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Figure 1: Falling simulation of an interlocked ring mesh.

Abstract

We present a highly efficient algorithm for computing the minimum distance between two solids of revolution, each of which is
defined by a planar cross-section region and a rotation axis. The boundary profile curve for the cross-section is first approx-
imated by a bounding volume hierarchy (BVH) of fat arcs. By rotating the fat arcs around the axis, we generate the BVH of
fat tori that bounds the surface of revolution. The minimum distance between two solids of revolution is then computed very
efficiently using the distance between fat tori, which can be boiled down to the minimum distance computation for circles in the
three-dimensional space. Our circle-based approach to the solids of revolution has distinctive features of geometric simplifica-
tion. The main advantage is in the effectiveness of our approach in handling the complex cases where the minimum distance is
obtained in non-convex regions of the solids under consideration. Though we are dealing with a geometric problem for solids,
the algorithm actually works in a computational style similar to that of handling planar curves. Compared with conventional
BVH-based methods, our algorithm demonstrates outperformance in computing speed, often 10–100 times faster. Moreover,
the minimum distance can be computed very efficiently for the solids of revolution under deformation, where the dynamic
reconstruction of fat arcs dominates the overall computation time and takes a few milliseconds.

CCS Concepts
• Computing methodologies → Minimum distance computation; Solid of revolution; Bounding volume hierarchy; Fat arc;
Toroidal patch; Deformation; Acceleration;

1. Introduction

Efficient minimum distance computation is an important first-step
for the acceleration of many geometric operations on solid mod-
els. Conventional algorithms are efficient in handling convex ob-
jects [Gilbert et al. (1988), Lin and Canny (1991)]. General non-
convex objects are often represented in a hierarchy of convex
bounding volumes [Quinlan (1994)]. The convex volumes are easy
to handle; however, they are ineffective in approximating non-
convex parts of interacting objects in close proximity, such as the

† Corresponding author: mskim@snu.ac.kr

interlocked rings in Figure 1. This limitation motivates the intro-
duction of non-convex bounding volumes to the BVH structure.

In the planar case, non-convex bounding regions such as fat arcs
(FA) and bounding circular arcs (BCA) are highly effective in ac-
celerating geometric algorithms (such as intersection [Sederberg et
al. (1989)], offset [Lee et al. (2015a)], medial axis, and Voronoi dia-
gram computations [Lee et al. (2016)]) for planar freeform curves.
(Fat arc is an expansion of arc.) The efficiency of these regions
(bounded by circular arcs) is based on their higher approximation
order to planar curves. Moreover, the circular arcs are relatively
easy to handle. As a natural extension of fat arcs to the three-
dimensional case, [Krishnan et al. 1998a] suggested a spherical
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shell as a bounding volume. The approximation order of spher-
ical patches to non-convex surfaces is low. On the other hand,
toroidal patches have a higher approximation order to arbitrary sur-
faces [Liu et al. (2009)]. Thus we consider an extension of fat arcs
to fat toroidal patches.

In this paper, using the BVH of fat toroidal patches, we de-
velop an efficient algorithm for computing the minimum distance
between two moving solids of revolution. The surface of revolu-
tion is extensively used for the design of many industrial parts and
graphical models, including the cutter tools for 5-axis CNC flank
machining [Bo and Barton (2019)], the lid and body parts of the
Utah Teapot, and the volume interiors filled with trusses and micro-
structures for fabrication (3D printing).

Figure 2 shows a solid of revolution generated by rotating a pro-
file curve C(t) = (0,y(t),z(t)) in the yz-plane around the z-axis. The
planar curve can be approximated by a connected sequence of G1-
continuous circular arcs within an arbitrary error bound ε> 0 [Sir et
al. (2006)]. By rotating these arcs, the boundary surface of revolu-
tion can be approximated by G1-continuous toroidal patches within
the same bound ε > 0 (Figure 3). The distance between two solids
bounded by these toroidal patches provides a good approximate
solution to the minimum distance within an error bound of 2ε > 0.
The whole problem is thus essentially reduced to that of computing
the distance between toroidal patches. To make distance computa-
tion easy, we subdivide toroidal patches to elliptic or hyperbolic
pieces, by segmenting the planar profile curve into z-monotone
convex and concave pieces. (Related technical details are in Sec-
tion 4.1.) The arcs for the convex/concave side of a profile curve
generate toroidal patches on the convex/concave side of their re-
spective tori.

