Derivative of Gromov—Wasserstein
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Computation of Gromov—Wasserstein (GW) distances alternates between two steps, as speci-
fied in Algorithm 1. The algorithm is adjusted to our purpose by fixing the number of GW iterations
and constraining v,w. The first step is a closed-form exponential formula applied independently to
every element of the matrix variable. The other is projection onto the cone of doubly-stochastic
matrices. We differentiate the result of GW distance computation by providing derivatives of the
two steps independently and composing the formulas during alternation. The exponential is dif-
ferentiable using formulaic techniques; we work out the derivative of doubly-stochastic projection
below.

function GROMOV-WASSERSTEIN(lg, Do, 1, D, o, n,T0)
// Computes a local minimizer I" of GW distance
fori=1,2,....1
K < exp(Do [uo] T [u] DT /et o (1)~
I v, w' <— SINKHORN-PROJECTION(K"; Ug, 1)
return I/,

function SINKHORN-PROJECTION(K; Uo, 1)
// Finds T minimizing KL(T'|K) subject to T € .# (1o, 1)
v,w<— 1
for j=1,2,3,...
v 10K(w®u)
w 10K (ve )
vv/ %
1
17w
return [v] K [w],v,w

W< w

Algorithm 1: Iteration for finding regularized Gromov-Wasserstein distances. &, denote ele-
mentwise multiplication and division.



1 Derivative with respect to K;;

Suppose we wish to rescale a kernel matrix K to be doubly stochastic (Sinkhorn projection step).
We can think of this as solving the following quadratic system of equations for I" and dual vectors
v,w (we don’t use superscript here for simplicity, we assume all the variables were computed at the
same iteration):

= [v]K[w] (1)
Fp=[p]Kwou) =1 (2)
T o =[wlK (v u) =1 3)
1Tv=1"w 4)

We differentiate these expressions with respect to an element K;;. Then,

dI’ dv T dw
- K wilee! K| ==
dK;; |[dKij]] b viw(ere;) + 1 ﬂdKijﬂ ©)
dv dw
0= T [K(we@p)]+ (viw;u;)ei+ [V K [1] iK; (6)
dw dv
0= iK; @K (v& po)] + (viw;or)ej + W] KT [1o] iK;, )
dv dw
1m— =1 8
dK;; dK;; ®)
Let’s organize the second two relationships as a matrix equation:
[[K(W§ ) [[TV]] K[u] av/a; —Viwjljei
WK [uo] [[K (v®/,to)]] ( dW/dKl-j- ) = | —viwjloie; )
1’ -17 ! 0

We can simplify this by leveraging the fact that the diagonal elements of this block 2 x 2 matrix
appear in the Sinkhorn conditions. In particular, K(w®@u) =1@vand K ' (v® ty) = 1@ w. Hence,
we can write the expression as:

D BRI e\ [ e
K tl 1) () = { v (10
lT _lT Y 0

We factor to make it look symmetric:

[[V]] 0 O [[V@V@,Uo]]il K o —Vviwjle;
( 0 [w] O ) KT [woweu]™! ( [[%0]] [[2]] > < jWZI;]. >— ( —ViwjHoie j )
0 0 1 (lopo)” —(1ow)’ 0
(11



The two vectors on the right-hand side are sparse except element i in the first half and element j in
the second half. So, we can invert the first matrix and put the diagonal matrix into the unknowns:

[veveu] ™ K
KT [[w®w®,u]]*1 ( [1o] 4v/ax;; ) - ( —wijlljei > (12)
(1owpo)"  —(owp)' Il ar ke
Denote the left inverse of the left matrix as
[veveu] ™ K i 4 B
KT weoweou] ' | = ( C E ) (13)
(lopo)’  —(owp)’
Then,
dv/dK,'j . [[1@”()]] 0 A B —wilje; (14)
dw/dK;; - 0 1o u] C E —Villpie;

_ ( 1@ uo] 0 > < —WjljAcolumn i — ViloiBeolumn j ) (15)
0 Mou] —W;iljiCeolumn i — ViloiEcolumn j

2 Gradient with respect to K

Returning to our original derivative, we extract a single element

drkg . dvk dw Wy

= K W i0;.0; K 16
K, _ dK, Wi+ Viw j00jp + Vi kZdK,j (16)

L

In the end, we know ar L for some function L and want d‘ﬁ{ Write the gradient of L with respect

to I"as VrL. We start computlng

dK, ! MK

dvy dwy
_ Z V[‘L kg |:d7KkgWg+V,W]5,k314+kakgdK
ij

Breaking this down term by term,

Y (VrL)i Al

T
(K X VFL)W
(g )

dv

“ Kiowy = K-
ij

T

= (_WjujAcolumn i Vi.UOcholumn j) Hl @ ,UO]] (K® VFL)W

Y (VeL)kviw;68js = (VrL)ijviw,
il



dwy dw
Z(VFL)kekakz v (K®VrL)—
194 d ij ij

= VT (K & VFL) [[1 © [.L]] (_Wj,ujccolumn i~ Vi.uOiEcolumn j)

Getting rid of the ij index (and applying symmetry of A and C) shows

VkL= —-A[1ou](K@VrLwweu)" — (v u)[(C[1o uo] (K@ VrL)w] "
+[v] VrL[w] (17)
—B[lopu](K®VrL) viweu)" —(ve u)E[1ou] (KeVrL) v’

3 Exponential formula

Given VL we would like to compute Vi-1L, the derivatives with respect to I" from the previous
iteration. In the rest of this section K will be used for K* and I" for "1

K = exp (Do [uo] T [u] D" -n/a) o111 (18)
dL  « dL dKy
dl“,-j N % dKy dl“ij (19
B 58—y (1) (D) exp (Do L] CTul D" -n/a) + (20)
dl“,-j = ki ki

exp (Do [uol T 1] D" -n/ax), 7 (Do luolly [[u]DT] T
VrL = (1-1)VkL& (1) @exp (Do [uo T[] DT -n/a)+ 1)

TviLe ([uo] g (T @exp (Do[uol T[] -0 /) ) D[]

4 Gradient with respect to D

Given VL, we can compute VpL by cumulating the following gradients throughout the iterations:

o =Ty "exp (Do [T [u1D /@) &i?) (Do Lol T [ull, @)
d‘g;j = zk: dcjéa Zrl Texp <D0 Tuo] T [u] D' 77/05) i [Do [10] T [[“]ij (23)
VoL =1 (VLo T N @exp (D[l Il D -n/a)) Dol Tlul  (24)

We also add the transposed matrix of derivatives to enforce symmetry.
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