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This supplementary material gives the mathematical proofs for the various theorems and corollaries.

1 Proof of the wavejets decomposition

Equation 1 of the paper contains terms such as 2*~7y7, which can be rewritten as linear combinations of
powers of %/,
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Using Equations 2 of the paper we get:
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2 Proof of the stability theorem (theorem 1)

Let us first recall the setting of this theorem. Let us call 7 (p) the true tangent plane and P(p) the chosen
parameterization plane, also passing through p. One can find an axis (p,u) and angle v such that the
rotation of axis (p,u) and angle v transforms P(p) into 7 (p). Since p belongs to both planes, (p,u) is
aligned with line 7(p) N P(p). Let us parameterize T (p) and P(p) so that a point of the surface has



coordinates (x = rcosf,y = rsinf, h) over T (p) and (x = Rcos©,y = Rsin©, H) over P(p). Let us first
assume that 6 (resp. ©) corresponds to the angular coordinate of point ¢ with respect an origin vector
aligned with » in 7 (p) (resp. with u in P(p)). We will state our main theorem in this setting and the
generalization will follow naturally. In this setting the surface wavejets decomposition at point g writes
> o> he Prnrtei™ over the tangent plane T (p) and as Y oo S 77 Pk ,,7Fet© over P(p). We can
express the @y, ,, coefficients with respect to ¢, and the rotation angle 7. To generalize the theorem to
arbitrary origin vectors for the angular coordinate in 7 (p) and P(p) for 6§ and ©, recall that a change of
reference vector in T (p) amongs to a phase shift p, one can always change the origin vector, compute the
wavejets coefficients ¢y, and recover the real wavejets coefficients as ¢y ,,e?™* (similar formulas hold for
Dy ).

Theorem 1. The new coefficients @, can be expressed with respect to the ¢y n as follows:
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Q11 =07, = 5¢ 7 +0(7) (3)
cbk,n = d)k,n + ’VF(kv TL) + O(’Y)
Proof. The rotation matrix R of axis w = (1,0,0)p and angle ~ transforms the coordinates (X,Y, H)

of a surface point p in the parameterization of P(p) into coordinates (x,y, h) in the parameterization of
P(p). Let us assume that 42 is small enough. Then the rotation has the following expression:
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Thus, relation between (z,y, f(z,y) = h) and (X,Y, F(X,Y) = H) is the following:

r = X+toly)
y = Y —9qH+o(y) (5)
h = ~AY +H+o(v)

Let us switch to polar coordinates (r,8) (resp. (R, ©)) such that x = rcosf and y = rsin@ (resp.
X =Rcos©® and Y =sin®). Let z = 2 + 4y and Z = X 4 4Y. Equation (5) yields:
h = H +~vRT(©) + o(y) (6)
With 7(0) = § (H(07%) 4 ~H(0-%)),
The following equation for r follows from z = x + 4y and Equation 5:
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Similarly, we have for all n € N:
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which yields, since e = (z/|z|)" = (z/r)™:
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Combining Equations 7 and 9, and setting Ay, = We*i% yields:
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Plugging Equation 10 in Equation 6, one has:
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Recall that if £ and n do not share the same parity, ¢, = 0, then if m = —j — 1, ¢j41,m41 = 0.
Furthermore by definition of A, if m = —j — 2 then A1 ;41 = 0. Thus we can write:
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Finally:
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A similar computation yields:
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Since H = ;2 Zﬁz_k R¥e® | by coefficient identification one has ®q o = ¢ + o(y) and ;1 =
p11+%e 2 +0(7), however since ¢o,0 = ¢1,1 = 0 (since T (p)) is the tangent plane, we have: ®q = o(7)
and @171 = 1 i3 + ("Y)



For k > 1, one has the following relationship:
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3 Proof of Corollary 1

Corollary 1. It follows from Theorem 1 that v = 2|®1 1|+ o(y) and arg(®1,1) = § + o(y). Thus if the
rotation is small enough, it is possible to correct the parameterization by performing a rotation along axis
(1,0,0) with rotation angle 2|®1 1].

Proof. From Theorem 1, we have @11 = Ze %2 +0(7). Then |®1 1] = v/2+0(7) and arg®y 1 = —Z+o(7).
To recover the tangent plane, one has thus to perform a rotation of angle 2|®; ;| around the rotation axis
(p,u). O

4 Proof of Corollary 2

Corollary 2. One can recover the true coefficients ¢y, p, iteratively by the following formula:
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In particular, ¢2,0 = Poo+0(7), 2,2 = Pao+0(y) and ¢o,_o = @ _o+0(7y) which means that the mean
curvature is also stable in o(7y).

Proof. Let us rewrite Equation 17 as:
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e For j =0, Sokn = Orn(P1,1411 + 1,147 1) since ¢11 = ¢1 1 =0.

o For j=k—1, sp—16m = P1,1(PrnArn + ¢k,n*2AZ,—n+2) =0 since ¢11 =0

o For j =k, spun=000(Prt1n+1A—k+1n+1+ ¢k+17n71AZ+17_n+1) = 0 since ¢p0 =0
Equation 17 thus yields:
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One can notice that all ¢;, coefficients appearing in the sum are such that [ < k. The correction
procedure is straightforward: assuming we have corrected all ®;,, for all | < k and —I < n <1 and have
therefore access to ¢; ,, for all [ < k and —I < n <, up to some error in o(y), one can use Equation 20
to correct coefficients @y, ,, for all —k <n <k. O