[Sir et al. (2006)] explains how to construct a biarc (consisting
of two G1-continuous circular arcs) that interpolates the endpoints
and the end tangent directions of a curve segment. When the ap-
proximation error is larger than ε > 0, we subdivide the curve seg-
ment (at the mid parameter) into two pieces and repeat the same
construction for each piece recursively. The hierarchy of recursive
subdivisions of the profile curve generates a balanced binary tree,
where each node represents a fat biarc (which is the expansion of
a biarc by an approximation error to the corresponding curve seg-
ment). The fat-biarc tree also represents a bounding volume hierar-
chy (BVH) for the surface of revolution, where each node can be
interpreted as the rotated volume of a fat biarc.

In Section 3, we show that the distance between two toroidal
patches can be computed using a simple formula: l±r1±r2, where
l is the length of a certain binormal line segment orthogonal to
both the major circles of the two tori, ri’s are the minor circles’
radii, and the ± signs are determined based on the convexity and
the inward/outward surface orientation of the toroidal patches. This
is based on the fact that each binormal line to two toroidal patches
T1 and T2, also pass through their major circles orthogonally. Our
circle-based method is more efficient than an alternative approach
of computing the binormal lines of two toroidal patches T1(u,v)
and T2(s, t), interpreted as bivariate surfaces.

The biarc tree construction takes more time than the minimum
distance computation itself. Nevertheless, once built in a prepro-
cessing step, the static structure can be used repeatedly for the

Figure 2: A profile curve for a solid of revolution.

Figure 3: A surface of revolution approximated with G1-
continuous toroidal patches (shown in the left) generated by ro-
tating a G1-biarc (in the middle) around the axis, and a zoomed
view of the two smoothly connected patches (in the right).

solids at all different poses. For the case of deformable solids of
revolution, however, the profile curves change shape dynamically
and we need to reconstruct their biarc trees on the fly. However, the
reconstruction of the biarc tree is considerably more efficient than
other conventional BVH structures for general bivariate surfaces or
polygonal mesh models. For the test solid models of deformation
used in the experiments of this paper, we have constructed the biarc
tree and the BVH of toroidal patches in only a few milliseconds,
while supporting real-time performance.

The main contributions of this work can be summarized as fol-
lows:

• We propose an algorithm for computing the minimum distance
between two solids of revolution, which outperforms other con-
ventional algorithms in computing speed.
• The improvement is based on the high approximation order of

toroidal patches to the surfaces of revolution and the geometric
simplicity of toroidal patches in measuring distances.
• The BVH of toroidal patches can be represented in a highly com-

pact way using a biarc tree, which is a hierarchical data structure
for the profile curve, not for the surface of revolution.
• By dynamically reconstructing the biarc tree for profile curves,

we can support a highly efficient algorithm for computing the
distance between two deforming solids of revolution.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

536



Son et al. / Minimum Distance Computation

2. Related Work

There are many efficient algorithms for computing the minimum
distance between two convex objects. In particular, [Gilbert et al.
(1988),Lin and Canny (1991)] are known to be two of the most ef-
ficient algorithms for this problem, including other variants for fur-
ther improving the computing speed of these algorithms [Cameron
(1997), van den Bergen (1999)]. [Lin and Manocha (2004)] reports
an extensive survey on collision detection and distance computa-
tion.

