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Figure 1: Our interactive tool allows the user to design invertible paradoxic 6R loops, which are free of self-collisions.

Abstract
We present an interactive tool compatible with existing software (Rhino/Grasshopper) to design ring structures with a paradoxic
mobility, which are self-collision-free over the complete motion cycle. Our computational approach allows non-expert users
to create these invertible paradoxic loops with six rotational joints by providing several interactions that facilitate design
exploration. In a first step, a rational cubic motion is shaped either by means of a four pose interpolation procedure or a motion
evolution algorithm. By using the representation of spatial displacements in terms of dual-quaternions, the associated motion
polynomial of the resulting motion can be factored in several ways, each corresponding to a composition of three rotations. By
combining two suitable factorizations, an arrangement of six rotary axes is achieved, which possesses a 1-parametric mobility.
In the next step, these axes are connected by links in a way that the resulting linkage is collision-free over the complete motion
cycle. Based on an algorithmic solution for this problem, collision-free design spaces of the individual links are generated in a
post-processing step. The functionality of the developed design tool is demonstrated in the context of an architectural and artistic
application studied in a master-level studio course. Two results of the performed design experiments were fabricated by the use
of computer-controlled machines to achieve the necessary accuracy ensuring the mobility of the models.

CCS Concepts
• Theory of computation → Computational geometry; Algorithmic mechanism design; • Applied computing → Computer-
aided design; • Computing methodologies → Motion processing;

1. Introduction

This research project was inspired by the invertible cube (Fig. 2) of
Paul Schatz (1898–1979) [Sch13], who was an artist, inventor, and
technician trying to bridge the gap between art and natural sciences.

† Joint first author
‡ Corresponding author

This so-called Schatz linkage consists of six parts of a cube, which
are connected by rotary joints (R-joints) to form a closed chain. Its
rhythmic and aesthetic mobility was the basis upon which Schatz
built his later work, leading also to practical applications such as the
oloid-agitator or the mixing device Turbula.

From the kinematic point of view, the Schatz linkage is a closed
serial 6R loop. In general, such a ring structure possesses a fi-
nite number of poses (at most 16). Only if the linkage geometry

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13928

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8734-4396
https://orcid.org/0000-0001-8639-9064
https://orcid.org/0000-0002-1559-0993
https://orcid.org/0000-0001-5899-5643


Z. Li & G. Nawratil & F. Rist & M. Hensel / Invertible Paradoxic Loop Structures for Transformable Design

−→a 0
−→a 1

−→a 2

−→a 3

a

b

Figure 2: (left) Schatz linkage (right) Bennett mechanism: The
common normals of adjacent (oriented) rotation axes −→a i and −→a i+1
(for i = 0, . . . ,3 mod 4) form a closed polyline, where opposite sides
have equal lengths a and b. Moreover for θi := ∠(−→a i,

−→a i+1), the
following three conditions have to hold; (1) θ0 = θ2, (2) θ1 = θ3
and (3) asinθ1 = bsinθ0.

meets certain constraints does the structure become mobile, and
the resulting mechanism as well as its associated motion is called
paradoxic. The first 6R loop with a paradoxic mobility dates back
to Sarrus [Sar53], which has many applications (e.g. retractable
mechanism of awnings). Up to now, numerous examples have been
found [Li15,CY12,Die95] but the classification of these 6R linkages
is still open.

Transformable Design While the geometry of mechanisms has so
far mainly been used for ensuring the desired functionality of that
mechanism (e.g. achieving special paths for certain points on the
end-effector, see [MS11]), the appearance of that mechanism as
it changes over time has not been a topic of interest, apart from a
few exceptions in the context of kinetic art, e.g. the well-known
expanding structures of Chuck Hoberman [HAI90]. Since his pio-
neering work on transformable design, the interest and developments
in this topic have increased in recent decades due to new applica-
tions in engineering (e.g. tensegrity bridges [PTV∗17]), robotics
(e.g. deployable mechanisms [ZSC16]), material sciences (e.g. re-
configurable metamaterials [OWHB17]), medicine (e.g. auxetic
stents [KLPCP18]), etc. A further creative discipline – beside ki-
netic art – taking the aesthetic transformation of structures into
account, is architecture; especially of interest are adaptive facade
applications mostly under the functional aspects of shading/lighting
[PEVW15, Mar16, BLZM16]. It is beneficial to base those shading
systems on mechanisms with a 1-parametric mobility (shading in
dependence on the time t of day), as their control requires only one
active joint. An additional nice feature of the 6R loops treated in
the paper, beside the fact that R-joints are cheap to produce and
easy to maintain, is that the rotation angle of each R-joint is strictly
increasing during the motion, thus the single motor can be located
in any of the six axes (preferably in one of the two axes belonging
to the resting link). This has a positive impact on the cost, weight,
and design of the shading elements.

Goal & Overview The goal of this paper is to open a new design
space for paradoxic closed 6R chains from the perspective of trans-
formable design, focusing on architectural and artistic applications.
We present an interactive design tool compatible with existing soft-
ware that allows non-expert users to create these invertible loops,
which are self-collision-free over the complete motion cycle. It
should be pointed out that our plug-in does not generate these trans-

Motion Design
(Section 4)

−→

Motion Factorization
(Section 3)

−→

Linkage Design
(Section 5)

Figure 3: The design tool’s workflow can roughly be divided into
three steps. A more detailed flowchart is given later on in Fig. 4.

formable structures fully automatically, but it provides several user
interactions that facilitate design exploration. This allows users free-
dom to tap into their creative potential to make decisions that are
hard to formalize and quantify.

Note that our study goes along with the recently increasing in-
terest in the computational design of physical mechanical models
indicated by the publications [ZSC16, PTV∗17, CTN∗13, TCG∗14,
MZB∗17, YCC17, YZC18, ZAC∗17, NBA19, GJG16].

The paper is structured as follows: After a review of related work
in Sec. 2, we explain the kinematic concepts the paper is based on in
Sec. 3. The aspects of motion and linkage design are studied in Sec.
4 and Sec. 5, respectively. The article is closed by results and their
discussion in Sec. 6. Note that the structure of the paper does not
follow the rough workflow of the presented tool given in Fig. 3 for
reasons of readability and clarity. A first insight into the complete
design tool workflow can be gained by the detailed flowchart given
in Fig. 4, whose individual steps will be explained in the subsequent
sections.

2. Related Work and Contributions

Transformable Structures in Architecture/Design/Art Accord-
ing to Tachi [Tac10], transformable freeform surfaces can be ap-
proached by foldable rigid origami, which goes beyond regular
folding patterns (such as Miura-ori used for e.g. solar panels). More-
over, the folding motion and its actuation is also part of the design
problem [TH17]. All these tasks are much more challenging for
curved origami [RHSH18, KMM17], possessing great design po-
tential, as well as Kirchhoff-Plateau surfaces, which are planar rod
networks embedded in pre-stretched fabric that deploy into com-
plex 3-dimensional shapes [POT17]. Another interesting approach
towards the topic of transformable surfaces is programmable auxet-
ics [KLPCP18], which can snap between multiple stable configura-
tions [SLRP18]. In this context also HYBRIDa’s Hypermembrane
DHUB [FT13] should be noted, which is a shape-adaptable self-
supporting structure able to stand in different equilibrium positions,
where a bendable grid structure covered by elastic materials is flexed
by a few prismatic actuators. Recently Panetta et al. [PKLI∗19] stud-
ied similar structures having the property that the underlying grid
possesses a flat configuration in the relaxed state, which can be
assembled from linear beam elements coupled through rotational
joints. Barton et al. [BSK∗13] dealt with transformable structures
composed of a series of flexible 6-snakes. Each snake of smoothly
joined circular arcs can be seen as a 7R closed linkage with copla-
nar adjacent neighboring R-joints (with the exception of the two
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Figure 4: A detailed flowchart of the design tool’s workflow.

