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Figure 12: Mesh reconstruction. (a) A sampled 3D point cloud with surface normals. Surface reconstruction using (b) alpha shapes, (c)
template deformation, and (d) Poisson surface reconstruction. (e) Surface reconstruction detail for (top left) point samples, (top right) alpha
shapes, (bottom left) template deformation and (bottom right) Poisson surface reconstruction.

significant issue is is that the notion of one-to-one point corre-
spondences for objects in diverse datasets such as chairs is ill-
founded. The result is that the input data for our method can
feature poor correspondences, which has a knock-on effect on
sample quality. We believe that a promising avenue for future
research is to represent objects using unordered point sets, which
would enable the use of large datasets without pre-processing, and
correspondence quality issues. Some work has already taken place
in this area, with deep learning methods applied to 3D point sets for
the purpose of object classification, semantic scene parsing and part
segmentation [QSMG16]. We believe there is potential to modify
these methods for generative modelling, which would enable the
synthesis of arbitrary point clouds.

Although the ShapeVAE’s samples display a good range of vari-
ability, they are somewhat lacking in fine detail in comparison with
the input point sets. This is an issue that has been documented in the
machine learning literature, in which VAE-based generative models
of images demonstrate blurriness and a lack of detail [DB16].
This effect has been attributed to the use of unimodal generative
distributions such as Gaussians. One solution to this issue that has
emerged in generative models is the use of generative adversarial
networks (GANs), which demonstrate mode-seeking behaviour,
and thus produce samples closer to the true data manifold than
alternative approaches. As such, a potential future direction is to
make use of GAN with a similar architecture to the ShapeVAE
decoder to generate objects.
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