High-Performance Graphics 2019

Strasbourg, France July 8 — 10, 2019

General Chairs

David McAllister, Samsung Richard Membarth, DFKI

Papers Chairs

Markus Steinberger, TU Graz Tim Foley, NVIDIA

DOI: 10.1111/cgf.13761

Sponsors

facebook Reality Labs

Sponsors

SAMSUNG

Preface

We are very pleased to present the proceedings of High-Performance Graphics (HPG) 2019. This year marks a special year for the conference, as High-Performance Graphics full-papers are included in Computer Graphics Forum for the first time. High-Performance Graphics will continue to present its full papers in journal form. While during European year full-papers will again be published in Computer Graphics Forum, during US years, full papers are published in the Proceedings of the ACM on Computer Graphics and Interactive Techniques.

2019 marks the eleventh year of the conference. High-Performance Graphics has established itself as the leading international conference on graphics hardware, systems, and algorithms. The conference brings together researchers, engineers, and architects to discuss the complex interactions of massively parallel hardware, novel programming models, efficient graphics algorithms, and novel applications.

High-Performance Graphics was founded in 2009 as the combination of two important and well-respected conferences in computer graphics: Graphics Hardware, an annual conference focusing on graphics hardware, architecture, and systems since 1986; and Interactive Ray Tracing, concentrating on interactive ray tracing and global illumination since 2006. HPG combines the best research from these two fields and covers a broad range of exciting algorithms for interactive and high-performance graphics solutions.

This year continues to reflect the traditional synthesis of ray-tracing and graphics hardware, with about half of the accepted papers being related to ray tracing. In total, 20 full-papers were submitted to HPG 2019, of which 6 were accepted, resulting in an acceptance rate of 30%. In addition to the full-paper track, HPG recently introduced a short paper track. This year, we could accept 9 short papers, which are being published in the Eurographics Digital Library. We want to express our deepest gratitude to all the 57 reviewers, 35 IPC members, and all the submitters for their your hard work in creating a successful conference.

Tim Foley and Markus Steinberger Papers chairs

Table of Contents

Rendering

HMLFC: Hierarchical Motion-Compensated Light Field Compression for Interactive Rendering <i>Srihari Pratapa and Dinesh Manocha</i>	1
An Analysis of Region Clustered BVH Volume Rendering on GPU	13
Real-Time Analytic Antialiased Text for 3-D Environments	23
Simulation and Optimization	
An Efficient Solution to Structured Optimization Problems using Recursive Matrices Darius Rückert and Marc Stamminger	33
Position-Based Simulation of Elastic Models on the GPU with Energy Aware Gauss-Seidel Algorith Ozan Cetinaslan	m41
Distortion-Free Displacement Mapping	53

International Program Committee

Attila Áfra (Intel)

Ulf Assarsson (Chalmers University of Technology)

Carsten Benthin (Intel)

Jiří Bittner (Czech Technical University in Prague)

Petrik Clarberg (NVIDIA)

Cyril Crassin (NVIDIA)

Carsten Dachsbacher (Karlsruhe Institute of Technology)

Michael Doggett (Facebook Reality Labs)

Jonathan Dupuy (Unity Technologies)

Elmar Eisemann (Delft University of Technology)

Takahiro Harada (AMD)

Yong He (Google)

Anton Kaplanyan (Facebook Reality Labs)

Won-Jong Lee (Intel)

Aaron Lefohn (NVIDIA)

Gabor Liktor (Intel)

Jacob Munkberg (NVIDIA)

Mathias Niessner (Technical University Munich)

John Owens (UC Davis)

Anjul Patney (NVIDIA)

Matt Pharr (Google)

Alexander Reshetov (NVIDIA)

Tobias Ritschel (University College London)

Marco Salvi (NVIDIA)

Peter-Pike Sloan (Activision)

Philipp Slusallek (DFKI & Saarland University)

Karthik Vaidyanathan (Intel)

Ingo Wald (NVIDIA)

Rui Wang (Zhejiang University)

Rüdiger Westermann (TUM)

Michael Wimmer (TU Wien)

Chris Wyman (NVIDIA)

Sungeui Yoon (KAIST)

Kun Zhou (Zhejiang University)

Michael Zollhöfer (Stanford University)

Additional Reviewers

Barringer, Rasmus

Behley, Jens

Bender, Jan

Bikker, Jacco

Binder, Nikolaus

Bitterli, Benedikt

Breeden, Katherine

Brunvand, Erik

Conty, Alejandro

Costa, Vasco

Davis, Tim

Denes, Gyorgy

Ernst, Manfred

Linst, Mainred

Fuetterling, Valentin

Gong, Minmin

Goswami, Nilanjan

Gu, Yan

Hadwiger, Markus

Hanika, Johannes

Herholz, Sebastian

Hinkenjann, André

Hornus, Samuel

Hou, Qiming

Huang, Jian

Hunt, Warren

Iehl, Jean-Claude

Karis, Brian

Kondapaneni, Ivo

Lier, Alexander

Loubet, Guillaume

Maierhofer, Stefan

Mara, Michael

Mark, Bill

McGuire, Morgan

Meyer, Quirin

Moon, Bochang

Mora, Frédéric

Nah, Jae-Ho

Nonaka, Jorji

Nowrouzezahrai, Derek

Olano, Marc

Patow, Gustavo

Peters, Christoph

Reuter, Patrick

Schied, Christoph

Sharpe, Brian

Ström, Jacob

Sun, Xin

Tarini, Marco

Thuerey, Nils

Toth, Robert

Vasiou, Elena

Viitanen, Timo

Walter, Bruce

Wu, Jun

Xiao, Lei

Zhao, Shuang

Author Index

Cetinaslan, Ozan41	Manzke, Michael	13
Ellis, Apollo	Pratapa, Srihari	1
Ganter, David	Ritschel, Tobias	53
Hart, John23	Rückert, Darius	33
Hunt, Warren23	Stamminger, Marc	33
Manocha, Dinesh 1	Zirr, Tobias	53

Keynotes

The Story of NVIDIA RTX Steve Parker

Managing Ultra-high Complexity in Real-time Graphics: Some Hints and Ingredients
Fabrice Neyret

Modern Movie Rendering: How Raytracing Changed my Industry

Luca Fascione (Weta digital)

The movie industry is in the last steps of completing a shift in rendering technology from rasterization-based workflows to path tracing-based ones. We will discuss how and why this change has happened, and propose ideas for where this new path may lead.

Jaakko Lehtinen (NVIDIA, Aalto University)