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Figure 1: The proposed DeepBRDF encodes measured BRDF data on a nonlinear low-dimensional manifold where the reconstructed BRDFs
match the original ones (middle). It allows high quality BRDF editing (left) and accurate BRDF recovery from a single image (right).

Abstract

Effective compression of densely sampled BRDF measurements is critical for many graphical or vision applications. In this
paper; we present DeepBRDF, a deep-learning-based representation that can significantly reduce the dimensionality of mea-
sured BRDFs while enjoying high quality of recovery. We consider each measured BRDF as a sequence of image slices and
design a deep autoencoder with a masked Ly loss to discover a nonlinear low-dimensional latent space of the high-dimensional
input data. Thorough experiments verify that the proposed method clearly outperforms PCA-based strategies in BRDF data
compression and is more robust. We demonstrate the effectiveness of DeepBRDF with two applications. For BRDF editing, we
can easily create a new BRDF by navigating on the low-dimensional manifold of DeepBRDF, guaranteeing smooth transitions
and high physical plausibility. For BRDF recovery, we design another deep neural network to automatically generate the full
BRDF data from a single input image. Aided by our DeepBRDF learned from real-world materials, a wide range of reflectance

behaviors can be recovered with high accuracy.
CCS Concepts

e Computing methodologies — Reflectance modeling; Neural networks;

1. Introduction

With the development of novel gonioreflectometers, an increas-
ing amount of data from real-world materials has been created
[MPBMO3, FV14, DJ18]. Although more accurate by definition,
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measured or data-driven BRDF models suffer from a high mem-
ory footprint and significant computational cost stemming from
the storage and processing of massive BRDF data. This makes
either editing or manipulating measured BRDFs quite difficult
[DRS08,GGG*16].

Generally, the raw data of measured BRDFs can have an ar-
bitrarily high dimensionality as many incident and viewing di-
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rections are organized to capture and tabulate a BRDF. Howev-
er, the actual subspace of real-world BRDFs is of substantially
low dimensionality. Therefore, lots of previous methods try to re-
duce the dimensionality of the measured BRDF to facilitate its
usage. Existing approaches conquer this challenge via either pro-
jecting the raw data onto a subset of linear principal components
[MPBMO03, NDMO06, NJR15, XNY*16, SGM*16], or applying a
nonlinear dimensionality reducer [MPBMO03, WAKBO09]. The for-
mer is efficient but requires a large number of components to re-
produce the original BRDF with high fidelity. The latter is con-
sidered more robust at the cost of very complex BRDF interpola-
tion and extrapolation. Another widely used strategy to lower the
complexity of measured BRDFs is via fitting low-dimensional an-
alytical models controlled by a set of parameters to the raw da-
ta [NDMOS,LKYU12,BSH12,RBMS17]. Unfortunately, the fitting
process, usually relying on nonlinear optimization, is often time-
consuming and numerically unstable.

Inspired by the success of Convolutional Neural Networks
(CNNs) in many fields, we propose DeepBRDF, a deep-learning-
based representation to explore the low-dimensional subspace of
real-world BRDFs in this paper. Specifically, we design a deep au-
toencoder [HS06,Ben09] to learn the latent space of measured data
in the MERL BRDF dataset [MPBMO3]. The autoencoder takes the
full data of a measured BRDF as the input and try to reconstruct it
after it passes through a “bottleneck™ layer. By constraining the bot-
tleneck to have a low dimension, the goal of dimensionality reduc-
tion for the measured BRDFs is achieved. Unlike PCA (Principal
Component Analysis), the autoencoder is able to explore a nonlin-
ear low-dimensional manifold when a nonlinearity such as a ReLU
activation is used in the encoder. Our results demonstrate that the
proposed DeepBRDF clearly outperforms PCA-based strategies in
BRDF data compression and is quite efficient by taking advantage
of recent advancements in deep learning.

We further show the benefits of the proposed DeepBRDF with
the following two applications.

BRDF Editing. BRDF editing is straightforward for analytical
BRDF models but is difficult for measured data. By building a
mapping between some perceptual attributes, either low-level [GG-
PL18] or high-level [SGM*16], and the underlying DeepBRDF,
we can easily perform BRDF editing for measured BRDFs. Com-
pared against the PCA-based techniques, our method always repro-
duces physically plausible BRDFs and supports smooth interpola-
tion/extrapolation.

