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Supplementary Material

In this supplementary document we present auxiliary result for our
work “Interactively Modifying Compressed Sparse Voxel Repre-
sentations”. The main paper focuses on the core method and the
HashDAG data structure. It uses a select set of editing operations
to evaluate the performance and behaviour of the data structure.
Specifically, we have implemented several variants of the copy tool.
We demonstrate some of these variants herein. (Note: Names of
figures and sections are prefixed with an ‘S’ in this supplementary
document. References to sections and figures without the ‘S’-prefix
refer to material in the main paper.)

Sa. Compressed-domain Copies

In our main evaluation (Section 4), we use the copy operation as
a method for evaluating complex editing operations, that is, for
evaluating insertion of complex arbitrary shapes. For this reason,
we first decompress the source voxel volume and then use it as a
template for the editing operation. We only measure the time of the
insertion, and omit the decompression stage from our timings (see
description in main paper).

For a dedicated copy-tool, it is more useful to perform copies
without decompression. Such a tool would query the source DAG
directly at each step in the depth-first traversal of the editing oper-
ation (see Section 3.1). Using the DAG structure as a source has
the particular advantage that it encodes information about empty
subtrees natively. Since we only copy non-empty voxels, we can use
this information to avoid descending into nodes/subtrees that are
empty in the source DAG. This significantly cuts down on traversal
time when the source is very sparsely populated.

Figure S1 shows a comparison of different copy operation imple-
mentations. We always use six threads in this evaluation. The copy
sequence is the same as the one in Figure 8 in the main paper. We
include four variations of the copy operation:

Ref. The reference measurement is a repetition of the measurement
from Figure 8, i.e, where the source volume is first decompressed.
As in Figure 8, the source decompression time is not included.

Compr. (Full) Compressed copy with no empty-subtree skipping.
In particular, this will check each leaf voxel of the source volume
individually.

Compr. (NE) Compressed copy with empty-subtree skipping. We
check for empty subtrees on all but the last two levels (the last
two levels are encoded as a single 64-bit word).

Dec. (NE) Copy with initial decompression, but with empty-
subtree checking for all levels except the last four.

Compressed copies add, on the one hand, more complex queries
when checking the source volume. Each query needs to traverse the
source DAG to determine if a certain node is occupied, resulting in
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Figure S1: Copy performance using six threads. We compare the
results from the paper (Ref., c.f. Figure 8 in the main paper), where
the source volume was decompressed before the copy, with copy
operations that source their data directly from the compressed DAG
(Compr. variants), avoiding the decompression step. Here, early
skipping of empty subtrees in the source volume improves perfor-
mance significantly (Compr. (NE)). We include a measurement that
naively combines decompression and the empty-subtree optimization
(Dec. (NE)), indicating that further optimizations are possible.

multiple incoherent memory reads per query. Compressed copies
without empty-space skipping are thus much more costly than our
reference measurements. However, empty space skipping works
very well for this test sequence.

For a real-world application, we believe that combining the two
methods might be viable, as indicated by the Dec. (NE) measure-
ments. Dec. (NE) uses the DAG for empty-subtree checking at earlier
levels, but then switches to a decompressed volume for the levels
close to the leaves. Note that a real-world implementation would
likely want to decompress the subvolumes close to the leaves indi-
vidually, rather than decompressing the full volume upfront (which
we do in this test for simplicity).

Sb. High-frequency geometry

The San Miguel scene contains models of two (biological) trees
(see Figure 5, bottom row). The geometry of the trees shows a
much higher frequency when compared to the geometry in the Epic
Citadel scene.

In Figure S2, we display results from benchmarking copies of the
tree geometry (targeting mainly their foliage). The overall behaviour
is similar to that in Figure S1, but the performance varies much
more. The reason is apparent from the number of voxels changed
by individual editing operations. The voxel density in the trees is
generally higher (up to 2×) than that of the Epic Citadel scene, and
has a much higher variance.
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Figure S2: Performance of copies in the San Miguel scene at
(64k)3. We copy parts of the tree (focusing on foliage specifically),
with results of a (partial) copy shown in the bottom right screenshot.
Compared to the scenario in Figure 8 and Figure S1, the geometry
here is of much higher frequency and includes less empty space.
We include measurements for the three copy implementations (see
Figure S1; we omit the Compr. (Full) here), using a single thread
and six threads, respectively. Similar to Figure 8, we show the total
number of changed voxels in the plot to the bottom left. Note that
the groupings along the x-axis correspond to edits with the same
editing footprint, as selected by the user.

Sc. Transforming Copies

The editing operation traverses the destination DAG as a full tree
(i.e., including empty volumes) and determines at each step whether
or not the volume represented by the corresponding node of the
traversal is affected by the editing operation (see Section 3.1). This
continues, for parts affected by the edit, down to the leaf level, where
the method inserts/removes leaf voxels as indicated by the editing
operation. A copy tool would simply store a translation between the
destination and the source. Each time the copy tool queries whether
or not a node is affected by it, it would take that node’s volume,
apply the translation, and query the source DAG with that volume.

We demonstrate a basic transforming copy by simply replacing
the translation with an arbitrary transformation. Our implementa-
tion is kept intentionally simple, and is clearly suboptimal in many
aspects. First, it foregoes the empty-subtree optimization that is
possible with compressed copies (Section Sa). Second, we inter-
nally represent the size of the edit with a conservative axis-aligned
box that encloses the transformed volume. Consequently, a large
amount of compute power might be allocated to empty space. Third,
the transformation is performed with a full matrix multiplication
for each voxel instead of just transforming a basis. In this current
implementation, the matrix multiplication leads to an approximately
10% overhead.

Figure S3: (top/mid) Multiple copies of the statue (see Figure 1)
with different scalings and rotations applied. (bottom left) The tents
make it easy to see our “swirl”, a position-dependent transform.
The amount of rotation around the center of the tent depends on
the height above ground (the middle tent shows a plain copy for
reference). Such a transform would be non-trivial with a low-poly
mesh, as it would likely require additional tessellation (however, the
voxel version instead suffers from aliasing that is common when
transforming discretely sampled data). (bottom right) Finally, we
use the swirl to make the front right statue turn the upper body
towards the viewer.

Figure S3 shows a few select results of copies with transforma-
tions, including rotated and scaled copies. We also show a special
“swirl”, which uses a position-dependent transform.

Note that our basic implementation uses a simple non-interpolated
sampling scheme (equivalent to nearest sampling of textures). This
introduces some visible artefacts such as small holes/missing voxels,
depending on the transformation. The errors are especially notice-
able during minification, due to the thin voxel surfaces resulting from
voxelizing a triangle mesh. Better sampling schemes would likely
improve the results (e.g., one could use the hierarchical structure
of the DAG in a manner similar to mipmapping). This is however
out-of-scope for the current work.
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