[Larsen et al. 1999] proposed a general paradigm for comput-
ing the minimum distance between non-convex objects represented
in the BVH of sphere-swept bounding volumes. They maintain a
priority queue of pairs of BVH nodes, where each BVH node is
the root for a subtree and represents a volume that bounds a subset
of the object. [Johnson and Cohen (1998), Johnson (2005)] took a
similar approach to compute the minimum distance between two
B-spline surfaces. The main difference is in a dynamic construc-
tion of bounding volumes based on the minimum distance loca-
tions between the convex hulls of the B-spline control points for
the surface patches under consideration. [Chang (2011)] presented
a different way of splitting the Bézier surfaces under considera-
tion. [Kim et al. (2011)] introduced a preprocessing technique that
can speed up a dynamic construction of simple bounding volumes
for B-spline surfaces. These conventional methods employed only
convex bounding volumes.

In the planar case, [Sederberg et al. (1989)] accelerated the
curve-curve intersection for planar Bézier curves by using a BVH
of fat arcs which are non-convex regions generated by offsetting
circular arcs by the approximation errors to the given planar curve.
Based on the fat-arc BVH, [Kim et al. (2012)] demonstrated highly
improved performance in the efficiency as well as the robustness
in trimming the planar curve offset self-intersections. [Lee et al.
(2015a)] further improved the efficiency of planar offset trimming
by using a BVH of bounding circular arcs (BCA). [Meek and Wal-
ton (1995)] introduced the concept of BCA for the purpose of prov-
ing the cubic convergence of their biarc approximation to planar
curves. Based on the BCA-tree, [Lee et al. (2016)] developed a
highly robust real-time algorithm for computing the medial axis
and Voronoi diagram for planar curves.

Fat arcs are often used in the form of fat biarcs as can be seen
in many applications [Lin and Rokne (2002), Yong et al. (2006)].
A biarc (with two G1-continuous circular arcs) can interpolate both
the positions and the tangent directions at two endpoints of a curve
segment at the same time. Thus it is easier to handle one biarc rather
than two arcs separately. In this paper, when we use the term arc
tree, we mean a biarc tree representation, but each arc in a node is
processed individually and generates a separate toroidal patch.

The spherical shell of [Krishnan et al. 1998a] is the first non-
convex bounding volume developed for surface models such as
polygonal meshes. Each spherical shell is constructed with two
concentric spheres and a cone with the apex at the sphere center.
Because of the spherical shape, the spherical shell has limitations in
bounding hyperbolic surfaces such as saddle surfaces. In the point
projection problem to a freeform surface, which is a special type of
minimum distance computation between a point and a surface, [Liu
et al. (2009)] employed a sequence of osculating tori to a surface for

the acceleration of point projection. An osculating circle/torus pro-
vides the best approximation around a specific point. Nevertheless,
a G1-biarc provides a better approximation over a curve segment
because of the interpolation power at both endpoints of the curve,
including the positions and the tangent directions. This property
also justifies the use of toroidal patches for bounding the surfaces
of revolution in the current work.

[Neff (1990)] introduced an analysis of the algebraic complex-
ity of the circle-circle distance problem in space and showed that
the minimum distance is given as a root of polynomial of degree 8.
Nevertheless, the minimum distance itself can be computed more
efficiently than by the approach of numerically solving a polyno-
mial equation of degree 8. [Vranek (2002)] reduced the problem to
an efficient numerical search for the global minimum of a distance
function, where the search is guaranteed to find the global mini-
mum by solving an auxiliary polynomial equation of degree 4. The
analysis of [Neff (1990)] is still quite important – it is related to a
more general problem of finding all binormal lines to two circles. In
Section 3, we present an elementary construction for all binormal
lines (and their intersection points) to two circles in space. [Eber-
ley (2007)] also derived the same polynomial equation, but purely
algebraically. Our derivation is geometric, which is more useful in
the acceleration of search for specific binormal lines needed by our
algorithm.

3. Distance Computation for Toroidal Patches

3.1. Torus Parameterization

A torus is generated by rotating a circle of radius r about an axis
line in the plane of the circle and at a distance R > r from the circle
center. For the sake of simplicity, we may assume that the z-axis
is the rotation axis and the circle of radius r is contained in the
yz-plane as follows:

(0,R+ r cosφ,r sinφ),

for 0≤ φ≤ 2π. The torus T (φ,θ) can be represented in parametric
form as

((R+ r cosφ)cosθ,(R+ r cosφ)sinθ,r sinφ),

for 0≤ φ,θ≤ 2π. The outward unit surface normal N(φ,θ) is given
in a simple form

(cosφcosθ,cosφsinθ,sinφ).