R-joints fixed to the ground). Note that corresponding circular arcs
of neighboring snakes cannot be connected with rigid surface ele-
ments (but e.g. with elastic membranes), as their relative position
changes over the time of transformation. Textile/fabric foldings
were already used by the architect Perez-Pinero for covering the
roof of his famous movable theater from 1961 [Esc13], which was
the starting point for the development of deployable bar-structures
based on scissor-like elements furthered by e.g. Calatrava [Cal81]
and Hoberman [HAI90]. The cutting edge in this field is represented
in [ZSC16]. Two special types of deployable ring structures (regular-
polygonal and doubly symmetric rings) with more than six R-joints
were studied by Viquerat and Guest [VG13]. The collision-free
unfolding of planar closed linkages can be realized by an energy-
driven approach [CDIO04], which can also be used for a chain-based
physical transformation between 3D models [YYL∗19].

Further examples of transformable loop structures are as fol-
lows: Schatz linkages were proposed for the design of pop-up
stores [Gai15] as well as facade applications [sch04,EWMH14]. The
invertible cube can also be seen as a special dimensioned kaleido-
cycle, which are closed chains of hinged tetrahedra [SW77]. These
invertible rings trace back to the graphic designer Walker [Wal67],
and they are still a topic of recent research [KKP19]. The mathemat-
ical loop with the most impact in the art/design community is the
Möbius strip [Pic06], whose kaleidocyclic realization was presented
recently [SF19]. Furthermore, we want to point out Len Lye’s ki-
netic work of art that incorporates winding loops of steel generating
organic shapes [LLF80]. Clearly our project is also related to the

field of linkage based kinetic sculptures containing closed kinematic
loops. In this context, we only want to name Theo Jansen [TJS90],
who is probably the best known contemporary representative due to
his “Strandbeest”.

Paradoxic Loops A closed nR chain consists of n rigid bodies
(links) as well as R-joints that connect the links cyclically together.
According to the formula of Chebychev-Grübler-Kutzbach [MS11]
such a mechanical loop has mobility n− 6. Therefore mobile nR
loops with n < 7 are called paradoxic. Mobile 3R loops do not exist,
and the synthesis classification of paradoxic 4R loops has only one
spatial linkage, which is the so-called Bennett mechanism [Ben03]
explained in (Fig. 2). The Goldberg linkage [Kar98] is the only
paradoxic spatial 5R linkage, which can be constructed by merging
two Bennett mechanisms [Gol43].

Since the previously mentioned linkage of Sarrus [Sar53], numer-
ous paradoxic 6R loops were discovered [CY12, Die95, Li15] but a
full listing is still to be found. Among all known mobile 6R linkages,
a large number results from combining Bennett or Goldberg linkages.
In contrast to this traditional way of synthesis [CY12,Die95], we use
the completely different method of motion factorization. Roughly
speaking this procedure introduced by Hegedüs et al. [HSS13a] con-
sists of three steps; (i) starting with a rational motion, (ii) factoring it
into two different ways, which correspond to two open serial chains,
and (iii) combining them to a closed linkage. A lot of already known
paradoxic loops can be constructed in this way [CY12, Die95], like
the Bennett mechanism (rational quadratic motion [BSH05]) or the
type III Bricard linkage [HSS13a] ( rational cubic motion).

Note that a variation of this method can be used to synthesize a
mechanism which can follow any given rational curve in 3-space
[LSS18], where those with a straight line trajectory have been stud-
ied in more detail [LSS16b]. Moreover, Rad and Schröcker [RS18]
combined the motion factorization approach with curve evolution
methods to generate paradoxic 6R loops that approximate a set of
given target poses.

Contributions As this paper presents for the first time the method
of motion factorization to the computer graphics community, great
effort is put in the preparation of the underlying and related kine-
matic and mathematical concepts. Besides the development of the
interactive tool compatible with Rhino/Grasshopper to design invert-
ible paradoxic 6R loops in the context of architectural and artistic
applications, the paper also contains the following scientific contri-
butions:

• Until now there are no results concerning the existence of spa-
tial paradoxic loops, which are collision-free over the complete
motion circle. Our obtained statistical results (Sec. 6.3) imply
the conjecture that a general rational cubic motion can always be
realized by a collision-free 6R loop.
• We presented a novel method for generating link-design spaces

(Sec. 5.2) which can also be used for solving the loop grounding
problem.
• The several improvements/modifications of the evolution algo-

rithm of Rad and Schröcker [RS18] (Sec. 4.3) were driven by
our interest in shaping the complete motion and not only a part
of it. Therefore the evolution process is split up into three stages
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which differ in the selection strategy of the guiding poses, the
parametrization of the linear motion polynomials and the weight-
ing of the orientation and translation component of the used object
dependent metric.
• Further minor scientific contributions are the (a) Bennett flip

procedure (Appendix B) to obain another factorization instead
of rerunning the full factorization algorithm of [HSS13a], and
numerical implementation of the algorithm of [HSS13a] in C#.
(b) motion selection criteria of the four pose interpolation as well
as its interactive (space mouse) implementation (Sec. 4.2) and (c)
indication of proximity to singular rational cubic motions (Sec.
4.4).

3. Kinematic Concepts

Dual quaternions introduced by Clifford [Cli71] are well-known
to the computer graphic community in the context of skinning
(e.g. [KCvO08, LH16]). A further application mentioned by Han-
son [Han12] is the motion interpolation problem arising in computer
animation (either for the movement of objects or the motion of the
camera) for which sophisticated algorithms [GR94, PG05, Naw19]
were developed by kinematicians in the context of mechanism sci-
ence. In the latter field, dual quaternions are well established due
to the fundamental works of Study [Stu91] and Kotelnikov [Kot95]
and the persistent reanimation of this powerful tool by Diment-
berg [Dim48], Blaschke [Bla60] and Yang [Yan63].

We proceed with a brief introduction into the dual-quaternion
representation of spatial displacements (Sec. 3.1), which is the basis
of the motion factorization method (Sec. 3.2) used for the synthesis
of transformable 6R loops.

3.1. Dual-Quaternion Representation

Notation Convention We denote the skew field of quaternions by
H and its elements by

Q= q0 +q1i+q2j+q3k with q0, . . . ,q3 ∈ R, (1)

where i, j,k are the usual quaternion units. The quaternion Q can be
split into a scalar part q0 and a vector part q= q1i+q2j+q3k, thus
we can write Q= q0 +q. The quaternion conjugation is denoted by
Q̃= q0−q. If the quaternion product QQ̃= 1 holds, Q is called a
unit-quaternion.

Moreover we need the ring D of dual numbers q = p+ εd where
the primal part p as well as the dual part d are reals. The so-called
dual-unit ε 6= 0 has the property ε

2 = 0. Every analytic function f
can be extended to dual arguments as follows:

f (q) := f (p)+ εd f ′(p). (2)

The ring of dual quaternions is denoted by DH and its elements
by Q = P+ εD with P,D ∈ H. Its conjugation is given by Q̃ =
P̃+ εD̃.

