to mislabeled samples. Our user-centered approach does not
only focus on the final classifier performance, but is also targeted
at cleaning up the training data at the same time, as it does not
simply reweight or remove training samples. As this permanently
corrects training data, it additionally makes the data reusable, pub-
lishable, and shareable. Also, the approach we propose can directly
be integrated into any training process, as it does not require any
manipulation of the classifier or additional data. Users simply use
their trained classifier for permanent data-cleanup. It additionally
provides insights about the training data, e.g. which classes are typ-
ically confused, biased, or seen similar.

3. Automatic Error Detection

To be able to tailor the visual user guidance towards relevant errors
in labeled data sets, a characterization is required to differentiate
error types potentially occurring in such labeling scenarios. Based
on a systematic analysis of the image labeling process, we have
identified three such error types.

Whenever annotators assign an incorrect label to an image, this
can stem from two fundamentally different problems. Either, they
just mislabel the one image at hand, while they have in general un-
derstood the task; or they have a wrong mental image of a class, and
thus assign incorrect labels to all data points of that class. While
these are problems that occur during the labeling of data points,
another source for corrupted data sets may already be the data ac-
quisition process. Similar or equal data points are sometimes added
to the data set more than once, which can shift the data-distribution
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away from real-world scenarios. While the aforementioned error-
types mostly stem from human errors, the addition of highly similar
data points can be a problem especially when automatically collect-
ing data, e.g. from online sources. To summarize, noise in training
data can be introduced when:

1. A labeler confuses two classes (Class Interpretation Error)
2. A labeler mislabels one data point (Instance Interpretation Er-

ror)
3. Data points get added to the data set multiple times (Similarity

Error)

These error types all introduce unique challenges for how to re-
solve them. Nevertheless, this categorization also enables the in-
vention of novel approaches, to guide the user to potential instances
of these errors. Therefore, to suggest further inspection of labeled
data points, we propose the following measures for the three error
types:

1. Class Interpretation Error Score (Equation (1))
2. Instance Interpretation Error Score (Equation (2))
3. Similarity Error Score (Equation (3))

For the first two scores, we use the classification results in com-
bination with the labels, which might be incorrect, as the basis for
computing them. The Class Interpretation Error Score is computed
for each label/classification (lbl/cls) subset of the data, whereas the
Instance Interpretation Error Score is computed on individual in-
stances. The Similarity Error Score is computed for each instance
pair with the same classification. We assume that, although the la-
beled data may contain errors, the convolutional neural network
(CNN) is still able to differentiate between different classes, such
that in general incorrectly labeled data points get classified into
their original class. This assumption has been tested on an inten-
tionally corrupted data set, which is described in Section 5. Since
this makes the classification result and the original label differ,
these data points can be detected by looking at misclassifications
in the data set. The similarity error score instead, can be calculated
by exploiting similarity measures between training samples. As ev-
ery part of the data-split can contain errors, we classify all samples
in the data set once after the network has been trained. This in-
cludes train, test, and validation data, which can then subsequently
be corrected. In the following, we introduce these three scores and
their computation in detail.

3.1. Class Interpretation Errors

Class Interpretation Errors are introduced when data points from
class a were assumed to be of class b by one, or few, of the label-
ers. This error type is conceptual, and leads to multiple or all labels
assigned by one, or a few, labelers and belonging to class a ending
up with the wrong label b (e.g., labelers considering gooses to be
ducks throughout the entire data set). However, as long as the ma-
jority of data points are correctly labeled, our presented approach
is able to guide to these errors, as the classifier will still be able
to correctly classify most of the data points with incorrect labels,
see Section 5. Fortunately, the fact that multiple data points are la-
beled incorrectly makes Class Interpretation Errors easy to detect.
We make use of the amount of resulting misclassifications to find

Figure 3: Images from the original MNIST data set (original res-
olution 28 by 28). The top row shows images labeled as one. The
bottom row contains images labeled as seven. Here, Class Interpre-
tation Errors might occur, since those digits are written differently
in the US and Europe.

candidates for Class Interpretation Errors. Thus, we analyze lbl/cls
combinations by the amount of missclassifications in them as:

CIESy,ŷ = |{x | x ∈ D,argmax(cls(x)) = y, lbl(x) = ŷ}| (1)

Which means that the Class Interpretation Error Score CIES
given a prediction class y and a ground truth class ŷ is defined as
the cardinality of the subset of data points x in the data set D for
which the classification result cls(x) equals y and the label lbl(x)
equals ŷ. Thus, this measure is designed to analyze entire lbl/cls
subsets of the data. An interesting occurrence of this type of er-
ror in the widely used MNIST data set is the interpretation of the
North-American and European way of writing the digits ’7’ and
’1’, as shown in Figure 3.