By restricting φ≤ φ≤ φ, a toroidal patch is generated by rotating a
circular arc around the z-axis.

The torus T in an arbitrary position and orientation can be ob-
tained by rotating and translating the standard torus T as follows:

u (R+ r cosφ)cosθ+v (R+ r cosφ)sinθ+n r sinφ+ t,

where [u v n] is a rotation matrix and t is a translation vector.

3.2. Binormal lines to the major circles

When two toroidal patches share a common binormal line, this line
is also a binormal line to the major circles of the two tori. The
first step to compute the minimum distance between two toroidal
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Figure 4: Coplanarity condition for three vectors (in blue).

patches is thus to compute the binormal lines to the major circles,
the maximum number of which is known to be 8.

Given two toroidal patches T1 and T2, we assume that the first
torus T1(φ1,θ1) is given in a standard form:

((R1 + r1 cosφ1)cosθ1,(R1 + r1 cosφ1)sinθ1,r1 sinφ1),

for φ1 ≤ φ1 ≤ φ1, and 0≤ θ1 ≤ 2π, and the second torus T2(φ2,θ2)
is given in a general form:

u (R2 + r2 cosφ2)cosθ2 +v (R2 + r2 cosφ2)sinθ2 +n r2 sinφ2 + t,

for φ2 ≤ φ2 ≤ φ2, and 0≤ θ2 ≤ 2π.

A binormal line connecting two points on the tori T1(φ1,θ1) and
T2(φ2,θ2) also passes through their major circles C1 and C2 at the
same parameter locations of θ1 and θ2:

C1(θ1) = (R1 cosθ1,R1 sinθ1,0), and

C2(θ2) = u R2 cosθ2 +v R2 sinθ2 + t.

Now the difference vector C2(θ2)−C1(θ1) (parallel to the bi-
normal line) is orthogonal to the circle C1, and consequently this
vector is parallel to the normal plane of C1 at C1(θ1) (which con-
tains the z-axis and the origin 0 as shown in Figure 4). This means
that three vectors C1(θ1), C2(θ2)−C1(θ1), and e3 are coplanar,
which implies that three vectors C1(θ1), C2(θ2), and e3 are also
coplanar. (Note that C1(θ1) and C2(θ2) denote the difference vec-
tors: Ci(θi)−0, i = 1,2.) In Appendix A, this coplanarity condition
is converted to a multivariate polynomial equation in four variables
αi = cosθi and βi = sinθi, i = 1,2. Switching the roles of T1 and T2
and interpreting the coplanarity condition in the local coordinates
of T2, we can derive a similar equation in αi,βi. Together with two
additional constraints: α

2
i +β

2
i = 1, the coplanarity conditions can

be reduced to one univariate polynomial equation of degree 8. Ap-
pendix A presents an elementary construction for all these details.
Figure 5 shows an example of two circles with 8 binormal lines.

3.3. Directions for binormal lines

We consider how to accelerate the search for binormal lines by re-
stricting their directions. Figure 6 shows two toroidal patches T1 (in
red) and T2 (in blue) and the Gauss maps of T1 and−T2 on the unit
sphere S2 (shown as a wireframe). Note that we take the reversed

Figure 5: Eight binormal lines to two circles in space.

Figure 6: Areas of toroidal patches that may admit binormal lines.

normal directions of T2 by computing the Gauss map of −T2. This
is because the outward normals of T1 and T2 are the opposite at
their nearest points p ∈ T1 and q ∈ T2.

When the two Gauss maps of T1 and−T2 have no overlap on S2,
the two patches T1 and T2 admit no binormal line in their surface
interiors. Otherwise, they have a non-empty overlap G⊂ S2 (in yel-
low on the unit sphere). Let T̂1 and −T̂2 denote the subpatches (in
yellow on T1 and T2), as the result of inverse mappings of G to T1
and −T2. The nearest points p ∈ T1 and q ∈ T2 can only be located
on the subpatches T̂1 and T̂2.