Spatial Displacement Q=P+ εD is a so-called unit dual quater-
nion if QQ̃= 1, which is the case iff P is a unit-quaternion and the
so-called Study condition

PD̃+DP̃= 0 (3)

holds. It is well known (e.g. [BR79]) that every unit dual quaternion
represents a spatial displacement (cf. Appendix A) and that it can
be rewritten in the form:

cos α

2 + sin α

2 a with a ã= 1, (4)

where the trigonometric functions of the so-called dual angle α are
computed according to Eq. (2). This is a very nice representation as
it provides direct access to the geometry of the displacement in the
sense of Chasles’ theorem stating that any two poses of a moving
system in 3-space can be transformed into each other by a screw
displacement: The primal part of a is a unit-vector indicating the
direction of the screw axis −→a (an oriented line), and the dual part
its moment vector. The angle of rotation about −→a is given by the
primal part of α, and the translation distance along −→a by the dual
part of α. The latter vanishes for the case of a pure rotation where α

can be replaced by α in Eq. (4).

Kinematic Mapping The set of unit dual quaternions Q consti-
tuting the dual unit-sphere in D4, yields a double cover of the Eu-
clidean motion group SE(3), which can be avoided by identifying
their antipodal points ±Q by means of homogeneous coordinates
(p0 : p1 : p2 : p3 : d0 : d1 : d2 : d3), also known as Study parameters.
Then there is a bijection ψ between SE(3) and all points of RP7

located on the Study quadric Ψ given by Eq. (3) without including
the 3-dimensional generator space G: p0 = p1 = p2 = p3 = 0.

Points of the ambient space can be projected onto the Study
quadric with a mapping studied in [PSH18, SWC18, Naw19]. This
projection ϕ: RP7 \G→ Ψ \G maps a dual quaternion P+ εD

with PP̃= 1 to the following unit dual quaternion:

P+ ε

[
D− 1

2

(
DP̃+PD̃

)
P
]
. (5)

3.2. Factorization of Rational Motions

In the following, we study rational motions of the end-effector and
their different factorizations, where each linear term of a factor-
ization corresponds to a transformation applied by one link of the
associated serial chain. Finally, we discuss for the cubic case the
possible combinations of the resulting open 3R chains for generating
a paradoxic 6R loop.

Rational Motions Rational motions [Rös98, JW02] are defined by
the property that the trajectory of every point of the moving space is
a rational curve.

According to Jüttler [Jüt93] every rational motion can be rep-
resented by a rational curve on the Study quadric Ψ. As a conse-
quence (Sec. 3.1) every rational motion corresponds to a polynomial
dual quaternion M(t) ∈ DH(t) with a (nonzero) norm polynomial
M(t)M̃(t) ∈ R[t], where the leading coefficient is invertible (other-
wise, one needs a reparametrization) and it is on the Study quadric
Ψ by [LSS16a]. Such a dual quaternion polynomial M(t) is called
a motion polynomial, where the variable t can be interpreted as time.
Dividing the motion polynomial by the leading coefficient yields
a monic motion polynomial whose motion differs from the initial
motion only by a fixed transformation (the leading coefficient). For
a monic motion polynomial, the leading coefficient corresponds to
the identity transformation where t =∞. Therefore, it is enough to
consider the monic case for simplicity.
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Motion Factorization According to Hegedüs et al. [HSS13a] a
generic monic motion polynomial M(t) of degree n admits at most
n! factorizations of the shape

(t−A0) . . .(t−An−1) with Ai = ai +ai and ai ∈ R (6)

for i = 0, . . . ,n−1, where the term “generic” means that the primal
part of M(t) has no real polynomial factors. As the ith factor gives a
rotation about the axis −→a i, where ai corresponds to an angular shift
(Eq. (4)), each factorization describes a decomposition into serial
rotations, which can be realized by an open serial nR-chain. Due
to Eq. (6) and the parameter t ∈ (−∞,∞), the relative motion of
two links can reach a full turn. Moreover the angle of this relative
rotation as a function of the time t is strictly increasing, which means
that a link cannot stop or change its rotational direction.

The factorization (6) can be computed by an extended version
of the Euclidean algorithm [HSS13a]. The flow of this recursive
algorithm is as follows: a real quadratic factor of the norm polyno-
mial is taken to divide the motion polynomial, the remainder gives a
linear dual quaternion polynomial whose right root implies a right
root of the motion polynomial regarding the chosen real quadratic
factor. The details of this algorithm are explained in Hegedüs et
al. [HSS13a] but a few comments regarding our C# implementation
for Rhino/Grasshopper are listed:

• The MathNet library is used for the numeric univariate polynomial
remainder and division calculation.
• Real quadratic factors of the monic norm polynomial are com-

puted indirectly; all complex solutions are calculated numerically
and then a real quadratic factor can be obtained from two very
close complex solutions.
• The implementation of the dual quaternion computation is based

on the quaternion computation in Rhino/Grasshopper.

Quadratic Motion and the Bennett Mechanism It is well-known
[Ham11] that the motion of the Bennett mechanism (Fig. 2) cor-
responds to a conic section of the Study quadric Ψ; thus it can be
synthesized by three prescribed poses [BSH05]. As a consequence,
this quadratic motion has two different factorizations which give us
the two 2R-chains yielding the Bennett mechanism [HSS13a]. For
instance, the product (t− i)(t−2j− εi) can also be factorized as

(t− 8
5 i− 9

25 εi− 6
5 j+ 12

25 εj)(t + 3
5 i− 16

25 εi− 4
5 j− 12

25 εj).

Cubic Motion and 6R Loops In the remainder of the paper, we
focus on rational cubic motions as they imply paradoxic 6R loops.
As there exist 3! factorizations, the 6R loop is not uniquely deter-
mined. Combining two factorizations produces a 6R loop if the first
and last factors are not the same; i.e.

(t−A0)(t−A1)(t−A2) = (t−A′0)(t−A′1)(t−A′2), (7)

with A0 6= A′0 and A2 6= A′2. Therefore each factorization can only
be combined with three (out of five) factorizations to form a 6R
loop. In total, there are 9 different 6R loops (Fig. 5) belonging to
two different types: angle-symmetric 6R loops (third type in Li et
al. [LS13]) and double Bennett 6R loops [Die95].

Note that we only need to calculate one factorization of a cubic
motion, as the (at most) other five factorizations can be obtained by
a Bennett-flip procedure [LSS18] due to Theorem 1 of Appendix

Figure 5: (left) Schematic arrangement of the six serial chains
(colored in red, green, blue, yellow, purple, cyan): The vertices of
the graph correspond to rotation axes and the edges to links. The
gray quads indicate that the involved four axes generate a Bennett
mechanism. Nine possible 6R loops can be generated by combining
two chains, which are not allowed to share a common rotation axis.
(right) Illustration of all the six serial chains for a concrete example.

B. For a cubic motion polynomial, all possible Bennett flips are
revealed in Fig. 5. For instance, after a Bennett flip, the red chain
becomes the green chain. A further flip changes the green chain to
the blue one which forms a double Bennett 6R linkage with the red
chain. One more flip and the blue chain becomes the yellow one
that forms an angle-symmetric 6R linkage with the red chain. In this
way, one can reduce computational costs as only 4 (double Bennett
6R loop) or 6 (angle-symmetric 6R loop) quaternion multiplications
have to be performed instead of 7 within the factorization algorithm.