BRDF Recovery. Recent studies have proven the capability of
CNNss to estimate the parameters of analytical BRDFs from input
natural images [KGT*17, LDPT17, MMZ*18, LXR*18, YLD"18,
KCW™*18, GLD*19]. However, the accuracy of the estimation is
highly restricted by the scope of selected analytical BRDF models.
With our DeepBRDF learned from real-world materials, a wider
range of reflectance behaviors can be recovered. Based on the deep
representation, we design a new CNN to automatically recover
the full BRDF data of an arbitrary material from a single input
image. Several experiments on both synthetic and real-world im-
ages demonstrate the effectiveness and robustness of the proposed
method.

2. Related Work

Data-Driven BRDF Models. Data-driven BRDF models leverage
measured data from real-world materials to encode appearances.
Although significant progress has been made [NJR15, XNY*16],
accurate BRDF measurements are still challenging due to mechan-
ical and computational complexity [NDMO05, GGG*16]. Currently,
the most widely used BRDF datasets include MERL for isotrop-
ic materials [MPBMO3] and UTIA for anisotropic ones [FV14].
The MERL dataset [MPBMO3] contains 100 real-world materi-
als covering a wide range of appearances. Each material con-
sists of measurements from a dense set of directions. Since its
publication, this dataset has led to better understanding of realis-
tic materials [Bur12, GGPL18,LMS*19], and inspired researchers
to derive more precise analytic models to match the measure-
ments [LKYU12, BSH12, RBMS17]. Although the UTIA dataset
[FV14] has more BRDFs and covers anisotropy, it is limited to
low-frequency appearances. Most recently, a new dataset covering
all-frequency spectral BRDF measurements is released [DJ18].

Low-Dimensional Representations. To ease the usage of
densely measured high-dimensional BRDFs, dimensionality reduc-
tion, e.g., PCA [MPBMO03,NDMO06,NJR15,XNY*16,SGM*16], is
usually required in many applications. Matusik et al. [MPBMO3]
proposed to perform BRDF dimensionality reduction by either
linear analysis or nonlinear dimensionality reducers, resulting in
a 45D or 15D manifold. Nielsen et al. [NJR15] improved tradi-
tional PCA by employing a log-relative mapping on raw BRDF
values. To ensure nonnegativity, nonnegative matrix factorization
[LRRO4, LBAD*06] and homomorphic factorization [MAAO1]
have been applied to decompose high-dimensional BRDFs. Tensor
decompositions have also proved successful in reducing the dimen-
sionality of measured BRDFs [RK10,BOK11]. Soler et al. [SSN18]
explored a low-dimensional nonlinear BRDF manifold via a Gaus-
sian process latent variable model, supporting smooth transitions
across different BRDFs. Zsolnai-Fehér et al. [ZFWW 18] proposed
learning algorithms to recommend new materials and create a low-
dimensional latent space for fine-tune, enabling rapid mass-scale
material synthesis for any principled shader. In contrast, we learn a
latent space for measured materials.

BRDF Editing. BRDF editing is straightforward once a mea-
sured BRDF is fitted to analytical models [CPK06, SZC*07,
NKLN10, SPN*16]. Unfortunately, the range of reflectance be-
haviors is quite limited by the underlying analytical model.
Therefore, it is more attractive to edit the measured BRDFs
directly by either interpolating between materials in a dataset
[MPBMO03, WAKBO09, SSN18] or alternating factorized low-
dimensional curves [LBAD*06, BAORO06]. To allow intuitive edit-
ing, Serrano et al. [SGM™16] established the relationship between
a handful of high-level perceptual attributes and the PCA coeffi-
cients of measured BRDFs. The approach proposed by Tsirikoglou
et al. [TKL*16] supports intuitive and efficient editing by chang-
ing the differences between the edited analytical BRDF and origi-
nal analytical BRDF fitted to the data. Several recent studies [GG-
PL18,SJR18] show that a proper diffuse-specular separation is ben-
eficial for measured BRDF editing. We demonstrate that the pro-
posed DeepBRDF facilitates BRDF editing. Compared with PCA-
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based editing, e.g., [SGM*16], our method is more robust and
physically plausible.