The subpatches T̂1 and T̂2 can be projected to arcs Ĉ1 and Ĉ2
on their respective major circles C1 and C2; they essentially bound
the ranges of θi, αi = cosθi, βi = sinθi, (i = 1,2). In the restricted
ranges, we solve the polynomial equation of degree 8 very effi-
ciently, using a recent technique of [Machchhar and Elber (2016)]
that can compute the real roots of univariate polynomials about 10
times faster than other conventional methods.

4. Biarc Trees and Priority Queue

4.1. Biarc trees

We assume that each solid of revolution is generated by rotating
a planar profile curve C(t) = (0,y(t),z(t)) (in the positive yz-half-
plane with y ≥ 0) around the z-axis. The profile curve is further
segmented into monotone convex/concave pieces by subdividing at
each of y- and z-extreme points (by solving y′(t) = 0 and z′(t) = 0)
and inflection points (by solving y′(t)z′′(t)− y′′(t)z′(t) = 0). Each

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

538



Son et al. / Minimum Distance Computation

monotone piece is then further segmented into curvature monotone
smaller pieces (called spiral curves) by solving κ

′(t) = 0, where
κ(t) is the curvature function of C(t).

The planar curve C(t) is then given as a connected sequence of
spirals, each of which can be bounded by an AABB (axis-aligned
bounding box). In the higher levels, the curve C(t) is represented
in an AABB tree, and the solid of revolution is then bounded by a
hierarchy of truncated cylinders.

Each spiral curve segment is stored in the leaf level of the AABB
tree. From each leaf node of the AABB tree, we build a biarc tree
by recursively subdividing the spiral curve at the mid parameter
until the approximation error is reduced within a given error bound
ε > 0 (see [Sir et al. (2006)]). In each node of the biarc tree, we
also store the line segment that best approximates the biarc for the
node. This line segment generates a truncated cone, which can ac-
celerate the minimum distance computation for internal nodes. (See
Algorithms 1 and 2.)

The biarc approximation error can be estimated very efficiently
using the thickness of bounding volumes for spirals. [Kumosenko
(2013)] developed a tight bounding volume for spiral, bilens, whose
boundary is composed of two biarcs, each interpolating both the
two endpoints and the two end tangent directions of a spiral curve
segment. In this paper, we employ the bilens for an efficient and
tight bounding of the biarc approximation error.

Algorithm 1: BVH building algorithm for a Spiral
Result: BVH for a spiral
input: Precision ε > 0
Approximate with a biarc;
Approximate with a line segment;
Build toroidal patches by rotating biarc;
Build conical patch by rotating line segment;
if Biarc approximation error < ε then

Set leaf flag;
else

Subdivide spiral into two pieces at the mid parameter;
Call this routine recursively for each subdivided piece;
Set child nodes;

end

4.2. Priority queue and lower/upper bounds

The conventional BVH-based algorithms for minimum distance
computation follow the same algorithmic flow as originally intro-
duced by [Larsen et al. 1999], where certain valid pairs of BVH
nodes are maintained in a priority queue. The priority of each pair is
set to the minimum distance between the bounding volumes in the
BVH nodes of the pair. The priority queue is initialized with a sin-
gle element – the pair of BVH root nodes. The algorithm maintains
a lower bound d and an upper bound d for the minimum distance
d, and the priority queue keeps only the pairs with their distances
being values within the two bounds. Iteratively updating the prior-
ity queue and the two bounds, the algorithm reduces the difference
d− d within a given tolerance. The minimum distance is then set
to the average d = (d +d)/2.