4. Motion Design

In this section, we discuss two design possibilities of a rational cubic
motion, which is the input (Fig. 3) for the motion factorization (Sec.
3.2) and in series for the linkage design (Sec. 5). For four given
poses, a cubic motion interpolation (Sec. 4.2) can be performed. If
more than four poses are given, we have to find a cubic motion by
means of curve evolution (Sec. 4.1) approximating the given data
best in the sense of a metric discussed next.

4.1. Metric

It is well known [MSZ94] that there does not exist a (positive-
definite) metric on SE(3) that is invariant with respect to changes
of the fixed frame and the moving frame, respectively. Due to
Park [Par95], there is an approach to come up with a geometri-
cally meaningful distance function by considering the distance be-
tween two poses σ1 and σ2 of the same rigid body (e.g. a shading
element), which yields a so-called object dependent metric firstly
studied by Kazerounian and Rastegar [KR92]. Assuming uniform
mass distribution, their metric can be simplified to [PHR04]:

dist2 :=
1
6

6

∑
i=1
‖σ1(vi)−σ2(vi)‖2, (8)

where vi (i = 1, . . . ,6) are the six vertices of the object’s inertia
ellipsoid (centered on the barycenter). In some situations, we scale
this ellipsoid with a scaling factor in the interval ]1;∞[ or ]0;1[ in
order to give more weight on the orientation or translation compo-
nent, respectively. The inertia ellipsoid is illustrated in the plug-in
to enhance the user’s perception of the distance function.
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4.2. Four Pose Interpolation

In [HSS15], a framework of synthesizing cubic motions which
can visit four given poses was presented. Based on the kinematic
mapping ψ at the end of Sec. 3.1, its construction can easily be
explained geometrically. In the general case, the four points on
the Study quadric Ψ, which correspond to the given poses, span a
projective 3-space (otherwise no interpolating cubic motion exists)
intersecting Ψ along a ruled quadric Φ. For construction of the cubic,
we are aiming a second quadric Λ in this 3-space which has a ruling
with Φ in common as well as the four given poses. For each ruling,
there exists a bundle of such quadrics Λ, which intersect Φ along
the same cubic, thus there is a bijection between rulings and cubics.
For details of the parametrization of the resulting two families of
cubics (which is based on a standard interpolation method), we refer
to [HSS15].

Motion Selection In most applications, the visit order of the four
given poses is crucial. In [HSS15], it is also mentioned that within
each family, the visit order is the same. If this order is not as ex-
pected, one has to change the family or in the worst case the four
given poses. If the order is correct, the user can pick out a suitable
cubic according to the following exemplary criteria:

• Distance of the rotation axes associated with the end-link (axes
−→a 2 and −→a 3) and/or the base-link (axes −→a 0 and −→a 5) from some
user-defined locations.
• Length of the motion according to the above metric (alternatively,

one can also evaluate the length of an end-effector trajectory).
• Shape of the motion by adding further poses and picking the

cubic motion which is closest to these poses in the sense of the
metric (8). This criterion is of interest for generating an initial
guess for the motion evolution discussed in Sec. 4.3.

Clearly the user can also consider other criteria fitting bet-
ter for their task at hand, which can be formulated mathemati-
cally in terms of a cost function, and optimize them by using the
Rhino/Grasshopper tool Galapagos.

Our implementation also allows fixing only three input poses of
the interpolation and controlling the fourth pose interactively by
means of a space mouse. This approach can be very well integrated
into the designer/architect’s workflow.

4.3. Motion Evolution

Our goal is to find a rational rigid body motion (a rational curve on
the Study quadric Ψ) via a curve evolution procedure without taking
into account dynamical constraints [CAL17]. Curve evolution for
fitting a parametrized curve to a given set of points is an important
tool in geometric modeling and computer vision. A hybrid curve
fitting algorithm was developed by Aigner and Jüttler [AJ07] to
find an interpolation among a chosen family of planar curves for
approximating a given unorganized (without order) point cloud.
This so-called curve evolution procedure works as follows: Normal
velocities of the closest points to the given ones are used to guide
an iteration procedure for the parameters of the curve family. The
iteration direction of the parameters is obtained by a least-squares
solution and the associated step size is user-defined.

In [RS18, Rad18] this curve evolution procedure was adopted

T6

T5

T4

T3
T2

T1

T0 = 1

Ce
6

Ce
5

Ce
4 Ce

3 Ce
2

Ce
1

Figure 6: The target poses T0, . . . ,T6 and the guiding poses
Ce

0, . . . ,C
e
6 are illustrated via orthogonal frames. In addition, the

origin’s trajectory under the rational cubic motion Ce(t) is drawn.

for motion approximation of an ordered set of target poses. They
considered the family of cubic rational curves on the Study quadric
Ψ ∈ RP7 parametrized as a product of three linear motion polyno-
mials, where each is of the form:

t−x0 + x1i+ x2j+ x3k+
ε((x2x7− x3x6)i+(x3x5− x1x7)j+(x1x6− x2x5)k),

which is redundant as the set of pure rotations is a 5-dimensional
variety in RP7. Driven by our interest in shaping the complete
motion and not only a part of it as done in [RS18, Rad18], we
modified Rad and Schröcker’s algorithm by splitting up the evolution
process into three stages which differ in the selection strategy of the
guiding poses, the parametrization of the linear motion polynomials
and the weighting of the orientation and translation component of
the metric. In this context, the loop phenomenon may arise (Fig. 17),
which can also be handled by the given algorithm.

Evolution Algorithm In the first step, the user has to select one
target pose that is most important to be hit exactly. By a change of
the reference frame, we can assume without loss of generality that
this selected target pose equals the identity transform. Moreover,
we assume that our task necessitates an ordering of the m target
poses; which are denoted by T0 = 1,T1, . . . ,Tm−1 (Fig. 6). If the
visit order is unspecified, the problem simplifies, and the algorithm
given next can easily be cut down by the reader/user.

(1) Initial guess: If no good initial guess is known, we start with a
spherical motion parametrized by the cubic motion polynomial

C0(t) = (t− r0 + · · ·+ r3k)(t− r4 + · · ·+ r7k)(t− r8 + · · ·+ r11k),
(9)

where r0, . . . ,r11 are random real numbers. Further cubic motions
obtained during the evolution are denoted by Ce(t) with e ∈ N.

(2) Guiding poses: An important ingredient is the selection of the
so-called guiding poses Ce

i := Ce(ti) for i = 1, . . . ,m− 1 (Fig. 6),
which are used to evolve the motion iteratively to the corresponding
target poses. We apply one of the following two methods:

(a) Closest pose projection: We compute the guiding pose Ce
i as the

one closest to the target pose Ti in sense of the metric (8). This
corresponds to the initial approach of [AJ07], which was also
used in [RS18, Rad18]. It turns out that the local extrema of the
distance function can be obtained as the zeros of a univariate
polynomial in t of degree at most 10, which was also mentioned
in [RS18, Rad18].
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(b) Proportionally spaced: We compute the guiding points Ce(ti)
in a way that the following relation is approximately fulfilled:

Ti−1Ti : Ĉe
i−1C

e
i = TiTi+1 : Ĉe

i C
e
i+1 (10)

for i = 0, . . . ,m−1 (i mod m), where the overline-bar denotes
the distance (8) and the hat-sign indicates the approximate
lengths along the motion based on an approximate discretized
arc-length segmentation of Ce(t), i.e., the time interval is dis-
cretized into a user-defined number of time instances in a way
that the distance (8) between two adjacent time instances is
constant. The starting point for the layout of the guiding poses
is T0 = 1 and the sampling direction is determined by placing
Ce

1 on the same side of the motion as its closest pose to T1.

