
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Supplementary material:

Non-Local Low-Rank Normal Filtering for Mesh Denoising

Xianzhi Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng

submitted to Pacific Graphics (2018)



2 Xianzhi Li & Lei Zhu & Chi-Wing Fu & Pheng-Ann Heng / Supplementary material: Non-Local Low-Rank Normal Filtering for Mesh Denoising

There are five parts in this supplementary material:

• The first part (Part 1) presents details about the optimization procedure described in Section 4.3 of the
main paper.
• The second part (Part 2) presents additional comparison results against the state-of-the-art methods on

synthetic models.
• The third part (Part 3) presents additional comparison results against the state-of-the-art methods on real

scanned models.
• The fourth part (Part 4) presents our results on inputs with different noise levels to evaluate its robust-

ness.
• The last part (Part 5) presents the parameter values for producing the results (shown in the main paper)

of our method and the compared methods.
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Note that both the main paper and this supplementary material have many equations. To make it clear, all
the equations from the main paper are highlighted in bold.

Part 1. More Optimization Details

Part 1-A:

To derive Eq. (8) (main paper) from Eq. (7) (main paper), we first need to establish the following
inequality, which generalizes Theorem 3.1 in [ZHY∗12]:

To prove: For any given matrix X ∈Rm×n, any matrices A ∈Rλ×m and B ∈Rλ×n, such that AAT=I and
BBT=I, for non-negative integer λ=rank(A)=rank(B), where 0≤ λ≤min(m,n), we have

f (Tr(AXBT ))≤
λ

∑
i=1

f (σi(X)) , (1)

where f (x)= (1+γ)x
γ+x ; σi(X) is the i-th singular value of X; γ is a positive scalar; and I is a λ×λ identity

matrix.

Proof: We start from the left hand side of Eq. (1). According to Theorem 3.1 in [ZHY∗12], we have the
inequality below:

Tr(AXBT )≤
λ

∑
i=1

σi(X) . (2)

Since f (x) is a monotonically increasing function, it has the following property: f (x1 + x2) ≤ f (x1)+
f (x2) for any scalar x1 ≥ 0 and x2 ≥ 0. Hence, by Eq. (2), we can obtain

f (Tr(AXBT ))≤ f (
λ

∑
i=1

σi(X)) (∵ f is monotonically increasing)

≤
λ

∑
i=1

f (σi(X)) (by f (x1+x2)≤ f (x1)+ f (x2)) . �

Part 1-B:

With the inequality we proved in Appendix Part 1-A, we can re-write the truncated γ norm ||
D||tg in
Eq. (6) (main paper) as

||
D||tg =
N

∑
i=λ+1

(1+ γ)σi(
D)
γ+σi(
D)

(from Eq. (6) of the main paper)

=
N

∑
i=1

(1+ γ)σi(
D)
γ+σi(
D)

−
λ

∑
i=1

(1+ γ)σi(
D)
γ+σi(
D)

= ||
D||γ−
λ

∑
i=1

f (σi(
D)) (by definition of f in Eq. (1))

= ||
D||γ− max
AAT=I,BBT=I

f (Tr(A
DBT )), (by Eq. (1))

(3)
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where ||
D||γ = ∑
N
i=1

(1+γ)σi(
D)
γ+σi(
D) is the γ norm [KPC15]. Note that maxAAT=I,BBT=I f (Tr(A
DBT )) =

∑
λ
i=1 f (σi(
D)), where A and B are defined as in Eq. (9) (main paper). By replacing the truncated γ norm

in Eq. (6) (main paper) with the two terms in the last row of Eq. (3), the optimization model for computing

D in Eq. (7) (main paper) can be reformulated as

min

D
||
D||γ− max

AAT=I,BBT=I
f (Tr(A
DBT ))+

µ
2
||
M−
D||2F ,

which is Eq. (8) in Section 4.3 of the main paper. �

Part 1-C:

This part provides the details on how we derive a tractable optimization procedure to solve Eq. (13)
(main paper) based on the iteratively re-weighted least squares (IRLS) technique. Specifically, we first
decompose the non-linear term f (Tr(At
D(Bt)T )) in Eq. (13) (main paper) as

f (Tr(At
D(B
t)T )) = Tr( f (At
D(B

t)T ))

= Tr(
(1+ γ)At
D(Bt)T

γ+At
D(Bt)T )

= Tr(
1+ γ

γ+At
D(Bt)T · (A
t
D(B

t)T ))

= Tr(� · (At
D(B
t)T )) ,

(4)

where matrix � is (1+ γ)/(γ+At
D(Bt)T ). Thanks to the decomposition, we can solve the optimization
in Eq. (13) (main paper) using a two-phase scheme:

Phase 1: we take the current estimate of 
D (together with At , Bt , and γ) to compute matrix �.

Phase 2: we compute 
D in the next iteration by

min

D
− Tr(� · (At
D(B

t)T ))+
µ
2
||
M−
D||2F +

β

2
||
D−Wk +

1
β
Zk)||2F , (5)

which admits a closed-form solution:


D =
µ
M+(At)T�TBt +βWk−Zk

µ+β
. (6)

The advantage of the above two-phase scheme is its fast computation. We empirically set the number of
iterations in the scheme as two in all the experiments to tradeoff between computation time and mesh
denoising quality.

Part 1-D:

This part provides the details on how we minimize the objective function in Eq. (14) (main paper) using
difference of convex (DC) programming [TA97] [KPC15].