We also follow the same procedure. Nevertheless, due to the spe-
cial geometric structure of our toroidal bounding volumes, there are
slight differences in computing the two bounds: d and d. [Larsen
et al. 1999] takes the upper bound as d = min{‖pi−q j‖}, where
pi’s and q j’s are some sampling points from each of the two solids.
On the other hand, we take an upper bound d = min{‖p̂i− q̂ j‖+
εi + ε j}, where p̂i and q̂ j are the nearest points on two toroidal
patches under consideration for the pair of BVH nodes and εi and
ε j are their approximation error bounds. Because of the special
structure of our biarc approximation, which guarantees two-sided
Hausdorff distance bounding, there are a pair of points pi and q j on
the original solids, where ‖pi− p̂i‖ < εi and ‖q̂ j−q j‖ < ε j. This
implies that ‖pi−q j‖< ‖p̂i− q̂ j‖+εi +ε j . There is a slight over-
estimation in our upper bound d. But this approach makes the algo-
rithm efficient by skipping the sampling step on the original bound-
ary surfaces. Moreover, we compute only the distance ‖p̂i− q̂ j‖,
not the points p̂i, q̂ j,pi,q j. (See Algorithm 2.)

Algorithm 2: BVH algorithm for distance computation
Result: Minimum distance
input : BVH A, B
output: Upper Bound
Upper Bound =∞;
Insert (Root A, Root B) into priority queue Q;
while Q is not empty do

Pop (Node A, Node B) from Q;
if Node A == leaf & Node B == leaf then

d = Distance between toroidal patches;
ub = d + εA + εB;
if ub < Upper Bound then

Upper Bound = ub;
end

else
d = Distance between conical/cylinder patches;
lb = d− εA− εB;
if lb < Upper Bound then

Insert pairs of children into Q with lb;
end

end
end

In a similar way, we take the lower bound: d = min{‖p̂i− q̂ j‖−
εi−ε j}, where the minimum is taken for all pairs of BVH nodes in
the priority queue. In fact, the minimum is stored in the top element
of the priority queue, i.e., the pair of BVH nodes with the highest
priority. Note that the priority is set to the minimum distance be-
tween the bounding volumes for the BVH nodes, which is the same
as ‖p̂i− q̂ j‖− εi− ε j. The rest of the algorithm is essentially the
same as that of [Larsen et al. 1999].

The distance computation for toroidal patches is more expensive
than for cylindrical or conical patches. When dealing with BVH
internal nodes, we may replace the toroidal patches by cylindrical
or conical patches to speed up the algorithm. The main disadvan-
tage of these simple patches is in their lower approximation order
to the original surface, which results in a higher chance of unnec-
essarily comparing many redundant pairs of nodes. Nevertheless,
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for the pairs of BVH nodes around the top levels, comparison with
these simple patches often very efficiently discards the majority of
redundant pairs of BVH nodes.

5. Experimental Results

We have implemented our algorithm in C++ on an Intel Core i7-
6700 3.4GHz PC with a 16 GB main memory. To demonstrate
the effectiveness of our approach, we have tested our algorithm on
five static solids of revolution (Figure 7) and one deformable solid
of revolution (Figure 10). For each pair of solid models (Mi,M j),
(i ≤ j), we computed the minimum distance d(Mi,M j). By inter-
polating the profile curves for the five static solids of revolution,
starting from the pawn model in the upper left corner of Figure 7
and going around in the counter-clockwise order, we have also gen-
erated a deformable solid model of revolution, denoted as Mt , some
snapshots of which are shown in Figure 10.

Figure 7: Five static solids of revolution used for the experiments.

For each model Mi, we have computed the minimum distance
d(Mi,Mt j ), for every sample of Mt j , taken from a total of 1000 dis-
crete frames of Mt . Figure 8 shows the average computation time
for the 1000 sample pairs (Mi,Mt j ), ( j = 1, · · · ,1000). Compared
with the minimum distance computation, the BVH construction is
a far more time-consuming process, which is usually done in a pre-
processing step. For the majority of real-time applications for de-
formable models, dynamic reconstruction of their BVH structures
is the main bottleneck in the overall computation. Based on an ef-
ficient G1-biarc approximation for the profile curves, our approach
outperforms other methods in this respect. Figure 9 shows the con-
struction time for the BVH of each solid model, where the last one
is the average time for building each of the 1000 BVHs for Mt j .
This result means that, even with a high precision ε = 10−5, we
can support real-time interference tests for many applications han-
dling up to several deformable solid models of revolution, which is
known to be an extremely difficult computational task in conven-
tional methods.