(3) Curve Evolution: The strategy for the evolution process splits
up into the following three stages:

• Initial stage: We put a high weight (user-defined value > 1) on
the orientation part of the metric (Sec. 4.1) in this stage, due to
the observation of Rad and Schröcker [RS18] that their results
fit much better in position than orientation. With respect to this
weighted metric, we compute the guiding poses according to
approach (2b). Moreover, we parametrize each of the three linear
factors in the following form:

t− x0 + x1i+ x2j+ x3k+ ε(x5i+ x6j+ x7k)

The iteration of the parameters is given by xi 7→ x∗i := xi + s∆xi
where s ∈]0,1] denotes the step size and the ∆xi is obtained by ap-
plying the Gauss-Newton method to minimize the nonlinear least
squares objective of fitting the target poses. The only difference
to [RS18, Rad18] is the parametrization. In general, the updated
8-tuple (t− x∗0 : x∗1 : x∗2 : x∗3 : 0 : x∗5 : x∗6 : x∗7 ) does not fulfill the
Study condition (3). Therefore we project it back onto the Study
quadric Ψ by the map ϕ (5). This projection fits very well with
our strategy of favoring the orientation part, as it only affects the
parameters x∗5 ,x

∗
6 ,x
∗
7 , which control only the translation part of

the spatial displacement. We proceed to the next stage as soon as
the t-values of the closest poses (2a) follow the ordering of the
target poses.
• Middle stage: Now the guiding poses are selected by approach

(2a). The rest of the iteration remains the same as in the initial
stage with the sole difference that we reduce the weight on the
orientation successively by a fixed percentage (user-defined value)
until we end up with the original metric. Once this point is reached
and the improvement by the evolution steps is insignificant, we
go on to the final stage.
• Final stage: In order to switch to a parametrization that auto-

matically satisfies the Study condition (3) so that an optimality-
sacrificing projection ϕ is not needed after each step we use one
of the following three parametrizations

t− x0 + x1i+ x2j+ x3k+ ε(x5(x2i− x1j)+ x6(x3i− x1k))

t− x0 + x1i+ x2j+ x3k+ ε(x5(x2i− x1j)+ x6(x3j− x2k))

t− x0 + x1i+ x2j+ x3k+ ε(x5(x3i− x1k)+ x6(x3j− x2k))

based on whether x1,x2, or x3 has the largest magnitude, respec-
tively. These parametrizations, which are not used in the earlier
stages because this would make the minimization problem too

nonlinear to solve efficiently, degenerate when the corresponding
x1,x2, or x3 value vanishes. In this stage, the guiding poses are
selected by approach (2a) with respect to the original metric.

Comments on the Evolution Algorithm We experienced that our
algorithm might need several attempts of random initial guesses
(9) to ensure good convergence, which can be accomplished by
employing Galapagos in Rhino/Grasshopper. This goes along with
the observations of Rad and Schröcker [RS18]. Moreover, we note
that the described algorithm cannot be performed in real-time, as the
approximate discretized arc-length segmentation used for the guid-
ing pose selection (2a) is time consuming. If a good approximating
motion is already known, then our algorithm does not flow through
this bottleneck; thus the motion can be modified interactively by
applying small changes to the given target poses with a space mouse.
Further comments are listed:

• Initial guess: As already mentioned in Sec. 4.2, the four pose
interpolation can be used for generating a good initial guess.
• Step size: We use the Rhino/Grasshopper tool Galapagos for

finding a good step size as it turned out that this approach is
superior to the step size selection proposed in [RS18].
• Order issue: If the ordering of the closest poses is damaged during

the middle or final stage we go back to the initial one. We set a
maximal number of iterations to avoid infinite loops and proceed
with a new random initial guess (9).
• Reference frame: In the final stage, one can also decouple the

reference frame from the first target pose by left multiplying the
three linear factors by a dual quaternion, whose entries are in-
cluded in the iteration procedure. In this way, a fairer (i.e. without
preferring any target pose) rational cubic approximation of the
target poses can be found.

4.4. Singularities

As the studied 6R loops are of mobility one, their spatial shape can
be transformed by actuating one R-joint only. But difficulties can
arise in the motion transmission through the kinematic chain if so-
called singular configurations are encountered. For the considered
structures, these singularities are characterized by the line-geometric
property that the six rotational axes belong to a linear congruence
of lines [PW11]. As a singularity only depends on the rotation axes,
its avoidance is a matter of the motion design instead of the linkage
design (Sec. 5). The existence of these singularities is demonstrated
by type III Bricard linkages (e.g. [Bak09]), which have two configu-
rations of coplanar rotation axes.

We measure the proximity to a rational cubic motion with singu-
larities using the minimum (over the complete motion cycle) of the
sum of squared determinants over the 36 (5×5) sub-matrices of the
(6× 6) Jacobian matrix composed of the axes’ spear coordinates,
which yields a univariate polynomial in t. Note that a nonzero value
also excludes the possibility that the associated linkage has more
than one degree of freedom [HSS13a, Remark 3].

5. Linkage Design

The motion factorization (Sec. 3.2) of the cubic motion designed
above (Sec. 4) results in nine cyclic arrangements of six R-joints,
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Figure 7: The base-/end-link is colored in blue/green. (left) Here
the links are the common normals of adjacent axes, which is a
common concept in robotics. (right) Initialization fulfilling Eq. (11).
Moreover, a modification of the end-link caused by the insertion of
an end-effector P is illustrated in yellow.

which allow paradoxic mobility. To realize a linkage, these axes
have to be connected by links, which can be done in infinitely many
ways. We are interested in finding self-collision-free realizations,
which is quite a challenging task as even for Bennett mechanisms
no theoretical existence results are known.

5.1. Self-Collision-Free Realization

Coros et al. [CTN∗13] addressed the collision-avoidance problem,
but restricted to the collision-free layering for planar motions. Con-
trary to [CTN∗13], where the problem is tackled algorithmically, a
graph-theoretical approach was presented by Qi [Qi19]. Collision-
free planar linkages were also constructed for Kempe’s Universality
Theorem by Abel et al. [ADD∗16] and Gallet et al. [GKL∗17].

Another approach was proposed by [ZSC16], which inspired the
workflow of our collision-avoidance algorithm. Two of its main
ingredients are collision detection and segmentation distance com-
putation [LMK17], which are stressed in the following overview of
our algorithm:

After an initial stage of geometric complexity reduction, we apply
a particular search strategy for finding a self-collision free linkage,
which succeeded in each of the 2000 validation tests (cf. Sec. 6.3).
In general, one can perform collision detection numerically when
the linkage geometry is established, e.g. [NBA19]. Once a self-
collision-free linkage is obtained, we are forced to increase again
the complexity of the linkage due to some realization constraints.