3.2. Instance Interpretation Errors

When single items in the data set get labeled incorrectly, the situa-
tion is more difficult, as these errors cannot be spotted by analyz-
ing the ratio of misclassifications of one lbl/cls pair. At the same
time, however, they have less influence on classification accuracy
as compared to Class Interpretation Errors. To provide means to
identify and remove Instance Interpretation Errors, we employ the
classification confidence as an indication for labeling errors. This
works well for all probabilistic models, such as neural networks,
where prediction probabilities are an implicit output. When data
points are misclassified confidently, they might as well be incor-
rectly labeled. This can be used to guide the user to these samples
in the data set. To enhance this guidance, we go one step further and
analyze the relation of the classification confidence and the classifi-
cation probability assigned to the ground-truth label of a data point.
On these means, Alsallakh et. al [AJY∗18] state:

[...] detecting mislabeled samples such as an image of a lion la-
beled as a monkey. We found such cases by inspecting misclassified
samples having high prediction probability and low probability as-
signed to the ground-truth.

We, therefore, propose the following measure to guide users to
these error types:

IIESx =
max(cls(x))+(1− cls(x)ŷ)

2
(2)
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Here, we calculate the Instance Interpretation Error Score IIES
for a data point x as the normalized relation between the class that
the classifier assigned the highest classification probability to, and
the probability the classifier assigned to the ground-truth label ŷ.
Thus, this score provides guidance on an individual instance level.
This score is used as an indicator for how certain the classifier is
wrt. the misclassification of a data point, and can be used to recog-
nize potential labeling errors. Applying this approach to the widely
used Cifar10 as well as the MNIST data set, revealed previously
unknown labeling errors, which we discuss in Section 5.

3.3. Similarity Errors

When data points occur more than once in the labeled data set,
this can lead to an unintended shift away from the real-world data
distribution. Such errors can be introduced when data points are
taken from online sources or when an overview of the data set is
not always present during data acquisition. It is important to dif-
ferentiate between intentionally augmented data and data points
that might over-represent certain features during training, as data-
augmentation can lead to better training results. However, having
multiple similar data points unintentionally in the labeled data set
can compromise the training results in multiple ways. When they
are in the training set, a higher priority is assigned to this repre-
sentation, which can lead to bias, where some features are consid-
ered more important than other features. This is a problem when
this over-representation is not expected in the productive use of the
classifier. When, in contrast, several instances are in the validation
data set, validation accuracy has a higher variation depending on
the correctness of the classification of these data points, which in
turn might compromise the performance measure of the classifier.
If similar data points exist across training and validation data sets,
validation is performed on data points that the classifier has been
trained on, which can also compromise validation results, and at
the same time introduce bias to the training data. Gladly, guiding
users to similar data points is also possible, as similarity measures
can be computed for each pair of elements in the data set that are
assigned the same classification result:

SESx1,x2 = sim(x1,x2), f or x1,x2 ∈M

M := {x1,x2 ∈ D | x1 6= x2,argmax(cls(x1)) = argmax(cls(x2))}
(3)

The Similarity Error Score SES for a pair of data points x1,x2
can be obtained using similarity measures, which exist for many
types of data. The SES is calculated for all pairs of data points in
the data set D that were classified into the same class, whereas the
sim function represents a similarity measure for two data points.
For images, this function could be the Structural Similarity Index
Measure (SSIM) [WBSS04]. While proposing candidates with this
measure is not complex, Similarity Errors require the most expe-
rience of all error types to be resolved, as highly similar images
are not always a problem for training a classifier. They are only
harmful if either, they do not represent the real-world distribution,
or, if they originate from both the training and validation data sets
because then, validation does not test generalizability. This makes

expert revision, which our approach is targeted towards, even more
important.