For static models, we can make some quantitative compar-
isons of our approach against conventional methods, represented
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Figure 8: Average computation time (in ms) for the minimum dis-
tance with a deformable model Mt .
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Figure 9: BVH construction time (in ms).

by the algorithm of [Larsen et al. 1999] using the PQP library
(http://gamma.cs.unc.edu/SSV/). In Tables 1–2, the columns ‘PQP’
give the results from the experiments using the PQP library, and the
columns ‘Ours’ report the test results from the algorithm proposed
in this paper.

Table 1 compares the storage sizes of the two different ap-
proaches, where the biarc-based representation takes considerably
less memory (often more than 1000 times) than the conventional
methods. Table 2 shows a similar comparison of the numbers of
BVH nodes. The biarc-approximation has a cubic convergence rate,
which means that each time we subdivide a curve into two, the er-
ror will be reduced 8(= 23) times. On the other hand, the sphere-
swept bounding volumes of [Larsen et al. 1999] and the oriented
bounding box of [Gottschalk et al. (1996)] have only quadratic con-
vergence. The higher-order convergence to a univariate curve (i.e.,
the profile curve), not directly to a bivariate surface, is the main
source for the outperformance of our approach in the data reduc-
tion. (See [Lee et al. (2015b)] for comparisons among bounding
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Figure 10: Snapshots from a deformable solid of revolution.

Table 1: Comparison of BVH data sizes (in MB).

Precision 10−3 10−4 10−5

Models PQP Ours PQP Ours PQP Ours
pawn 62 0.081 550 0.203 1437 0.527
cup 59 0.096 657 0.199 1294 0.474

bottle 66 0.099 593 0.191 2003 0.506
table 62 0.079 674 0.181 1395 0.415

lightmil 91 0.187 982 0.347 590 0.776

Table 2: Comparison of BVH node numbers.

Precision 10−3 10−4 10−5

Models PQP Ours PQP Ours PQP Ours
pawn 287K 103 2.5M 211 26.5M 479
cup 272K 119 3.0M 199 25.9M 399

bottle 308K 123 2.7M 187 29.2M 411
table 289K 95 3.1M 179 26.3M 335

lightmil 424K 247 4.5M 375 42.5M 687

volumes with cubic convergence to planar curves [Barton and El-
ber (2011), Kumosenko (2013)].)

For each pair of static solid models in Figure 7, we have also
computed the minimum distances between the two models at
50,000 different frames taken from their continuous motion. Fig-
ure 11 shows some snapshots of the test for the pairs of (table,
lightmil) and (pawn, bottle) models. Figure 12 reports a total of 15
test results thus computed. The height of each vertical bar gives
the average computation time for the 50,000 distances for each
pair. Depending on the applications of minimum distance compu-

tation, we need different levels of precision in the model represen-
tation and accuracy in the computed result. Three different values
of ε = 10−3,10−4,10−5 are used in these tests. The difference in
computation time is also partially affected by the relative sizes (and
the heights) of the BVH structures as shown in Tables 1–2.

6. Conclusions

In this paper, we have presented an efficient algorithm for comput-
ing the minimum distance between two solids of revolution, which
can support real-time applications for several deformable models
at the same time by generating their BVH structures on the fly.
The efficiency improvement is not only in computation time (often
10–100 times faster than other conventional methods) but also in
data size (often 1000 times smaller). The idea of our approach is
mainly based on the geometric simplicity of circles and the high-
order (cubic) convergence of G1-biarc approximation. Neverthe-
less, the geometric coverage of the current result is still limited to
solid models of revolution. In future work, we plan to extend the
coverage to more general types of freeform geometric models and
to other efficient geometric algorithms and spatial data structures
for distance-related problems.
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Figure 11: Snapshots from the test for the pairs of table-lightmil and pawn-bottle models.
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Figure 12: Comparison of the relative performance of our algorithm against the approach of [Larsen et al. 1999].
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Appendix A: Derivation of Equations for Binormal Conditions