BRDF Recovery. The problem of BRDF recovery aims to
infer reflectance behaviors from 2D images. Due to the inher-
ent ambiguity between the intensity of lighting and surface re-
flectance, many optimization-based methods attempt to solve this
problem by imposing simplistic assumptions on either geome-
tries [ZREBO6] or illumination [RZ10,BM15]. Undoubtedly, these
assumptions or priors significantly limit the applicability of the
proposed methods. Currently, the most successful solutions re-
ly on deep learning. Several deep neural networks are only de-
signed to infer diffuse material properties from a single image
[TSH12,ZKE15, NMXY 15, KWKTI15]. Rematas et al. [RRF*16]
predicted the combination of BRDF and illumination from a sin-
gle image, handling both diffuse and specular materials. Liu et
al. [LCY*17] presented a differentiable rendering layer to handle
both diffuse and specular materials. Meka et al. [MMZ*18] sug-
gested using a highly efficient perceptual rendering loss in training,
leading to real-time estimation of an object’s material. There are al-
so some deep neural networks tailored to estimate spatially-varying
BRDFs [LDPT17,LXR*18, YLD* 18, KCW* 18, GLD*19]. Rather
than predicting parameters of analytical BRDF models, we propose
to recover the densely sampled BRDF data directly from an input
image based on DeepBRDF.

3. DeepBRDF

This section thoroughly discusses DeepBRDF, a low-dimensional
representation of measured BRDFs.

3.1. Data Preprocessing

We currently work on the MERL BRDF dataset [MPBMO3].
This dataset covers 100 isotropic materials of varying re-
flectances, ranging from soft diffuse materials like rubber to
hard specular materials like chrome. The raw data are stored in
3D tables using Rusinkiewicz half-difference angle coordinates
(01,84,04) [RusO1]. The resolution for each color channel is
90 x 90 x 180, leading to 1,458,000 measurements.

Note that the raw BRDF data usually contain high dynamic range
(HDR) information. This means the magnitudes of input values can
be arbitrarily high, which causes problems for most CNNs. To tack-
le this issue, we use a data preprocessing method similar to Log-
Relative Mapping [NJR15]. Specifically, we use the following for-
mula to compress the HDR data:

p+e€
=1 1 1
P n(pref+8+ ) ()

where p is the BRDF, € = 0.001 is a small constant avoiding di-
vision by zero, and py.r is a reference BRDF, relative to which the
mapping is applied. Like that in [NJR15], we choose the reference
BRDF to be the median value for each (8;,60,,0,), over the entire
MERL dataset.

3.2. Network Design
After BRDF data preprocessing, we design and train a deep autoen-

coder [HS06,Ben09] to explore the low-dimensional representation
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Table 1: The proposed autoencoder’s architecture.

Layer Kernel Stride Resolution
Input 540 x 90 x 90
Conv2D 3x3 2 256 x 45 x 45
Conv2D 3x3 2 128 x 23 x 23
Conv2D 3x3 2 64 x12x 12
ResidualBlock 3 x3 1 64 x12x 12
ResidualBlock 3x3 1 64 x12x 12
ResidualBlock 3 x 3 1 64 x12x 12

FC-10
FC-64 x 12 x 12

DeConv2D 3x3 2 128 x 24 x 24
DeConv2D 3x3 2 256 x 48 x 48
DeConv2D 4x4 2 540 x 90 x 90
Output 540 x 90 x 90

of input BRDFs. The autoencoder uses an encoder to reduce the di-
mensionality of the input data X and to extract a low-dimensional
latent feature Y for each BRDF. Mathematically, we have

Y = fo(X) (@)

where fy denotes the encoder parameterized by 6. Then, a subse-
quent decoder network transforms the latent representation Y back
into a high-dimensional output X that is expected to be similar with
the input, i.e.,

X =go(Y). A3)

The set of parameters 6 of the encoder and decoder are learned
simultaneously on the task of BRDF reconstruction.