Realization Algorithm The detailed procedure consisting of four
steps reads as follows:

(1) Initialization: For the initialization of our algorithm we reduce
the geometric complexity by assuming that neighboring rotation
axes −→a i and −→a i+1 (for i = 0, . . . ,5 mod 6) are linked with straight
bars, which are infinitely thin. The starting and end points of these
oriented line-segments are denoted with Si ∈ −→a i−1 and Ei ∈ −→a i
(e.g. Fig. 7, left). A further reduction of the complexity is archived
by the assumption that Ei = Si+1 (for i = 0, . . . ,5 mod 6) holds. As
a consequence the abstracted linkage consists of a closed polyline
E0, . . . ,E5, whose initial choice results from the following procedure.
The user can specify points Ei ∈ −→a i, and the remaining ones are
computed under the condition

E0E1
2
+E1E2

2
+ . . .+E5E0

2→ min, (11)

−→a i

−→a i

−→a i

−→a i

−→a i

−→a i

Figure 8: Two adjacent straight links can be differentiated accord-
ing to the angle they enclose with the common axis (green). The
link implying the smaller/larger angle is colored in orange/blue.
The three ways of offsetting labeled by +1 (left), −1 (center) and 0
(right), respectively, are illustrated.

(Fig. 7, right) as a short/compact linkage reduces the possibility of a
self-collision and for reasons of technical realization. The length of
the resulting polyline is denoted by l.

(2) Collision check: We perform collision checks between the six
line-segments over the motion cycle. In total, we have to test the
following nine pairs of line-segments as neighboring ones share
a common vertex: (0,2), (0,3), (0,4), (1,3), (1,4), (1,5), (2,4),
(2,5), (3,5). In our case, the collision detection between two links
can be reformulated as the determination of intersection points
between a line-segment and a ruled surface strip (generated by the
relative motion). This problem can be reduced to the computation
of real roots of some univariate polynomials of low degree (at most
12), which can quickly detect all possible collisions globally. It is
worth mentioning that this strategy is very common in continuous
collision detection, e.g. [CWLK06]. If the linkage has collisions, we
have to apply the next step.

(3) Search strategy: Zheng et al. [ZSC16] noted that gradient-based
methods become inapplicable for optimizing the linkage geometry
to avoid collisions due to the discontinuous change of the collision
states. In contrast to [ZSC16], we do not use stochastic optimization
but apply the following combinatorial search to ensure compact-
ness/shortness of the resulting linkage: We shift the vertices of the
initial polyline along the corresponding rotary axes by the distance
τ

l
p , where p is a user-defined value, τ is a ternary variable taking

the values {−k,0,+k} with the iteration index k ∈ N+. The user
has the possibility to flag a number f < 6 of vertices of the initial
polyline which are not shifted. The resulting 36− f − 1 linkages
have to be checked for collision freedom over the motion circle. If
none is collision-free, the iteration index k is raised by one, and the
procedure is repeated until a solution is obtained.

(4) Link offsetting and thickening: Finally we are forced to increase
the complexity of the linkage geometry due to constraints of realiza-
tion. We have to (i) add a certain thickness to the line segments as
they are materialized by cylindrical bars of radius ρ (user-defined
value, which depends on material and dimensioning of the linkage)
and (ii) separate the points Ei and Si+1 along the rotary axis −→a i
by a distance d of at least 2ρ. The latter offsetting, which allows
a simpler and cheaper design of the joints, is done in one of three
ways illustrated in Fig. 8. For the resulting 36 possible polylines
each with 12 vertices, we have to check if two non-adjacent edges
have at least distance 2ρ during the complete motion cycle. Due
to our offsetting shift, this is guaranteed for the two line-segments
SiEi and Si+1Ei+1. Therefore 42 edge-edge distances have to be
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S3 L

R

E3

Figure 9: The initial linkage is illustrated in red and the result
obtained by the realization algorithm in violet. The base-link is
always colored in blue. (left) An end-effector is integrated (yellow
disc), where beside L and R also S3 and E3 are flagged. (right) The
result without end-effector integration and flagging of points.

computed, where each one consists of nine cases (e.g. [Lum85]). If
the resulting 42 minimal distances are larger than 2ρ for one of the
36 polylines, the algorithm stops; otherwise we go back to step (3)
and look for the next collision-free linkage. This final stage of the
algorithm requires a minimal distance computation over the motion
cycle. The square of the corresponding distance function is a rational
function, where the denominator is always positive for any real time
t. As a consequence the local extrema of the distance function can
again be determined as the real roots of a polynomial.

End-effector Integration in the Realization Algorithm Beside
some artistic use of invertible paradoxic 6R-loops, most applications
of these structures have to deal with certain functional aspects; e.g.
shading in the context of transformable architecture. The user can
integrate the so-called end-effector (e.g. shading element) into the
realization algorithm as follows: We suggest to enclose the end-
effector by a polyhedron P with triangular faces, which roughly
represents its shape. Moreover, one replaces the end-link S3E3 by
the composition of P and two line-segments S3L and RE3, where L
and R are two vertices of P that are flagged not to be updated during
the algorithm (Fig. 7, right). If these two points are not specified
by the user, they are selected in a way that they are closest to −→a 2
and −→a 3, respectively. Now the realization algorithm works in the
same way with the sole difference that also edge-face collision
checks and minimal distance computations have to be performed
[SJKW02, Vra02].

A comparison of results obtained from the realization algorithm
with/without integration of an end-effector is illustrated in Fig. 9,
which is based on the data of Project 1 presented in Sec. 6.2.

Computational Aspects Note that most parts of the realization
algorithm can be computed in parallel:

• collision check of all 36− f −1 linkages (step (3)), where the nine
cases of each check (step 2) can be parallelized in addition,
• 42 minimum distance computations for all 36 polylines (step 4),

where the nine cases involved in each distance computation can
be parallelized additionally.

This also holds if an end-effector is integrated into the realization
algorithm as the edge-face collision checks and minimal distance
computations can be parallelized in an analogous way.

5.2. Generating the Link-Design Spaces

Based on the minimal distances computed in step (4) of the realiza-
tion algorithm, one can easily construct cylindrical design spaces
about the line-segments, which are guaranteed to be collision-free;
i.e. the user can shape the links inside these cylinders without wor-
rying about collisions. In a post-processing step, one can even try to
enlarge the radii of the cylinders by increasing the offsets (not nec-
essarily the same length along all axes) in the linkage obtained from
the realization algorithm by applying e.g. the Rhino/Grasshopper
tool Galapagos, which applies evolutionary logic for solving spe-
cific optimization problems.

A post-processing algorithm for generating more complicated
shaped link-design spaces is described next:

(a) For each link, the user defines a potential link-design space (e.g.
a cylinder of rotation around the respective line-segment).

(b) Each potential link-design space is trimmed by the other line-
segments of the moving linkage. This process is comparable to
wire-cutting.

(c) The boolean difference between each pair of the trimmed link-
design spaces is performed over the complete motion cycle.
An alternative description of this boolean operation is that the
trimmed link-design space is carved out by the swept volume
generated by the other involved trimmed link-design space dur-
ing their relative motion. Note that in contrast to the method of
spacetime geometry carving proposed by Garg et al. [GJG16]
the swept volume approach is not used to avoid collisions, but
to create collision-free link-design spaces around the already
collision-free linkage.

