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1. Proof A

This section provides the proof that single-linkage clustering (SL)
with correlation coefficients as similarity measure produces the
same results as our clustering algorithm with the correlation edge
measure (CEM). In the following, X = {x1, . . . ,xn} denotes the set
of points getting clustered and ρi j is the correlation between two
points xi,x j ∈ X .

In every iteration step, SL merges the two clusters A and B with
the highest similarity, which is defined as the highest similarity be-
tween two points xi ∈ A,x j ∈ B. Therefore, it finds the pair of yet
unmerged points that have the highest correlation. CEM does ex-
actly the same by first sorting all edges by similarity and then merg-
ing them successively. The only difference is that instead of consid-
ering all possible point pairs, CEM only merges along edges of the
beta-skeleton with 1≤ β≤ 2. Since graphs resulting from smaller β

are always subgraphs of ones with higher β, we only have to prove
similarity for the neighborhood graph with the fewest edges, i.e.,
the relative neighborhood graph (RNG) with β = 2.

Both clustering algorithms start with each point in its own sep-
arate cluster. Assume that up to a certain iteration, both clustering
hierarchies are equivalent and C(x) ⊆ X denotes the cluster con-
taining point x ∈ X . Let A⊂ X and B⊂ X be two different clusters
with points xi ∈ A and x j ∈ B. To prove equality of the clusterings,
let us compare the two following statements:

I the next two cluster getting merged by SL are A and B due to the
highest similarity between xi and x j

II the next two clusters getting merged by CEM are A and B due to
the edge between xi and x j corresponding to the highest correla-
tion

I→ II

Let us assume statement (I) is true. It follows that

ρi j = max{ρab |C(xa) 6=C(xb)}. (9)

To show that these points have to be connected in the RNG, we
have to look at the beta-lune. Two points are connected in the RNG
if and only if their beta-lune does not contain a third point xk. As
of Formula 5, the test for containment in the hyperspherical lune
reduces to

(2−β)(1−ρki)+β(ρi j−ρk j)< 0

∧ (2−β)(1−ρk j)+β(ρi j−ρki)< 0.

For β = 2, this simplifies to

2 · (ρi j−ρk j)< 0 ∧ 2 · (ρi j−ρki)< 0

⇔ ρi j < ρk j ∧ ρi j < ρki.

If there would be a point xk fulfilling this criterion, thus causing the
edge between xi and x j to not be part of the neighborhood graph,
either one of the two conditions would contradict Implication 9.
There also can be no edge with higher correlation, as this would
also violate Implication 9.

¬ I→¬ II

To complete the proof, let us now assume that statement (I) is false.
That means there has to be a pair of points xk, xl with C(xk) 6=C(xl)
and

ρkl = max{ρab |C(xa) 6=C(xb)}< ρi j.

With the same implications as above, there has to be an edge be-
tween xk and xl in the neighborhood graph, which causes statement
(II) to be false as well.

This proves equality of the two clusterings. �

2. Agglomorative Correlation Clustering

Algorithm 1: Agglomorative Correlation Clustering
input : G = (V,E) - Neighborhood Graph with vertices

V = {v1, . . . ,vn} and edges E ⊆V ×V
measures - Array of edge measures

output: Dendrogram

// Initialize data structures
d← Dendrogram with n nodes;
uf← UnionFind of size n;
repr← Array of size n;
for i← 1 to n do

repr[i] = i;

// Main loop
sort edges E by measures;
foreach edge (v1,v2) in E do

r1← uf.root(v1);
r2← uf.root(v2);
if r1 6= r2 then

newRoot← uf.merge(r1,r2);
newVertex← d.addVertex();
d.connect(newVertex,repr[r1]);
d.connect(newVertex,repr[r2]);
repr[newRoot]← newVertex;

return d;
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