By calculating the measures presented in this section, we are
able to analyze the training data set and extract potential labeling
errors using only the trained classifier. In our visual error correc-
tion approach, we make use of the suggested error characterization
and treat these three error types differently, both, by calculating
specialized error measures, and employing tailored visual guidance
systems.

3.4. Workflow Integration

As we exploit a pre-trained classifier for error detection, a few con-
siderations need to be made in order to integrate our approach into
a standard classification workflow. Before analyzing the data set,
the classifier needs to be trained. Here the classifier and the train-
ing process do not need to be altered at all. The user can then rein-
spect misclassified samples based on our proposed visual guidance.
Additionally, if the number of data points to be reinspected is too
small, experienced users can employ strict regularization or early
stopping if they intend to control the number of training samples
to reinspect, as the classification accuracy directly influences this
number. To be able to use the classification results as guidance to-
wards possible errors, we assume that the network still has enough
correctly labeled data to learn from, and guide the user towards in-
correct labels. While this assumption is likely to be true for most
scenarios, if the data set is too small or contains too much noise, our
approach will not function anymore as it relies on the classification
results of the neural network.

To then get an idea about which items should be inspected again,
all samples in the data set are classified once using the trained clas-
sifier. In a typical neural network setting, this would include train-
ing, test, and validation data, as all of them can contain errors. It is
important to note that no evaluation of the model or further training
is done at this point, so the data-split or training setup is not cor-
rupted in any way. This way, each data point is assigned a probabil-
ity distribution over all classes. We then present only misclassified
samples through our visual guidance approach which we introduce
in the next section. This way, the user has to look at far fewer items
than if they would have to inspect all data points again. Our evalua-
tion shows that this approach works well even when a large number
of incorrect labels are present (see Section 5).

4. Visual Error Correction

While obtaining potential error candidates, as described above, is
essential for improving training data sets, only through visual guid-
ance users can detect potential errors, and reason about them. Our
visual guidance approaches help to do this for all three error types
that typically occur in labeling processes. Once errors have been
reasoned about, they can directly be resolved. Again, the visual cor-
rection of data points, which involves the user tasks of detecting,
reasoning about, and resolving potential errors, should be in line
with the error types we propose. This interplay of user tasks and
error types is shown in Table 1.
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Table 1: User tasks involved when improving training data. The user has to first, detect potential errors, then try to reason them, before
he/she can resolve them. The table shows how these tasks are completed for the three identified error types.

Class Interpretation Error Instance Interpretation Error Similarity Error
Detect Many samples misclassified from a to b Samples confidently misclassified Similar/ identical samples
Reason Error or bad classifier performance? Error or bad classifier performance? Error or intentional?
Resolve Reassign multiple labels Reassign individual label Remove item

4.1. Error Detection

Through the error measures we propose, it is possible to support
users through visual guidance to the most critical items in the data
set. For all three error types, users should have indications of which
data points to review. In Section 3, we showed how candidates for
these error types can be extracted from the data set based on clas-
sification results. Thus, the user should be guided to lbl/cls pairs
that contain a large number of misclassifications for Class Inter-
pretation Errors. For Instance Interpretation Errors, they should see
which samples have been most confidently misclassified. Addition-
ally, users should be given an indication of where to find very sim-
ilar images to be able to resolve Similarity Errors. In the following,
we present visual guidelines that support all of these requirements.
To give users an overview of those measures, we propose a visual-
ization of the data set that contains information about the amount,
probability distribution, and similarity score for each lbl/cls pair. In
line with our approach of guiding the user only to samples that the
network misclassified, and thus might be labeled incorrectly, we
only highlight misclassifications in this view, while correct classi-
fications are depicted in the leftmost column. The resulting visual-
ization can be seen in Figure 4.

Figure 4: The list view of classifications shows problematic lbl/cls
combinations at a glance. The number of misclassifications for
each cell is encoded in the blue background. The red horizontal
bars in each cell show, how confidently the images have been mis-
classified as computed through Equation (2). Visual separation of
rows makes clear, that this list should be read from left to right. On
the left, one can see cells for correctly classified samples.