Table 1 illustrates the network architecture of our autoencoder.
In the proposed network, three 2D convolutional layers (Conv2D)
with kernel size 3 x 3 and stride 2 are used to downsample the input
data. The resolution is halved after each convolutional layer. Three
residual blocks (ResidualBlock) [HZRS16] are inserted to improve
the performance of learning. Each residual block contains two con-
volutional layers, a leaky ReLU activation unit and a residual con-
nection. These convolutional steps extend the receptive fields of the
proposed network. To extract the low-dimensional latent vector, a
fully connected layer (FC-10) is employed. To decode the latent
vector, we expand this vector with another fully connected layer
(FC-64 x 12 x 12), followed by three deconvolutional layers (De-
conv2D).

The input of the autoencoder is the full data of a BRDF repre-
sented by reordered Rusinkiewicz half-difference angle coordinates
(04,65,,04) and reshaped into 540 x 90 x 90. In this way, we actu-
ally consider each measured BRDF as a sequence of image slices.
Once trained, the stacked image slices can be perfectly recovered
by our network. We choose such a BRDF parametrization approach
because this makes all image slices quite similar except the invalid
regions T as shown in the first row of Fig. 2. This allows us to vary

T Invalid entries represent those regions where either the incident direction
or the viewing direction is below the horizon [Burl2]. These entries are set
to zero during convolution.
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Figure 2: Demonstration of original BRDF slices of SPECULAR-
VIOLET-PHENOLIC and the reconstructed BRDF slices by our net-
work with different numbers of input slices.

the number of input slices. Even if some slices of a BRDF are miss-
ing, we can easily fill each missing slice with its nearest neighbor
and the full BRDF data can still be recovered with high fidelity due
to the high similarity of nearby slices. The subtle differences of im-
age slices are only responsible for tiny features in the corresponding
BRDF. In Fig. 2, we show the reconstructed slices of SPECULAR-
VIOLET-PHENOLIC by our network with all, 1/3 and 1/9 original
slices as the input, respectively t. As seen, the visual differences
are negligible, proving that our network is robust to incomplete or
sparsely sampled BRDF data. Please refer to the supplemental ma-
terial for more comparisons on synthesized images.

We implement and train our network using PyTorch. The net-
work is optimized by the Adam optimizer [KB14] with a learning
rate of 2 x 10~ and mini-batches of size 32. The training con-
verges after 1000 epochs which takes roughly 2 hours.

Dimensionality of the Latent Vector. The quality of recon-
struction is affected by many factors. Here, we discuss the influ-
ence of the latent vector’s dimensionality k. In general, the higher
the dimensionality, the more information will be retained after re-
construction. This is evidenced in Fig. 3 where we show the recon-
struction error (in terms of the Mean Squared Error) with respect to
the latent vector’s dimensionality. As seen from the trend of the red
curve, an obvious decrease of the reconstruction error is observed
as varying k from 5 to 10. After that, the error decreases steadily
when k increases from 10 to 40. However, as k increases, the com-
putational cost becomes large. Taking these factors into account,
we generally set k as 10 without any specific tuning.

Loss Function. The loss function plays a key role in training a
deep neural network. For our autoencoder, the goal is to recover
the compressed high-dimensional BRDF data with minimal recon-

i Currently, the slices are equally spaced.
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Figure 3: Mean squared error (evaluated on the whole training
dataset) as a function of the dimensionality of the underly subspace
for traditional PCA, improved PCA (IPCA) [NJR15] and Deep-
BRDEF; respectively. The proposed DeepBRDF clearly outperforms
PCA-based strategies in BRDF data compression.
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Figure 4: Comparison between Ly loss and L loss in designing the
loss function. The corresponding Relative Absolute Error (RelAE)
for each reconstructed result is reported.

struction error. To this end, we formulate the loss function as

L= Y |lmask(ge(fo(X))) —mask(X)]| @)
XEDuain

where X is the input BRDF data from our train dataset Dy,i,. Since
some BRDF slices contain invalid values as shown in Fig. 2, we em-
ploy a mask function to return the index set of all valid BRDF data
items. We observe that the mask function significantly improves
the reconstruction quality since many entries in the original image
slices are actually invalid. The norm || - || can be evaluated either
under L; or Ly, resulting in L loss and L; loss, respectively. We
have compared L; loss and L; loss in designing the loss function.
The differences are shown in Fig. 4. From the comparison we see
that L, loss generally surpasses L loss both qualitatively and quan-
titatively in our network. The network output generated by L; loss
is slightly biased. The error metric we choose for quantitative com-
parison is Relative Absolute Error (RelAE) which is calculated in
the image space.