Note that the order of the pairs of the trimmed link-design spaces
and the order within these pairs (as the boolean difference operation
is asymmetric) affects the final shape of the resulting link-design
spaces (Fig. 10), which are guaranteed collision-free during the
complete motion cycle. Therefore the option of ordering gives the
user an additional opportunity for interaction in step (c).

Finally it should be mentioned that the boolean operation relies
on a voxelisation and is performed by the Rhino/Grasshopper plug-
in Dendro. Alternatively it can be based on the approximate offset
calculation of swept volumes presented in [GJG16].

Loop Grounding The Schatz linkage can be inverted without self-
collision, which can easily be verified by moving a model (Fig. 2) of
this loop in one’s hands. But if one fixes a link of the chain between
two finger tips of the left hand and actuates the linkage by the right
hand, then the linkage will collide with the left hand during the
motion. For sculptural or architectural applications the problem of
grounding the loop without restricting its full mobility can also be
solved by the above approach (Fig. 10). One only has to take care
that the potential link-design space of the base-link is chosen large
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Figure 10: Illustration of the link-design spaces, where the one for
the base-link is colored in gray. The latter is used for solving the
loop grounding problem. In general, the grounding of the base-link
can be realized by extending one of the adjacent R-joints and fixing
it to the ground. The two gray bodies are just connected by this axis
(connection point in red).

enough in step (a). Clearly, the subsequent steps (b) and (c) can
carve away this design space, but in all performed examples, the
grounding can be achieved over one of the axes situated in the base
link (Fig. 10). It is an open problem if this is a general feature of the
studied class of linkages.

6. Results & Discussion

6.1. Design & Workflow

Exploiting the design potential offered by invertible paradoxic loop
structures is difficult for multiple reasons. With the exception of
the invertible cube (Fig. 2), they have never been used, and there
is no established design method for the design of these kinematic
structures, which are essentially inaccessible by intuitive design
approaches. In order to tackle this challenge, we ran a linked master-
level studio course and model making class in architecture with
twelve students on six design projects. Design experiments led to

Figure 11: Visualization of the Chaotic Relay: The central figure
shows the public square at 1pm on a specific day of the year, where
the shadows of the two discs coincide. This circular spot on the
floor is shadowed from 10am (left) until 4pm (right). The path of the
sun was sampled to obtain a series of target poses for the motion
evolution algorithm (Sec. 4.3), where the initial guess was generated
by the four pose interpolation (Sec. 4.2).

Figure 12: Visualization of the Artificial Trees: Each limb of a tree
consists of an invertible paradoxic loop (for details see Fig. 13).

sample designs that facilitated the development of the presented
design tool for invertible paradoxic loop structures.

The students were asked to design a kinetic structure of architec-
tural scale, to be placed in a public square. The task was open to
their own interpretation, with focus on sculptural qualities and/or
functional aspects of the design, i.e. dynamic shading structures.
The students presented their design progress weekly and received
feedback from the authors. These feedback sessions also provided
valuable information for the authors and showed whether the design
tool was suitable, how it was used and which features were missing
or needed development. For the more functionally oriented designs,
digital simulation served the design evaluation. Updated versions of
the design tool were introduced biweekly, and students were taught
the underlying mathematical principles.

This approach led to design projects, which are illustrated in Sec.
6.2, and to a useful design tool that is well integrated into exist-
ing architectural design workflows. Students could easily design
motions, generate, optimize linkages, visualize and analyze their de-
signs in a familiar 3D CAD environment. Complementary physical
models were built during the design process to evaluate spatial, per-
formance and design qualities. Extra care and computer-controlled
machines were required to achieve the necessary accuracy to ensure
the mobility of the models.

6.2. Examples

We present four works that are representative of the range of ap-
proaches for all six design projects. Each project posed a specified
design problem that was addressed by using our computational tool
in conjunction with other CAD and analysis tools.

Project 1, entitled Chaotic Relay (Fig. 11), commenced with an
analysis of the sun path and exposure in the context of the existing
shading pattern at the selected site. This led to the intent to relate
the motion of the structure to the motion of the sun. The installation
utilizes two linkages to move a shading element in sync with the
sun in such a way that its shadow cast on the surface of the public
square remains stationary over the course of the day. This simple
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Figure 13: Visualization (left) and model photo (right) of one limb
of an Artificial Tree (cf. Fig. 12).

idea implies a complex design task which is further complicated by
the fact that two linkages are utilized to ensure a stationary shadow.

Project 2, entitled Artificial Trees (Figs. 12 and 13), also focuses
on shading but in a more dynamic manner. The installation relates
to the shadow pattern cast by existing trees in the selected site
and seeks to mimic this shadow pattern and related light qualities.
The treelike kinetic installation, with its arrayed leave-like elements,
provides a dynamic shading pattern and improves the sojourn quality
of the public space.

Project 3, entitled Nuloid (Figs. 1 and 14), focuses on the dy-
namic sculptural quality of the design and that reflects on the process
of the design generation in the actual installation. The shape of the
end-link is based on the moving axode of its motion with respect
to the base-link, and the other links are shaped by the algorithm de-
scribed in Sec. 5.2. The project name is a reminiscence to the oloid,
which is the moving axode of the motion between two opposite links
in the invertible cube of Schatz (Fig. 2).

Project 4, entitled Circadiane (Fig. 15), is based on the idea to
arrange a series of scaled copies of an invertible paradoxic loop.
In addition, the linkages are rotated against each other about the
common vertical base-link also used for grounding. In this way, the
kinetic installation fans out and closes again over one motion cycle
synchronized with the day and night period. This dynamic sculpture
symbolizes the circadian rhythm of natural phenomena.

Note that animations of all four projects and videos of the two
models (Figs. 13 and 14) are uploaded as supplementary material,

Figure 14: Visualization of the Nuloid (left): The six links of the
invertible paradoxic loop have different colors, where the base-
link (including the grounding structure) is gray, and the end-link is
orange. Model photo of the Nuloid (right).

Figure 15: Visualization of the Circadiane: Closed configuration
in the morning (left) and the fanned out one in the evening (right).

which also includes a video of a Schatz linkage and screen captures
of the developed Rhino/Grasshopper plug-in during a user session.

6.3. Validation

In a first step, the conceptual design of the realization algorithm (Sec.
5.1) as well as the evolution algorithm (Sec. 4.3) were developed
based on Maple18 implementations, which were also used to check
the correctness of the later C# Rhino/Grasshopper plug-in. In the
following, we provide a statistic validation of these two algorithms.

Statistic Validation of the Realization Algorithm We randomly
generated 1000 cubic rational motions, factorized them and com-
bined the resulting factorizations to obtain angle-symmetric 6R loops
as well as double Bennett 6R loops. The offset distance d of step
(4) is set to 1/100 of the length of the linkage resulting from step
(3), which depends on the parameter p, chosen as 10. Choosing
ρ = d/4, we produced Table 1 with Maple18, where the following
mean values are given:

• ∅k of the iteration index k of step (3).
• ∅c of collision-checks of polylines with 6 vertices (step (3)).
• ∅b of the number of steps backwards from (4) to (3).
• ∅m of minimal distance computations for polylines with 12 ver-

tices (step (4)).
• ∅r of the ratio between the length of the final polylines with 12

vertices and l.