We propose a visualization approach that employs a modified
version of confusion matrices. To search for possible Class Inter-
pretation Errors, users need to be able to investigate lbl/cls com-
binations containing many misclassifications. We support this re-
quirement by sorting matrix cells based on the number of data
points they contain, while the distribution of Instance Interpretation
Scores is displayed within each cell. We first sort by the number
of misclassifications across different labels (rows), before sorting
classification results within each label (columns). This places the
most critical classes at the top of this matrix. Additionally, we omit
cells that do not contain any items, which removes unnecessary
clutter and makes the visualization more sparse. In our implemen-
tation, we also highlight lbl/cls combinations with many misclas-
sifications in blue, where the saturation of this color depends on
the number of samples. This guides the visual attention of users
directly to these, most critical lbl/cls combinations.

To also embed the IIES-distribution of those misclassifications
in this overview, which is helpful for spotting potential Instance In-
terpretation Errors, we propose to show this distribution using hor-
izontal bar-charts within each list item. Here, the y-position of the
bars represents the IIES-distribution scaled from 1.0/num_classes
(lowest bar) to 1.0 (top bar) while the length of the bars signals the
number of items in an IIES-range.

The third user guidance system, which shows if similar items
are present in a lbl/cls combination, is indicated by a duplicate icon
within cells that contain highly similar data points. With these vi-
sual indicators across the entire data set, this view serves as an
overview that guides users to all three error types we defined in Sec-
tion 3.

Traditional approaches, such as confusion matrices [AJY∗18,
KH09] or the confusion wheel [AHH∗14], which are commonly
used to provide such an overview have major limitations for the task
of spotting potential errors in the labeled data set. Confusion ma-
trices always require understanding and combining both, the label
and the classification axis, which proved to be too complex for de-
picting the source and destination for misclassifications when pre-
sented to domain experts [RAL∗17]. At the same time, most of the
confusion wheels screen real estate is taken up by class overviews
and it provides no clear entry point. This renders both of these vi-
sual approaches suboptimal for guiding users to potential errors in
the data set, which our approach is explicitly designed for.

4.2. Error Reasoning

When the user decides to inspect a potentially problematic lbl/cls
combination, they naturally want to inspect individual data points
and the distribution of data points in this subset of the data. This
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way, they can reason about the potential errors to decide if they are
problematic, and should be acted upon. To inspect one such lbl/cls
combination in detail, users select one of the items in our overview
visualization.

Reasoning about potential errors includes comparing samples,
and extracting outliers as well as investigating similar samples for
a lbl/cls combination. Thus, we propose to guide the user by visu-
alizing similarity-based embeddings of the selected lbl/cls combi-
nation. Therefore, to inspect Instance Interpretation Errors, as well
as Class Interpretation Errors, dimensionality reduction techniques
that preserve high-dimensional relations are helpful. If many sim-
ilar items have been misclassified, users can quickly reason about
potential Class Interpretation Errors as these items, which differ
from plain misclassifications, will cluster when dimensionality re-
duction is applied. On the other hand, outliers can be an indica-
tion for Instance Interpretation Errors, as can be seen in Figure 5.
When dealing with images, we propose to use UMAP [MHM18] to
show clusters of data points, as well as outliers in this lbl/cls com-
bination, which can be seen in Figure 6. Here, either direct image
pixels can be used as projection features. An even more sophisti-
cated approach, which we used to generate these projections is, to
use saliency visualizations of those images as a projection basis to
also incorporate what the model looks for in these images. While
labeling errors will not always be projected as outliers, users can
iteratively remove items from the visualizations by confirming or
changing their labels, which eventually reveals label errors. How-
ever, if there are few data points, or the user wishes to scan the data
sequentially, there is also the option to switch to a grid-based view
on the items. To also support the inspection of Similarity Errors,
the most similar images per /c combination should additionally be
presented to the user. In our implementation, those data points are
shown below the projection-view.

Apart from showing data points with dimensionality reduction
or sorted by similarity, their properties should also be inspectable
in detail individually. This can further help to decide upon whether
a proposed error candidate was indeed labeled incorrectly. Thus,
in our proposed visualization approach, the final reasoning step on
an individual data point level should be performed by selecting in-
dividual samples to view them in detail. Additionally, for selected
items, we show the probability distribution that stems from the clas-
sifier response to provide the user with another tool to reason about
a potential labeling error. In our implementation, enlarged images
and classifier responses are shown on the right of the projection
view (see Figure 5).

While each of these visual guides is targeted towards satisfying
a specific user-need, in combination, they provide the visual tools
necessary to reason about the three error types we propose.

