Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Reverse-Engineering Visualizations:
Recovering Visual Encodings from Chart Images

Jorge Poco! and Jeffrey Heer'

! University of Washington

Appendix A: Vega Chart Generation
Generating Vega specifications

We first generate a large set of visual specifications using the
Vega language. For that, we use the Compass library (part of Voy-
ager [WMA™16]). Compass is a recommendation engine that re-
ceives a data file as input and it enumerates, ranks and prunes vi-
sualizations. The output of Compass is a collection of visual speci-
fications in the Vega language. Figure 2(a) shows the Vega specifi-
cation of the scatter plot in Figure 1. We use 11 real-world datasets
from different domains —e.g., iris, a common data in machine learn-
ing community; movies, a dataset of motion picture. The average
number of records is 2,002 (min=16, max=10,000), and the av-
erage number of variables is 8.73 (min=4, max=25). In total we
have 96 variables (46 nominal, 46 quantitative, and 3 temporal).
These data files are freely available at https://github.com/
vega/vega—-datasets.

dataset # variables # records
quantitative nominal temporal
barley 1 2 - 120
crimea 3 1 - 24
iris 4 1 - 150
population 3 1 - 570
birdstrikes 4 9 1 10,000
campaings 9 15 1 58
cars 5 3 1 406
driving 3 1 - 55
jobs 3 2 - 7,650
movies 8 8 - 3,201
burtin 3 3 - 16

Table 1: Data Files use for Vega Char Generation.

In Voyager, users specify which variables they are interested in,
then Compass uses the selected variables to generate recommenda-
tions. Initially (with no selected variables), Voyager displays uni-
variate summaries. Then, when variables are selected, Compass in-
cludes those variables in the generated visualizations. Our tool sim-
ulates users’ selection of 1-3 data variables. In total, we generated
5,542 Vega specifications.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Miles/Gallon vs Horsepower

304 iai
<«— new model Orlgln

c O o Europe
=° Japan
®©
G 207 USA
T
()
o
7]
o 104 06
E <o

0 T T)

0 50 100 150

Horsepower

Figure 1: Text role labels, shown for a Vega-generated scatter plot.
Annotating text on Vega specifications

In Vega, we describe the visual appearance of a visualization but we
do not explicitly describe the text elements (i.e., neither text con-
tent nor text location is provided). This information is generated
later when Vega’s compiler processes the specification and gen-
erates a scene graph. Traversing this scene graph, we detect text
elements (text content and localization), however, we still do not
have enough information to infer text roles (in Vega version 2.6).
In order to assign roles to text elements, we annotate Vega spec-
ifications with properties that are preserved by the compiler. For
example, in Figure 2(b) we annotate title and labels for the x-axis
using x—axis-title and x-axis—1label respectively.

Sampling visual properties

In order to increase the visual variability in our chart images, our
tool randomly pick values for some visual properties (e.g., font size,
legend position). This component reads a configuration file (in a
JSON format) where the supported properties are listed, includ-
ing possible values and their probabilities. We then use a Roulette
Wheel algorithm [Bak87] to pick a value given the probabilities.
For instance, in the following JSON text, we provide values 16 and
18 for the legend fontSize and their probabilities are 0.5 and 0.5
respectively.

"legends" : {

"title-fontSize":
{"value": 16, s ©.51,
{"value": 18, "p": 0.5}

https://github.com/vega/vega-datasets
https://github.com/vega/vega-datasets

Jorge Poco & Jeffrey Heer / Reverse-Engineering Visualizations:Recovering Visual Encodings from Chart Images

(a) Vega Specification
{

(b) Text Annotation
{

“name": “table", “url": "data/cars.json"}],

": “linear",
able","

ange": "width",
Horsepower"}

height"

es_per_Gallon"} abelen: {

"text_type": { "value": “x-axis-label"}

“, "type": "ordinal",
ategory10", i
a0 s uonEields v " title": {

table","field": "Origin"} “text_type": { "value": "x-axis-title"}

i
b,
"legends": [...]

b

": "Horsepower"},
" "Miles_per_Gallon"},
"stroke": {"scale": "color","field": "Origin"}

(c) Sampling Visual Properties
{

i

“fontSize": {"value": 18}

h
"labels": {
“fontsize": {"value": 14}

Figure 2: Vega Charts Generation: (a) Vega specification for scat-
ter plot in Figure 1. (b) Annotating text elements in x-axis. (c)
Setting legend properties orient, title-fontSize, and labels-
fontSize with values 1eft, 18 and 14 respectively.

Table 2 describes the supported visual properties and the possi-
bles values. In Figure 2(c) we set the legend properties: orient,
title-font Size, and label-font Size with the values 1eft, 18
and 14 respectively.

Extracting bounding boxes and text

Finally, using the Vega specifications with the text annotations and
the visual properties, we call the Vega compiler to render the vi-
sualization. Before final image is generated, we traverse the scene
graph to detect the text elements (i.e., content, bounding box, and
role.). We then export this information into a CSV file.

Pruning wrong charts

Examining the generated visualizations, we note some incorrect
charts. Some charts have legends covering mark elements. Some
scatter plots have one or more points over the x-axis line. This hap-
pens when the y-axis encodes an aggregated variable (e.g., count)
and the x-axis is placed on the top. Similarly, there are line charts
with a single line over the x-axis. Another common problem is
legends without labels (only legend title). These charts are gener-
ated when a color channel encodes the autogenerated variable count
(number of records).