Specifically, we let L = 
k+1
D + 1

β
Zk, and Ûdiag{σL}V̂T to be the SVD of matrix L. Then, Wk+1, the

solution of the optimization in Eq. (14) (main paper), is given by Wk+1=Ûdiag{σ∗}V̂T , where σ∗ is the
converged local optimal of variable σ after H iterations (H=2 in all the experiments). At the (h+1)-th
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(h ∈ [1,H]) inner iteration, σh+1 is computed by the minimization below:

min
σ≥0

< yh,σ >+
β

2
||σ−σL||2 , (7)

whose closed-form solution is given by

σ
h+1 = max(σL−

yh

β
,0) , (8)

where yh = ∂ f (σh) is the gradient of f () with respect to σh.
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Part 2. Additional Denoising Results on Synthetic Models

In this part, we show additional denoising results (Figures A-D) on synthetic models (prepared with vari-
ous noise) not presented in the main paper.

Figures A and B show the denoising results for input models corrupted with Gaussian noise; while in
Figures C and D, the input models are corrupted by impulsive noise. These comparisons further demon-
strate that our approach can better preserve fine details than the other methods regardless of the noise dis-
tributions and noise levels. Even for input meshes with low triangle counts (e.g., PIERROT), our method
can still generate promising results.

Figure A: Additional comparison results on VASELION prepared with Gaussian noise level of 0.3el .

Table 1: Method parameters for generating the results shown in Figure A.

Model
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

VASELION 0.40 20 15 0.00001 0.20 20 10 0.40 12 5
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Figure B: Additional comparison results on JULIUS prepared with Gaussian noise level of 0.2el .

Table 2: Method parameters for generating the results shown in Figure B.

Model
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

JULIUS 0.45 6 4 0.000003 0.45 5 4 0.33 8 8
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Figure C: Additional comparison results on PIERROT prepared with impulsive noise level of 0.3el .

Table 3: Method parameters for generating the results shown in Figure C.

Model
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

PIERROT 0.20 10 5 0.05 0.05 5 5 0.22 6 4
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Figure D: Additional comparison results on BUNNY prepared with impulsive noise level of 0.3el .

Table 4: Method parameters for generating the results shown in Figure D.

Model
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

BUNNY 0.35 18 5 0.000016 0.15 10 10 0.30 8 10
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Part 3. Additional Denoising Results on Real Scanned Models

In this section, we present and compare denoising results generated by our method and other methods on
more real scanned models employed by CNR.

Figure E: Additional comparison results on real scanned models.

Table 5: Method parameters for generating the results shown in Figure E.

Models
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

CONE (1st row) 0.60 20 20 0.10 0.60 20 20 0.60 50 300
CONE (2nd row) 3.00 150 120 1.50 3.00 60 50 3.50 30 80
CONE (3rd row) 3.00 150 200 1.30 3.00 50 60 4.00 40 60
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Part 4. Robustness to noise levels

In this section, we investigate the robustness of our method by applying it to input models with varying
noise levels. Figures F and G plot the filtering results for input models corrupted with Gaussian noise and
impulsive noise, respectively. From the results, we can see that our method can effectively and consistently
recover the underlying fine details in the presence of different amount of Gaussian noise and impulsive
noise, even for large noise levels.

Figure F: Denoising results of our method on the synthetic noisy NICOLO models with varying amount of
Gaussian noise: 0.3el to 0.9el .

Figure G: Denoising results of our method on the synthetic noisy DINO models with varying amount of
impulsive noise: 0.3el to 0.9el .
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Part 5. Parameters used for various results shown in Main Paper

This part presents the parameter values for the denoising results shown in our main paper. To begin with,
we first explain the tuned parameters in the compared methods (including BLNF, LM, and GNF) and also
in our method.

Explanation of parameters in various methods:

• BLNF

– σs: the variance parameter for the spatial kernel.
– kiter: the number of iterations for normal update.
– viter: the number of iterations for vertex update.

• LM

– λ: weight for the L0 term in the target function.

• GNF

– σr: the variance parameter for the range kernel.
– kiter: the number of iterations for normal update.
– viter: the number of iterations for vertex update.

• Our method

– σM: the variance parameter for the input noise.
– Nk: the number of the most similar vertices (patches).
– viter: the number of iterations for vertex update.

Then, Tables 6 to 9 below present specific values of the main parameters mentioned above for the denoised
results (Figures 7, 8, 9, and 12 of the main paper) of different methods.

Table 6: Parameters for Figure 7 in the main paper.

Models
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

CHINESE LION 0.20 15 10 0.01 0.04 6 5 0.12 6 4
ARMADILLO 0.20 20 10 0.01 0.15 8 6 0.28 8 6

IGEA 0.35 10 5 0.00003 0.20 10 5 0.39 14 7
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Table 7: Parameters for Figure 8 in the main paper.

Models
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

BUSTE 0.20 30 20 0.14 0.10 8 6 0.20 6 7
NICOLE 0.50 10 10 1.50 0.18 10 5 0.24 6 10

GARGOYLE 0.35 20 10 0.03 0.30 10 5 0.32 8 10

Table 8: Parameters for Figure 11 in the main paper.

Models
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

HAND 0.10 20 10 0.01 0.10 20 10 0.05 6 8
FACE 0.15 20 10 0.05 0.10 10 20 0.08 6 10

KITTEN 0.28 10 10 0.01 0.10 20 10 0.12 8 10

Table 9: Parameters for Figure 13 in the main paper.

Models
Methods

BLNF LM GNF Our method
σs kiter viter λ σr kiter viter σM Nk viter

BOY 0.50 20 20 0.20 0.60 20 20 0.75 100 210
CONE 0.35 20 30 20 0.35 20 20 0.70 120 250
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