4.3. Error Resolving

The final step in our proposed iterative data-correction approach is
resolving potential errors that have been found within the data set.
Once error candidates have been reasoned about, it is important to
directly be able to resolve them. This can mean assigning new la-
bels, but also confirming labels that are correct to remove items
from the error correction process. For resolving Similarity Errors,

data points should also be permanently removable from the data
set. To enable a correction, confirmation, and removal of labels for
data points, we show actionable buttons on the lower right of the
GUI (see Figure 6). Whenever data points are selected and subse-
quently resolved using these buttons, all visualizations are updated
as resolved data points are removed from all guidance measure cal-
culations and visualizations. The effect of this can be seen in Fig-
ure 5. Thus, by resolving error candidates, users can interactively
process the visualizations and work their way through the data set
until all error candidates are resolved, and thus removed from the
guidance approach.

After one iteration of data-correction has been completed, users
can reiterate and restart the process by training a new classifier on
the partially cleaned data set (see Figure 1). With training a new
classifier, proposed error candidates may change, and new error
candidates can be inspected. For subsequent iterations, our pro-
posed measure calculation and user guidance can thus be kept as
is, with the exception that all previously relabeled, removed, or
confirmed data points are not included in the guidance system any-
more, as they have already been resolved.

In our approach, users are guided to confident misclassifica-
tions, large quantities of misclassifications, and almost equal im-
ages through a data set overview, which helps to investigate poten-
tial errors. To reason about error candidates, clustering mechanisms
and outlier visualization are of great help. It is also essential to di-
rectly be able to act upon inspected items to remove them from the
process. Through the translation of the three user tasks of detecting,
reasoning about, and resolving potential labeling errors into our vi-
sualization guidelines, this approach can be implemented to fit any
classifier as well as data type to be cleaned. Thus, our approach en-
ables a user-centered data cleaning that utilizes the trained classifier
to propose error candidates. The proposed visual design directly
follows the principles of our approach to resolve the error types
we introduced in Section 3, and obeys to the user tasks we defined
for the visual correction process. Our implementation along with
the user-study which we present in Section 5 shows, that our con-
cepts are applicable to network-supported data-cleanup, and could
be adopted in many application scenarios.

5. Evaluation

To test the proposed approach, we implemented a web-based ap-
plication that realizes the proposed visualizations, and focuses on
image data in combination with CNNs as classifiers. The general
idea of using the classifier as a guide to potential labeling errors
is, however, not limited to such data or classification algorithms.
The following will present both, the application of our approach to
renowned data sets, as well as a user study that tests the applicabil-
ity of our approach.

5.1. Analyzing Benchmark Data Sets

Using our approach, we were able to spot errors in well-known
machine-learning benchmark data sets. Here, we analyzed both, the
Cifar10 [KH09], and MNIST [LC10] data sets.

MNIST. The MNIST data set [LC10] is one of the most popular
machine learning benchmark data sets. It contains greyscale im-
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Figure 5: UMAP [MHM18] projection of the label cat and classification frog. One can see that dimensionality reduction helps to spot
outliers in these lbl/cls combinations. The red arrows were added to indicate the position of the frog image. The three subsequent steps
during interactive isolation of the frog wrongly labeled as cat show how after removing some data points, reprojecting the remaining data
helps to isolate outliers. By iteratively removing outliers and through the nondeterministic nature of UMAP, the frog is embedded further
away from the cats. (Images are from Cifar10, original resolution 32 by 32)

ages of handwritten digits from zero to nine with a size of 28 by
28 pixels. We used a simple architecture for training a CNN on that
data set. It consisted of two convolutional layers, each followed by
a max-pooling layer. For obtaining classification results on top of
this embedding, one dense layer was used, followed by a dropout
layer and the final softmax layer. Our classifier reached an accuracy
of 99.3 percent. To review the data, we then inspected label clas-
sification pairs marked as suspicious in the overview visualization.
Since only 0.7 percent of the data set was misclassified, our visual-