3.3. Geometric Interpretation

It is widely recognized that the high-dimensional BRDF data cap-
tured from real-world materials concentrate close to a nonlinear

(© 2020 The Author(s)
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Figure 5: Geometric interpretation of DeepBRDF. The proposed
autoencoder projects all the original samples in the MERL BRDF
dataset to a low-dimensional manifold latent space with minimal
reconstruction error.

low-dimensional manifold. The proposed deep autoencoder can be
seen as a way to define and learn such a manifold, if we restrict
the dimension of the bottleneck layer to be much smaller than the
dimension of the original input. Fig. 5 illustrates that the proposed
deep autoencoder tries to project the original BRDF data (crosses)
in the MERL dataset to the latent low-dimensional manifold where
these examples concentrate. One can think of the low-dimensional
latent vector (dots) as a representation of the original BRDF which
is well suited to capture the main variations in the data.

4. Quality Analysis

This section evaluates the quality of the propose DeepBRDF
in BRDF compression by comparing with PCA-based strategies
[MPBMO03, NDMO6]. Recall that PCA-based compression for the
MERL dataset typically arranges all BRDFs as columns of a ma-
trix A € R™*" where n = 180 x 90 x 90 x 3 = 4,374,000 is the
feature number, m = 100 is sample number. This matrix is subse-
quently decomposed using Singular Value Decomposition (SVD):

k
A-p=UsV' =Y ouyv/ 5)
i=1

where k denotes the rank of the approximation which is also the
dimension of the subspace. Each row of fi € R™*" is the mean
over m rows of A. The columns of V € R"™¥ are eigenvectors
of the covariance (A — f1)” (A — 1), corresponding to the princi-
pal components of the data. Each diagonal element of £ € RF¥K s
the variance explained by the corresponding principal component.
To handle high dynamic range information, traditional PCA sim-
ply applies the natural logarithm to each element of A. Recently,
Nielsen et al. [NJR15] improved traditional PCA (i.e., IPCA) by
applying a log-relative mapping to raw BRDF values. This results
in higher reconstruction quality as compared in Fig. 6.

Fig. 6 reveals that synthesized images using BRDFs reconstruct-
ed by traditional PCA deviate greatly from the reference images
even if the dimension of the underly subspace is high (e.g., 40D),
due to the inherent linearity and high dynamic range of the original
BRDF data. IPCA of Nielsen et al. [NJR15] significantly improves

(© 2020 The Author(s)
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Figure 6: Reconstruction quality comparison of our DeepBRDF
against PCA and IPCA [NJRI5]. For PCA and IPCA, the recon-
struction error decreases as the dimensionality increases. Howev-
er, we achieve high-quality reconstruction even if the dimension of
the manifold is low (e.g., 10D). Quantitative evaluation in terms of
RelAE is provided for each reconstructed result. Please refer to the
supplemental material for more comparisons.

traditional PCA both visually and in terms of RelAE. It converges
quickly as the dimensionality increases and achieves satisfactory
results in a 40D subspace. However, our method based on Deep-
BRDF can achieve high-quality reconstruction even if the underly-
ing manifold lies in a low-dimensional subspace (e.g., 10D).

Fig. 7 reports all the reconstruction errors (in terms of RelAE)
of the materials in the MERL dataset, as compared with two PCA-
based methods. Clearly, our method outperforms IPCA on almost
all materials when the dimensionality is equal. It achieves a similar
reconstruction quality with IPCA in a 40D subspace. Fig. 3 also
provides the comparison of averaged reconstruction errors (in terms
of the Mean Squared Error) of the whole dataset.

Fig. 8 compares our method with that of Sun et al. [SJR18] which
performs PCA for the diffuse part and the specular part of a BRDF,
separately. Although it further improves IPCA, it is still inferior
than our deep-learning-based solution, especially on the materials
with changing color or complex lobes.

