
Derivative of Gromov–Wasserstein

Danielle Ezuz,1 Justin Solomon,2 Vladimir G. Kim,3 and Mirela Ben-Chen1

1Technion - Israel Institute of Technology
2MIT

3Adobe Research

Computation of Gromov–Wasserstein (GW) distances alternates between two steps, as speci-
fied in Algorithm 1. The algorithm is adjusted to our purpose by fixing the number of GW iterations
and constraining v,w. The first step is a closed-form exponential formula applied independently to
every element of the matrix variable. The other is projection onto the cone of doubly-stochastic
matrices. We differentiate the result of GW distance computation by providing derivatives of the
two steps independently and composing the formulas during alternation. The exponential is dif-
ferentiable using formulaic techniques; we work out the derivative of doubly-stochastic projection
below.

function GROMOV-WASSERSTEIN(µ0,D0,µ,D,α,η ,Γ0)
// Computes a local minimizer Γ of GW distance

for i = 1,2, . . . , I
Ki← exp(D0 Jµ0KΓi−1 JµKD>η/α)⊗

(
Γi)∧(1−η)

Γi,vi,wi← SINKHORN-PROJECTION(Ki; µ0,µ)
return ΓI,

function SINKHORN-PROJECTION(K; µ0,µ)
// Finds Γ minimizing KL(Γ|K) subject to Γ ∈M (µ0,µ)

v,w← 1
for j = 1,2,3, . . .

v← 1�K(w⊗µ)
w← 1�K>(v⊗µ0)

v← v/
√

1>v
1>w

w← w
√

1>v
1>w

return JvKK JwK ,v,w

Algorithm 1: Iteration for finding regularized Gromov-Wasserstein distances. ⊗,� denote ele-
mentwise multiplication and division.

1

1 Derivative with respect to Ki j

Suppose we wish to rescale a kernel matrix K to be doubly stochastic (Sinkhorn projection step).
We can think of this as solving the following quadratic system of equations for Γ and dual vectors
v,w (we don’t use superscript here for simplicity, we assume all the variables were computed at the
same iteration):

Γ = JvKK JwK (1)
Γµ = JvKK(w⊗µ) = 1 (2)

Γ
>

µ0 = JwKK>(v⊗µ0) = 1 (3)

1>v = 1>w (4)

We differentiate these expressions with respect to an element Ki j. Then,

dΓ

dKi j
=

s
dv

dKi j

{
K JwK+ viw j(eie>j)+ JvKK

s
dw

dKi j

{
(5)

0 =
dv

dKi j
⊗ [K(w⊗µ)]+(viw jµ j)ei + JvKK JµK

dw
dKi j

(6)

0 =
dw

dKi j
⊗ [K>(v⊗µ0)]+(viw jµ0i)e j + JwKK> Jµ0K

dv
dKi j

(7)

1>
dv

dKi j
= 1>

dw
dKi j

(8)

Let’s organize the second two relationships as a matrix equation: JK(w⊗µ)K JvKK JµK
JwKK> Jµ0K

q
K>(v⊗µ0)

y

1> −1>

(dv/dKi j

dw/dKi j

)
=

 −viw jµ jei
−viw jµ0ie j

0

 (9)

We can simplify this by leveraging the fact that the diagonal elements of this block 2× 2 matrix
appear in the Sinkhorn conditions. In particular, K(w⊗µ) = 1�v and K>(v⊗µ0) = 1�w. Hence,
we can write the expression as: JvK−1 JvKK JµK

JwKK> Jµ0K JwK−1

1> −1>

(dv/dKi j

dw/dKi j

)
=

 −viw jµ jei
−viw jµ0ie j

0

 (10)

We factor to make it look symmetric: JvK 0 0
0 JwK 0
0 0 1


 Jv⊗ v⊗µ0K−1 K

K> Jw⊗w⊗µK−1

(1�µ0)> −(1�µ)>

(Jµ0K 0
0 JµK

)(
dv/dKi j

dw/dKi j

)
=

 −viw jµ jei

−viw jµ0ie j

0


(11)

2

The two vectors on the right-hand side are sparse except element i in the first half and element j in
the second half. So, we can invert the first matrix and put the diagonal matrix into the unknowns: Jv⊗ v⊗µ0K−1 K

K> Jw⊗w⊗µK−1

(1�µ0)> −(1�µ)>

(Jµ0Kdv/dKi j

JµKdw/dKi j

)
=

(
−w jµ jei
−viµ0ie j

)
(12)