We remove these charts because they violate assumptions in our
pipeline. For instance, the post-processing in the text role classifi-
cation assumes that legends may or may not have a title but they
must have at least one label. In the case of charts with lines or
points over the x-axis line, these are visually blank plots and our
mark type classifier does not have any visual clue to classify them.
After manually deleting such files, we have 4,318 chart images.

Visual Property ~ X-Axis Y-Axis Legend
orient top/bottom left/right ;(i)gp}:?;l);tf(:m
title font font name font name font name
title font size number number number
label font font name font name font name
label font size number number number
background - - color

tick size number number -

grid line boolean boolean -

Table 2: Visual Properties: List of supported visual properties and
possible values.

Implementation

The data generator component is implemented as a client-side
JavaScript application using Node.js. This version has been tested
using the libraries Vega 2.6, Vega-Lite 1.2 and Compass 0.6. The
tool used for the manual text annotation was implemented as a web
application.

Configuration File

Below is the configuration file we used to generate the Vega corpus.

{

"legends": {
"orient": [

{"value": "left", p":
{"value": "right", p"
{"value": "top-left", P
{"value": "top-right", P
{"value": "bottom-left", P
{"value": "bottom-right", "p": 0.1

] ’
"title-fontSize":

{"value": 16,
{"value": 18,
{"value": 20,
{"value": 22,
{"value": 24,

’

"title-font": [

{"value": "Gill Sans",
{"value": "Helvetica"
{"value": "Helvetica Neue",
{"value": "sans-serif",

’

"labels-fontSize":

{"value": 14, "p
{"value": 15, "p
{"value": 16, "p
{"value": 17, "p
{"value": 18, "p":

’

"labels-font": |

{"value": "Gill Sans",
{"value": "Helvetica",
{"value": "Helvetica Neue",
{"value": "sans-serif",

1,
"legend-stroke": [

{"value": "#fff",
{"value": "#ccc", o
{"value": "#000",
I
"x-axes": {
"orient":

{"value"

, "p": 0.7},

{"value": "p": 0.3}
’
"grid": |
{"value": true, "p": 0.7},
{"value": false, "p": 0.3}

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Jorge Poco & Jeffrey Heer / Reverse-Engineering Visualizations:Recovering Visual Encodings from Chart Images

"tickSize": [® & [viewer x Person 1
{"value": 0, "p" & C | O localhost:8080/viewer %
("value": 3, "p"

8 Jp "I® TextAnnotator Select Corpus: papers + Select Boxes: (0] ground-truth &
{"value": 5, "p"
1, 0.21 «
"title-fontSize":
("value": 16, Remove _—o//o—-_o——_o
{"value": 18, 0 Merge
e I I I
{"value": 20, Lt T 3 {1 .|
{"value": 22,
{"value": 24, :0 17
1, .
"title-font": [
{"value": "Gill Sans",
("valusts MEelveElen 0.15 —O—Interpolated
{"value": "Helvetica Neue",
("value": "sans-serif" —{—Standard
8 o .
1, 0.13 —&— Synthetic

"labels-fontSize": [

"value": 14,
”2132 15 20 40 60 80 100
{"value": 16, ynthetic Bilingual Corpus (7o
{"value": 17,

{"value": 18,

1,

"labels-font": [

1Pan

b

{"value": "Gill Sans",
{"value": "Helvetica",
{"value": "Helvetica Neue",
{"value": "sans-serif",
]
Bo L
"y-axes": { -

"orient": [.
("value": "leftv, wpn: Figure 3: Graphical interface for manually refining bounding
{"value": "right", "p": boxes and assigning role labels to text elements.

1,

"grid": |
{"value": true, "p"

{"value": false, "p" References

1,

"tickSize": [[Bak87] BAKER J. E.: Reducing bias and inefficiency in the selection
{"value": 0, algorithm. In Proceedings of the Second International Conference on
{"value": 3,
("value": 5 Genetic Algorithms on Genetic Algorithms and Their Application (Hills-

1,

"title-fontSize":

dale, NJ, USA, 1987), L. Erlbaum Associates Inc., pp. 14-21. 1
[WMA*16] WONGSUPHASAWAT K., MORITZ D., ANAND A.,

{"value": 16, ; 8

{"value": 18, "p": MACKINLAY J., HOWE B., HEER J.: Voyager: Exploratory analysis via
{*valuet: 20, “p": faceted browsing of visualization recommendations. IEEE Transactions
EZZ;EE ié .,g . on Visualization and Computer Graphics 22, 1 (2016), 649-658. 1

1,

"labels-fontSize": [

{"value": 14,
{"value": 15,
{"value": 16,
{"value": 17,
{"value": 18,

1,

"title-font": [
{"value": "Gill Sans",
{"value": "Helvetica",
{"value": "Helvetica Neue",
{"value": "sans-serif",

1,

"labels-font": [

{"value": "Gill Sans",
{"value": "Helvetica",
{"value": "Helvetica Neue",
{"value": "sans-serif",

Appendix B: Graphical Interface for Labelling

Figure 3 shows the graphical interface we implemented to facili-
tate manual labeling. It displays the charts and overlays their text
bounding boxes. The interface supports operations such as adding,
deleting, merging and resizing boxes, as well as assigning role la-
bels to each.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