To show the generality and robustness of the proposed recon-
struction method based on DeepBRDF, we validate it on BRDF
data beyond what is found in the MERL dataset. In Fig. 9, the first
three BRDFs are from the EPFL dataset [DJ18] and the last two are
from [NJR15]. The comparisons reveal that our method still beats
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Figure 7: Reconstruction error comparison of our DeepBRDF
against PCA and IPCA [NJR15] with varying dimensions.
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Figure 8: Comparison between our DeepBRDF (10D) against the
reconstruction method of Sun et al. [SIRIS]. For each BRDF, we
assign 1D for its diffuse part and 9D for its specular part in the
method of Sun et al. [SJRI1S]. From left to right in each group of
closeups, we compare the method of Sun et al. [SIR18], ours and
the reference, with corresponding RelAE.

IPCA both qualitatively and quantitatively. We also notice that the
reconstruction errors are large for the EPFL dataset due to the fact
that BRDFs in the EPFL dataset behave differently from that in the
MERL dataset. We expect that including these BRDFs in training
will make our DeepBRDF more expressive and significantly reduce
the RelAE. Concerning timing performance, reconstructing the full
data of a BRDF for IPCA requires 0.15 seconds while our method
uses 0.3 seconds. Therefore, once trained, our DeepBRDF is able to
faithfully reconstruct more measured BRDFs with high efficiency.

5. Applications and Results

In this section, we demonstrate two common applications benefit-
ting from the proposed DeepBRDF.

5.1. BRDF Editing

We first show the capability of DeepBRDF in BRDF editing. Re-
call that BRDF editing is straightforward for analytic BRDFs but
has not so far been easy to do for measured BRDFs [MPBMO3,
SGM*16, TKL*16]. However, once we get a low-dimensional rep-
resentation of a material based on DeepBRDF, we can easily per-
form BRDF editing by modifying this low-dimensional vector. As
demonstrated in Fig. 10, our DeepBRDF supports smooth and per-
ceptually linear changes when interpolating between a very specu-
lar material and a diffuse one. In comparison, PCA-based strategies
yield strange artifacts when the dimensionality is low and sudden
changes in appearance even if the dimensionality is high.

IPCA(10)

Ours(10)

Reference

Figure 9: Reconstruction quality comparison between our method
and IPCA on measured BRDF's from the EPFL dataset [DJ18] (the
left three columns) and [NJR15] (the right two columns), respec-
tively.

Ours(10)  IPCA(10)

IPCA(40)

Figure 10: Linear interpolation between RED-METALLIC-PAINT
and RED-FABRIC using IPCA and our DeepBRDEF, respectively.

It should be noted that these latent vectors are not intuitive to the
user and it is not possible for the user to directly change these vector
values to achieve the desired editing effect. To alleviate this prob-
lem, we resort to a set of easy-to-understand and intuitive material
properties that are convenient for BRDF editing. Then, we achieve
the goal of BRDF editing by establishing a mapping of these at-
tributes to the latent vector and adjusting these attributes instead of
the latent vector. There are several different sets of attributes avail-
able for BRDF editing and we choose those proposed by Guo et
al. [GGPL18] because they can alleviate the color shifting prob-
lem when editing the roughness, benefiting by a diffuse-specular
separation.

The mapping between the editable attributes o and the low-
dimensional latent vector Y is formulated as

Y = ®(a). (0)

Here, o0 € R’ contains our selected attributes. Currently, we choose
three low-level attributes, i.e., diffuse albedo (a; € ]RS), specular
albedo (o € R3 ), and roughness factor (g € R). We use a Back
Propagation (BP) regression network as a subnetwork to establish
the relationship between Y and o. This subnetwork is actually a
shallow fully connected neural network, as shown in Fig. 11. It

®© 2020 The Author(s)
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Y= [Decoder ¥

Figure 11: The network architecture for BRDF editing based on
DeepBRDF. A shallow fully connected neural network is adopted as
a subnetwork to encode the mapping between the attribute vector
o and the latent vector Y. The pre-trained decoder converts Y back
to the full BRDF data X.

contains an input layer (ng = 7 neurons), a hidden layer (n; = 100
neurons) and an output layer (ny = 10 neurons). The pre-trained
decoder is connected to the output layer and converts Y back to the
full BRDF data X.