Denote the left inverse of the left matrix as Jv⊗ v⊗µ0K−1 K
K> Jw⊗w⊗µK−1

(1�µ0)> −(1�µ)>


+

:=
(

A B
C E

)
(13)

Then, (
dv/dKi j

dw/dKi j

)
=

(
J1�µ0K 0

0 J1�µK

)(
A B
C E

)(
−w jµ jei
−viµ0ie j

)
(14)

=

(
J1�µ0K 0

0 J1�µK

)(
−w jµ jAcolumn i− viµ0iBcolumn j
−w jµ jCcolumn i− viµ0iEcolumn j

)
(15)

2 Gradient with respect to K

Returning to our original derivative, we extract a single element

dΓk`

dKi j
=

dvk

dKi j
Kk`w`+ viw jδikδ j`+ vkKk`

dw`

dKi j
(16)

In the end, we know dL
dΓk`

for some function L and want dL
dKi j

. Write the gradient of L with respect
to Γ as ∇ΓL. We start computing

dL
dKi j

= ∑
k`
(∇ΓL)k`

dΓk`

dKi j

= ∑
k`
(∇ΓL)k`

[
dvk

dKi j
Kk`w`+ viw jδikδ j`+ vkKk`

dw`

dKi j

]
Breaking this down term by term,

∑
k`
(∇ΓL)k`

dvk

dKi j
Kk`w` =

(
dv

dKi j

)>
(K⊗∇ΓL)w

=
(
−w jµ jAcolumn i− viµ0iBcolumn j

)> J1�µ0K(K⊗∇ΓL)w

∑
k`
(∇ΓL)k`viw jδikδ j` = (∇ΓL)i jviw j

3

∑
k`
(∇ΓL)k`vkKk`

dw`

dKi j
= v>(K⊗∇ΓL)

dw
Ki j

= v>(K⊗∇ΓL)J1�µK
(
−w jµ jCcolumn i− viµ0iEcolumn j

)
Getting rid of the i j index (and applying symmetry of A and C) shows

∇KL = −AJ1�µ0K(K⊗∇ΓL)w(w⊗µ)>− (v⊗µ0)[(C J1�µ0K(K⊗∇ΓL)w]>

+JvK∇ΓLJwK
−BJ1�µK(K⊗∇ΓL)>v(w⊗µ)>− (v⊗µ0)[E J1�µK(K⊗∇ΓL)>v]>

(17)

3 Exponential formula
Given ∇KiL we would like to compute ∇Γi−1L, the derivatives with respect to Γ from the previous
iteration. In the rest of this section K will be used for Ki and Γ for Γi−1.

K = exp
(

D0 Jµ0KΓJµKD> ·η/α

)
⊗Γ

∧1−η (18)

dL
dΓi j

= ∑
kl

dL
dKkl

dKkl

dΓi j
(19)

dKkl

dΓi j
= δi==kδ j==l (1−η)(Γ)−η

kl exp
(

D0 Jµ0KΓJµKD> ·η/α

)
kl
+ (20)

exp
(

D0 Jµ0KΓJµKD> ·η/α

)
kl

η

α
[D0 Jµ0K]ki

[
JµKD>

]
jl

Γ
∧1−η

∇ΓL = (1−η)∇KL⊗ (Γ)∧−η ⊗ exp
(

D0 Jµ0KΓJµKD> ·η/α

)
+ (21)

η

α
∇KL⊗

(
Jµ0KD>0

(
Γ
∧1−η ⊗ exp

(
D0 Jµ0KΓJµKD> ·η/α

))
DJµK

)
4 Gradient with respect to D

Given ∇KiL, we can compute ∇DL by cumulating the following gradients throughout the iterations:

dKkl

dDi j
= Γ

1−η

kl exp
(

D0 Jµ0KΓJµKD> ·η/α

)
kl

δi==l
η

α
[D0 Jµ0KΓJµK]k j (22)

dL
dDi j

= ∑
k

dL
dKki

η

α
Γ

1−η

ki exp
(

D0 Jµ0KΓJµKD> ·η/α

)
ki
[D0 Jµ0KΓJµK]k j (23)

∇DL =
η

α

(
∇KL⊗Γ

∧1−η ⊗ exp
(

D0 Jµ0KΓJµKD> ·η/α

))>
D0 Jµ0KΓJµK (24)

We also add the transposed matrix of derivatives to enforce symmetry.

4

	Derivative with respect to Kij
	Gradient with respect to K
	Exponential formula
	Gradient with respect to D