Moreover, we counted the number z of successful minimal distance
computations resulting from the offsetting sequence {0,0,0,0,0,0},
which was selected to be the first one in the list of these 36 sequences.
If this offsetting sequence failed, we used as next sequence the one
implied by the sign function of the shift sequence of step (3); e.g. the
shift sequence {+k,+k,0,−k,0,−k} yields the offsetting sequence
{+1,+1,0,−1,0,−1}. In how many cases this sequence succeeded
is given by the number s.

Table 1: Statistic validation of the realization algorithm (DB denotes
the double Bennett 6R loop and AS the angle-symmetric one).

∅k ∅c ∅b ∅m ∅r z s

AS 1.355 1169.782 .687 555.284 1.416 506 88
DB 1.100 928.379 .764 613.044 1.346 590 55
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Statistic Validation of the Evolution Algorithm We ran our evo-
lution algorithm in Maple18 for a single sequence of ten ordered
target poses with 500 different initial guesses, which were generated
randomly according to Eq. (9). The target poses were sampled from
a random cubic rational motion, thus our algorithm can be evaluated
by the sum of the squared distances (8) of the target poses to the
closest poses of the resulting cubic motion. This value is indicated
by the vertical axis of the graph displayed in Fig. 16 and its horizon-
tal axis gives the number of iterations. Moreover, it should be noted
that the object dependent metric was based on an inertia sphere of
radius 1 and that the trajectory length of the barycenter under the
targeted cubic motion equals 20.

One can see that the cost-function in terms of the metric is de-
creasing, where the mean value is plotted in green. The red curve
indicates the best approximation within 34 steps and the blue curve
displays the worst of the 500 runs.

Figure 16: Statistic validation of the evolution algorithm.

It can happen that the evolution algorithm produces a motion
Ce(t) that makes an unwanted loop in between two adjacent target
poses (Fig. 17). Such loops cannot be straightened using the guiding
pose approach (2a) during the middle and final stage. In this case,
one can either try another random initial guess (9) or the following
modified procedure (Fig. 17):

• Insert virtual target poses between adjacent target poses based on
the motion interpolation given in [PHR04, HP04], as it takes the
metric (8) into account.
• Compute in every stage the guiding poses with approach (2b).
• Increase the number of iteration steps by bounding the step size.

Validation through the Design Projects The role of the design
projects in terms of validation included the identification of prob-
lems in the different versions of the tool, which were revealed
through applications. In this context, the openness of the design
brief ensured a breadth of design approaches resulting in a broader
range of testing of the intended range of functionality and applica-
bility of the tool. In a projected next phase of the tool development,
it would be useful to define the design brief in more narrow terms
in relation to specifically intended functionality of the tool so as to
develop the latter in greater detail.

6.4. Limitations & Future Work

If we assume that one R-joint is actuated with constant velocity
(e.g. 10s for one rotation), then it can happen that another R-joint

Figure 17: The loop phenomenon (left) can be avoided by a more
costly modification of the evolution algorithm (right).

of the linkage rotates extremely fast in a short period (e.g. 300deg
within 2s) and in the remaining time very slowly (e.g. 60deg within
8s). Beside the large velocities, the resulting big accelerations are
problematic for e.g. architectural applications. Hence in a future
work, physical aspects (inertia forces, wind loads, etc.) should be
considered. Further topics dedicated to future research are e.g. the:

• modification of our design tool for Bennett mechanisms and Gold-
berg linkages (tracing a special rational cubic motion according
to Hegedüs et al. [HSS13b]), which is straightforward.
• extension of our design tool to paradoxic loop structures with

a prismatic (P) joint (e.g. P5R or P4R linkages). For practical
applications, only one actuated P-joint makes sense as passive
P-joints can easily jam.
• development of a computational tool for the design of networks

of rational 6R linkages. Networks for the special case of type III
Bricard linkages are discussed in [LZD∗19, Bak09].
• classification of all 6R loops with a rational mobility possessing

singular configurations. Based on this theoretical result, such
linkages can actively be avoided during the design process.
• performance comparison of the evolution algorithm based on the

l2-norm (Sec. 4.3) and the l1-norm [FH10].

Finally it should be pointed out that based on the experience gained
during the presented research project, design experiments should
play again a central role in the further development of the tool as
they stimulate a fruitful interplay between kinematic geometry and
architecture/design.
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Appendix A: Spatial displacement in terms of unit dual
quaternions

Usually a spatial displacement is given in the form x 7→ y := Rx+
t, where R is a 3× 3 rotation matrix and t ∈ R3 the translation
vector. The pair (R, t) encodes an element of SE(3) that can also be
represented by a unit dual quaternion Q = P+ εD which can be
computed according to [ST19].

By embedding the points of R3 into the set of unit dual quater-
nions by

x = (x1,x2,x3) 7→X := 1+εX with X := x1i+x2j+x3k (12)

the spatial displacement can be written in terms of unit dual quater-
nions by

X 7→Y := (P+ εD)X(P̃− εD̃). (13)

This implies

X 7→Y :=PXP̃+(DP̃−PD̃). (14)

Appendix B: Bennett flip

The Bennett flip is a factorization trick for quadratic motion polyno-
mial (see [GKL∗17] for planar and [LSS18] for spatial motions).

Definition 1 The Bennett flip is the map

bflip : DH2 \{(A1,A2) | Ã1 = A2}→ DH2, (A1,A2) 7→ (A′1,A
′
2)

with A′2 =−(Ã1−A2)
−1(A1A2−A1Ã1) and A′1 =A1 +A2−A′2.

The interpretation in terms of factorizations of motion polyno-
mial is (t −A1)(t −A2) = (t −A′1)(t −A′2). In general the axes
−→a 1,
−→a 2,
−→a ′2,
−→a ′1 form a Bennett linkage and the following rela-

tions hold for their norm polynomials:

(t−A1)(t− Ã1) = (t−A′2)(t− Ã
′
2)

(t−A2)(t− Ã2) = (t−A′1)(t− Ã
′
1).

(15)

We can obtain another factorization just by applying Bennett flips
continually.

Theorem 1 Given a generic monic motion polynomial M(t) of
degree n with a known factorization

M(t) = (t−A0) · · ·(t−An−1), (16)

another factorization can be obtained by recursively applying Ben-
nett flips to two neighboring factors.

Proof Let us apply a Bennett flip to two neighboring linear factors
of the factorization (16), for instance, for some 0≤ s < n−1,

M(t) = (t−A0) · · ·(t−As)(t−As+1) · · ·(t−An−1)

= (t−A0) · · ·(t−A′s)(t−A′s+1) · · ·(t−An−1).
(17)

By the factorization algorithm in [HSS13a], a factorization

M(t) = (t−A0) · · ·(t−As)(t−As+1) · · ·(t−An−1)

depends on an ordering of the n quadratic factors of the norm poly-
nomial

M(t)M̃(t) = P0P1 · · ·Pn−1,

where Ps = (t−As)(t− Ãs) for s = 0, . . . ,n−1. Hence, two factor-
izations (if they exist) are different if and only if their two corre-
sponding factor orderings are different. By the equation (15), we
have two corresponding factor orderings

M(t)M̃(t) = P0P1 · · ·PsPs+1 · · ·Pn−1

= P0P1 · · ·Ps+1Ps · · ·Pn−1.
(18)

If the two norm polynomials Ps and Ps+1 are not equal, then we
have another different factorization. Therefore, applying one Bennett
flip, we can at most swap the order of one pair of two neighbor-
ing quadratic factors. One might need several flips for obtaining a
wanted factorization from a known one.
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