Figure 6: After gaining an overview of the classification results,
the user can inspect the content of individual cells to analyze clas-
sification results in detail. Images are embedded by applying pro-
jection, e.g. UMAP. Filtering can be done by selecting IIES ranges.
Once one or more images have been selected, the according proba-
bility distribution is visualized. Using the buttons on the right, users
can change or confirm the label of the selected images. (Data set:
Cifar10, resolution of images 32 by 32)

ization allowed us to only look at these images as potential errors.
Thus, instead of looking at all 70,000 images in a file explorer, we
had to look at only 490 misclassified images through a guided pro-
cess.
When looking at the classes seven and one, some samples are al-
most impossible to distinguish while being from different classes.
This can be seen in Figure 3. Here, different cultural interpretations
of said classes might lead to Class Interpretation Errors. We found
that the US-American versus European writing style of these digits
might introduce problems to this data set. We also discovered in-
dividual instances that are mislabeled in the MNIST data set. Fig-
ure 2 shows a data point that clearly shows a three, but was labeled
as a five. More of such examples can be found in our supplementary
material.

Cifar10. The Cifar10 data set [KH09] consists of 32 by 32 pixel
colored images from ten different classes. The model used for train-
ing on this data set was built by two blocks, each containing two
convolutional layers followed by a pooling and a dropout layer.
This was then followed up by two dense layers each also preceding
a dropout layer, before the final softmax classification layer was
added. With this intentionally simplistic network, we reached an
accuracy of 77.13 percent, which is representative of real-world
training scenarios on new, domain-specific data sets. Even with the
classification comparably low accuracy we reached, we only had to
look at 22.87 percent of the data.
As can be seen in Figure 5, for Cifar10, we were able to spot an
image that was incorrectly labeled as cat, while showing a frog.
When performing an in-detail inspection of the lbl/cls combination
of the label cat and the classification frog, we found this incorrectly
labeled image by iteratively removing outliers from the embedding
visualization. Additionally, we found a set of very similar bird im-
ages as shown in Figure 7. While this is not a clear error in the data
set, having multiple highly similar images of an ostrich in this data
set is at least debatable.

Our approach is generally targeted towards domain-experts that
get their data labeled and then train a classifier on that data or use
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Figure 7: At the bottom of our in-detail visualization, we show
pairs of similar images. The user can then decide whether these
should stay in the labeled data set (e. g. in cases where data aug-
mentation is used) or if they should be removed (in case of un-
wanted duplicates). The images show five similar images of a bird
discovered in the Cifar10 data set (original resolution 32 by 32).

online services such as AutoML [Goo19] for training classifiers.
Here, these control mechanisms are even more important, as data
quality can be worse than in benchmark datasets. However, the fact
that we were even able to find errors in two of the most popular
benchmark data sets in the machine learning community shows
how important approaches as the one we propose are.

5.2. Qualitative Evaluation

Based on our implementation, we additionally conducted a qualita-
tive study to test the applicability of our approach. In our user study,
10 participants had to find and resolve errors in a labeled data set.
Participants were recruited in a university setting, whereby out of
the 10 participants, only two had experience with neural networks
and none of them had seen or heard of our approach before. This
shows, that no ML background is needed to use our visualization
guidelines.

To generate a setup in which we could recruit participants in a
university setting while still reflecting a real-world scenario, where
data-experts would correct their noisy data set using our approach,
we chose to use the MNIST data set in our study. This dataset re-
quires no prior knowledge to review, as it consists of hand-drawn
digits, which anyone can identify. To be able to verify which items
have been changed by a participant, we corrupted the data set by
introducing five errors of each type. For Class Interpretation Er-
rors, we changed 1,400 images from nine to six, 700 images from
one to four, 700 images from three to one, 350 images from eight
to two and 175 images from seven to three. For Instance Interpre-
tation Errors, we changed the labels of five images from different
classes. With this, we tried to reflect real-world scenarios, where
CIEs would introduce many more incorrect labels than IIEs. Sim-
ilarity Errors were introduced by duplicating five images. In this
study, we told the participants to remove all duplicates, as reason-
ing about if they are actually harmful could not be done in this
setting. In total, we introduced 3,330 mislabeled images and five
duplicates.

We then trained on this data set and visualized the results using
our implementation. The classification accuracy for this manipu-
lated data set was at 94.37 percent, hence, participants were only
presented the 5.63 percent that were misclassified. This equals to
about 4,000 out of the 70,000 images. We provided a short in-
troduction of about 10 minutes which showed our idea for data-
cleanup and explained the task, which was to resolve as many er-
rors as possible in 15 minutes. We then let them use the approach
we propose in this paper to resolve all errors they spotted.