The coplanarity condition for three vectors: C1(θ1), C2(θ2), and e3,
implies that their determinant must vanish:

|C1(θ1) C2(θ2) e3|

=

∣∣∣∣∣∣
R1 cosθ1 R2(ux cosθ2 + vx sinθ2)+ tx 0
R1 sinθ1 R2(uy cosθ2 + vy sinθ2)+ ty 0

0 R2(uz cosθ2 + vz sinθ2)+ tz 1

∣∣∣∣∣∣
=

∣∣∣∣ R1 cosθ1 R2(ux cosθ2 + vx sinθ2)+ tx
R1 sinθ1 R2(uy cosθ2 + vy sinθ2)+ ty

∣∣∣∣= 0,

where u = (ux,uy,uz) and similarly for v and t. This equation can
be simplified as follows

[R2(uyα2 + vyβ2)+ ty]α1− [R2(uxα2 + vxβ2)+ tx]β1 = 0,

where αi = cosθi and βi = sinθi, for i = 1,2.

Switching the roles of T1 and T2, in the local coordinates of T2,
the major circle of T1 can be represented as follows:

Ĉ1(θ1) = û R1 cosθ1 + v̂ R1 sinθ1 + t̂,

which produces the following equation

[R1(ûyα1 + v̂yβ1)+ t̂y]α2− [R1(ûxα1 + v̂xβ1)+ t̂x]β2 = 0,

and equivalently

R1(ûyα2− ûxβ2)α1 +R1(v̂yα2− v̂xβ2)β1 = t̂xβ2− t̂yα2.
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Summarizing the above in a matrix equation,[
R2(uyα2 + vyβ2)+ ty −[R2(uxα2 + vxβ2)+ tx]

R1(ûyα2− ûxβ2) R1(v̂yα2− v̂xβ2)

][
α1
β1

]
=

[
0

t̂xβ2− t̂yα2

]
By Cramer’s rule, we have

α1 =
[t̂xβ2− t̂yα2][R2(uxα2 + vxβ2)+ tx]

Q(α2,β2)

β1 =
[t̂xβ2− t̂yα2][R2(uyα2 + vyβ2)+ ty]

Q(α2,β2)
,

where Q(α2,β2) is a quadratic polynomial in α2 and β2:

Q(α2,β2) = R1[R2(uyα2 + vyβ2)+ ty](v̂yα2− v̂xβ2)

+ R1[R2(uxα2 + vxβ2)+ tx](ûyα2− ûxβ2).

The condition α
2
1 + β

2
1 = 1 can be transformed to the following

quartic polynomial equations P(α2,β2) = 0 in α2 and β2:

P(α2,β2) = [t̂xβ2− t̂yα2]
2[R2(uxα2 + vxβ2)+ tx]2

+ [t̂xβ2− t̂yα2]
2[R2(uyα2 + vyβ2)+ ty]2

− Q(α2,β2)
2.

From the two simultaneous equations P(α2,β2) = 0 and α
2
2 +β

2
2 =

1, by eliminating β2, we get a degree 8 polynomial equation in α2.
This shows that there can be at most 8 binormal lines to two circles
in a three-dimensional space.

We can show the elimination procedure more explicitly. From

the condition α
2
2 +β

2
2 = 1, we have β2 =±

√
1−α2

2. The bivariate
polynomial equation P(α2,β2) = 0 can be reduced to a univariate
non-polynomial equation in α2, using one square root expression:

P(α2,±
√

1−α2
2) = A(α2)±B(α2)

√
1−α2

2 = 0,

where A(α2) and B(α2) are univariate polynomials of degree 4 and
3, respectively. The above equation can be converted to a univariate
polynomial equation of degree 8 in α2:

A(α2)
2− (1−α

2
2)B(α2)

2 = 0.
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