Mathematically, this subnetwork is expressed as

ny ny
Y =) wi(R(}, (Wja+by))+bo) ™

i=0 j=0
where w;/w; represents the weight of each neuron, and by/b; is
the bias. R is a leaky ReLU activation function. We train this sub-
network independently using the extracted latent vectors of 100
MERL BRDFs and the corresponding attributes provided by Guo et
al. [GGPL18]. The loss function is simply ||¥ — Y||/||Y|| in which
Y is the network output.

Since the selection of attributes & and the selection of underly-
ing low-dimensional vectors Y are uncorrelated, we can certain-
ly choose other attributes such as those proposed by Serrano et
al. [SGM*16] as the input o.. We only have to retrain the fully
connected neural network and fix the decoder. Training this sub-
network is quite efficient since it is shallow.

Editing Albedos. We have two types of albedos in our selected
attributes and they can be edited independently without influencing
each other. Since the albedo is encoded in the RGB color space,
we directly change each channel to achieve the desired color effect.
Editing the diffuse albedo is shown in Fig. 12. Notice that the color
and the shape of the highlights do not change when we alter the
diffuse albedo. In Fig. 1, we show a scene contains several edit-
ed materials by changing the diffuse albedo. This scene only con-
tains two original BRDFs (RED-PLASTIC and SILVER-METALLIC-
PAINT) from the MERL dataset. A large number of physically plau-
sible BRDFs can be generated using the proposed editing frame-
work.

Adjusting Roughness. Roughness determines the shape of the
highlight. We can achieve highlight control by adjusting the rough-
ness without changing the color of the surface. Fig. 13 lists a series
of different rendering results of decreased roughness. We compare
our method against the method of Serrano et al. [SGM™16] which
provides thirteen high-level attributes to control the material ap-
pearances. However, there exists strong correlations between some
of the attributes, e.g., glossy and metallic-like are highly correlat-
ed. This may cause confusion for the user. In Fig. 13, we use their

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Figure 12: Editing the diffuse albedo of GRAY-PLASTIC (cylinder
in the middle) while keeping other attributes unchanged.

Figure 13: Editing the roughness of RED-PLASTIC in the left-most
column. The roughness decreases from left to right. The first row
contains our editing results while the second row contains the edit-
ing results of Serrano et al. [SGM* 16].

method to edit the roughness of RED-PLASTIC. As seen, there is
obvious color shift during editing using the method of Serrano et
al. while our method is free from this.

We also make a comparison between IPCA [NJR15] and Deep-
BRDF as a low-dimensional representation in BRDF editing.
The results of increasing the roughness of SPECULAR-YELLOW-
PHENOLIC are provided in Fig. 14. Recall that the IPCA-based
representation with a low dimensionality (e.g., 10D) can not pre-
serve the appearance quite well. Therefore, the diffuse color may
change during editing. Despite that, we observe that BRDF editing
based on IPCA is unable to guarantee smooth transitions between
BRDFs. The perception of glossiness may fluctuate strangely as
shown in the bottom row of Fig. 14. In comparison, our method
based on DeepBRDF provides both smooth transitions and high
physical plausibility.

5.2. Single Image BRDF Recovery

Recovering the BRDF from a single input image is an ill-posed
inverse problem since infinitely many combinations of material re-
flectance, illumination and geometries can create the same image.
Most previous methods assume that the underlying BRDF mod-
el is analytical such that only a few parameters (e.g., roughness)
are required to estimate. Unfortunately, analytical models limit re-
flectance behaviors that can be predicted. Therefore, it is more ac-
curate to recover a tabulated data-driven BRDF model from an in-
put image. Thanks to DeepBRDEF, we are able to build a connection
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Figure 14: Editing the roughness of SPECULAR-YELLOW-
PHENOLIC with IPCA-based representation (bottom row) and
DeepBRDF-based representation (top row), respectively. The
roughness increases from left to right. Despite the color shift, in-
creasing the roughness with IPCA-based representation fails to
produce smoothing transitions across BRDFs.
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Figure 15: The network architecture for recovering BRDF data
from a single input image. A new CNN mapping the input image to
the latent space of DeepBRDF is connected to the pre-trained de-
coder. The decoder decompresses the latent vector and generates
the full data of a BRDF.

between the full data of a material and the input image, with Deep-
BRDF serving as the “bridge”.