With our similarity guidance, all participants were able to resolve
all duplicates. We mainly attribute this to our visually prominent
similarity indicators in the data set overview, and the fact, that the
most similar items in a lbl/cls combination are shown separately
when inspecting such combinations in detail. On average, every
participant changed the labels of 2,902 images, of which only 27.5
were incorrectly changed. They thus managed to bring the num-
ber of incorrect labels down by 85.65 percent on average. This is a
reduction to 477 errors from 3,330 after only one iteration of our
approach. We then used the corrected data sets to train the clas-
sifier once again for each participant. On average, the validation
accuracy rose to 99.05 percent, which shows the enormous impact
of such data-cleanup. This shows the applicability of our approach
to cleaning noisy labeled datasets.

Looking at the images that we initially considered as incorrectly
changed also provided an interesting insight. When investigating
them, we found that some of them seemed to be mislabeled in the
original data set. The participants thus found new errors in the well-
established MNIST data set by using our approach. Examples of
these errors are included in the supplementary material.

To also evaluate the usability of our techniques, we asked the par-
ticipants to rate the helpfulness of our approach. They had to rate
the helpfulness of the visualizations from one, not helpful at all, to
five, helped a lot, all of them rated the visualizations between four
and five, with an average of 4.4. When asked what they found most
helpful, most of them said the overview guidance approaches were
helpful for spotting errors in the data set. Some additionally men-
tioned that it is also essential to be able to inspect individual sam-
ples for resolving errors. When asked what was bad and could be
improved, many said that the latency was a problem. This, however,
was a problem specific to the study setup and not to our approach
perse.

As all participants were able to improve the data set by a large
margin and thus greatly improve classification accuracy, this study
shows that our proposed approach can, in fact, be a valuable tool to
clean up labeled data. Also, as our participants stated, our guidance
system helps users focus on critical training samples which greatly
reduces samples that need to be reinspected.

6. Limitations

Currently, the approach we present within this work is limited to
classification problems. For other problems, different error mea-
sures, as well as visual guidance systems, would have to be in-
vented, which remains an open research question. Additionally, the
error types we present within this paper cannot be applied out-
side the domain of classification problems. While our approach
is model-agnostic and does not depend on the data that is used,
the exemplar implementation we provide is focused on image-
data in combination with CNNs. We propose three types of er-
rors, which our analysis of labeling processes suggests are most
common. However, one could think of other error cases, for exam-
ple, if a labeler assigns completely random labels to all images. We
did not include such error cases, as most of them could be filtered
by traditional quality assurance methods. Nontheless, investigating
and handling other potential labeling errors remains an open chal-
lenge. Also, while matrix views are a common metaphor for getting
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an overview of classification results for a data set, and our proposed
matrix is even more condensed than others, it cannot scale indefi-
nitely. We tested our approach with data sets containing up to more
than 20 classes. A data set with 22 different classes containing an-
imal skull X-Ray images, can be seen in our supplementary mate-
rial. Yet, for data sets that contain even more classes, matrix views
are not optimal. In this case, users would have to look at a subset of
classes rather than viewing the whole class-pool right away. How-
ever, this is a general research question and is not only tied to our
approach.

7. Conclusion

After introducing the problems that mislabeled training data for
classification algorithms bring with them, we formulate a novel
categorization of error types that typically occur in labeling settings
for classification tasks. While there are other approaches that aim at
improving noisy labels in training data, ours introduces the concept
of using the trained classifier as a support for resolving these three
different error types. The proposed visual correction approach can
be performed at any point in the lifetime of a training data set, and
permanently and reliably improves training data sets after the la-
beling process has been finished. Contrary to other approaches, our
visual error correction tightly couples automated approaches with
user interaction to ensure data quality. To model this visual cor-
rection approach, we define the user-tasks of first, detecting errors,
then, reasoning about them, and finally resolving them, which users
typically perform for cleaning up data sets. Our method fits espe-
cially well into the context of crowdsourced data-labels. With the
ongoing automation of data acquisition, as well as classifier train-
ing, we imagine such data-cleanup techniques to be picked up in
these contexts. Our approach could be a candidate to be plugged in
directly into services such as AutoML [Goo19], where labels and
classifiers can be obtained automatically, and correctly labeled data
is crucial.
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