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1. Gradient of the V-F Signed Distance

Here we give the derivation of the gradient of vertex-face signed
distance function here. If we write d = x0 −∑3

i=1 βixi, then vertex-
face signed distance is

D(x) = n̂ ·d, (1)

where x1, x2 and x3 are face vertices, and the face normal is de-
fined as n̂ = n/|n|, and n = (x2 −x1)× (x3 −x1). We first give the
expression for ∂n
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This skew-symmetric matrix is associated with vector x23 in doing
the cross product with any vector w ∈ R3,
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Moreover,
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Writing the 3× 3 matrix 1
|n| (I−

nnT

|n|2 ) as N, together with Equ. 2
and 3 we have
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= N(x23 ×d)−β1n̂ (4)

Similarly there are

Dx2 = N(x31 ×d)−β2n̂, (5)

Dx3 = N(x12 ×d)−β3n̂, (6)

Dx0 = n̂ (7)

Obviously, there is
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Dxi = 0. (8)

2. Gradient of the E-E Signed Distance

Here we give the derivation of the gradient of edge-edge signed
distance function here. The collision normal is defined as n = (x1−
x0)× (x3 −x2), and we write d = β0x0 +β1x1 −β2x2 −β3x3, then

D(x) = n̂ ·d (9)

The expression for ∂n
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is
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Similarly, there are
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Due to Equ. 3 there is
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= N(x23 ×d)+β0n̂ (11)

Similarly, there are

Dx1 = −N(x23 ×d)+β1n̂ (12)

Dx2 = −N(x01 ×d)−β2n̂ (13)

Dx3 = N(x01 ×d)−β3n̂ (14)

Also, there is
3

∑
i=0

Dxi = 0. (15)

3. Conservation of the Momentum

In Equ.(4) of the paper, the diagonal mass matrix M is meant to
maintain the center of mass, so that the angular momentum is least
affected when used in a physical simulation. The linear momentum
is naturally conserved within each stencil: letting ∆xi denote the
position change, there is ∑(mi ∗∆xi) = λ∑Dxi = 0 due to Equ. 8
and Equ. 15 in this supplementary material. Further, scale the above
equation by 1

∆t yields ∑(mi∗∆vi) = 0, which means the momentum
of the stencil does not change.

submitted to Pacific Graphics (2017)