Once the previous autoencoder has learned a latent representa-
tion for measured BRDFs, we train another CNN which learns to
map an input image to the latent space of this autoencoder. This
CNN takes as input a 256 x 256 color image which is then passed
through a series of three convolutional layers, two max-pooling lay-
ers and two fully connected layers. The network architecture of this
CNN is shown in Fig. 15. Max-pooling layers are used to preserve
more highlights details and retain color information. L; loss is used
as the loss function. During training, we use Adam optimizer with
a batch size of 64 and a learning rate of 1 x 10~3. The model con-
verges after 300 epochs.

Training Dataset. To train the above CNN, we generate 10000
synthetic images using the Mitsuba renderer [Jak10]. Each im-
age only contains one virtual object captured at different view-
points. The viewpoints have been chosen to cover various shapes of
highlights. The measured materials are all from the MERL BRDF
dataset [MPBMO3]. We render each object under sunsky lighting to
ensure that the rendered object contains less environmental infor-

29
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Figure 16: BRDF recovery results of synthetic images. The first row
shows the input images. The remained two rows show the rendered
images using the ground-truth materials and recovered materials,
respectively.
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Figure 17: Comparison with the method of Ye et al. [YLD*18] in
homogeneous BRDF recovery. For a fair comparison, the input im-
ages are all rendered with a single plane.

mation. Some training examples are provided in the supplemental
material.

Evaluation Results. We have conducted experiments on both
synthetic images and real-world data. Fig. 16 shows some samples
on synthetic images. Note that these images have not been used for
training. As seen from the pair-wise comparison with reference im-
ages generated by ground-truth materials, our method can recover
the BRDF data quite well. The recovered BRDFs preserve most
of the reflectance behaviors such as highlights and diffuse colors of
the intrinsic BRDF data. Even if the highlight is subtle in the image,
our method can sill reproduce such high-frequency information
with high fidelity. Fig. 17 compares our method with the method
of Ye et al. [YLD*18] in recovering homogeneous BRDFs. Note
that the method of Ye et al. [YLD* 18] can only handle planar ma-
terial samples. Therefore, for a fair comparison, we only use images
rendered with a plane in this figure. The results tell that our method

(© 2020 The Author(s)
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Figure 18: BRDF recovery results for real-world images.

Ye et al.

outperforms the method of Ye et al. [YLD*18] both qualitative-
ly and quantitatively. The main reason is that their method uses
an analytical Ward model [War92] to encoder surface reflectance.
Although simple, this will limit the range of appearances that can
be recovered. In contrast, our method based on measured BRDFs
from real-world materials can handle a much wider range of ap-
pearances, leading to higher recovery quality. We finally compare
our method with the method of Ye et al. [YLD*18] in recovering
BRDFs from real-world images. These input images in Fig. 18 are
taken from the Flickr Material Database (FMD) [SRA09]. Again,
our method performs better than its competitor and yields appear-
ances that are consistent with those in the input images. Currently,
our method achieves good predictions when the geometry is rela-
tively simple and the images well capture the highlights.

6. Conclusion and Future Work

We have presented DeepBRDF, a deep-learning-based representa-
tion for measured BRDFs from real-world materials. With Deep-
BRDF, we are able to encode high-dimensional tabulated BRDFs
in a nonlinear low-dimensional subspace without suffering from
large reconstruction error. This new representation has potential
benefits for many graphical and vision applications manipulating
measured BRDFs and we have demonstrated two common ones in
this paper. We have shown that the proposed DeepBRDF allows
efficient BRDF editing with smooth transitions and high physical
plausibility via building a relationship between some perceptual at-
tributes and the latent vector. We have also validated the superior-
ity of DeepBRDF in single image BRDF recovery by introducing
anew CNN learning the mapping from an input color image to the
latent vector of a BRDF, and shown that DeepBRDF clearly out-
performs previous methods relying on analytical BRDF models.
For future work, we will exploit DeepBRDF in more applications,
such as gamut mapping [SSGM17, GGPL18] and material percep-
tion [LMS*19], with DeepBRDF serving as a material appearance
similarity measure of data-driven BRDF models.

(© 2020 The Author(s)
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