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A Time to closest approach and distance at

closest approach

Let us assume that the agents and the obstacles have a linear motion.
Then Pa(t) and Poi(t) can be defined as:

Pa(t) = pa + t va , (1)

Poi(t) = poi + t voi , (2)

where Pa(t) is the position of agent a and Poi(t) is the position of
obstacle oi, both at time t. The squared distance D2 between agent
a and obstacle oi at time t is given by:

D
2(t) = ‖poi − pa + t (voi − va) ‖

2
(3)

= ‖poi|a + t voi|a‖
2

. (4)

The time to closest approach (ttcaoi,a) between agent a and obsta-
cle oi is given by the following equation:

d

dt
D

2(t) = 0, (5)

where
d

dt
D

2(t) = 2
(

poi|a + t voi|a

)

· voi|a . (6)

By solving Eq. (5) for t, we have that ttca is given by:

ttcaoi,a =







t ∈ R : voi|a = (0, 0)

−
poi|a

·voi|a

‖voi|a
‖2

: voi|a 6= (0, 0)
(7)

Once the value of ttcaoi,a is known, the dcaoi,a can be easily com-
puted:

dcaoi,a =
√

D2(ttcaoi,a) (8)

= ‖poi|a + ttcaoi,avoi|a‖, (9)

given that x2 = x · x = ‖x‖2.

B Gradient of the cost function

Computing the gradient

∇Ct =
∂Ct

∂sa
.dsa +

∂Ct

∂θa
.dθa

implies computing the partial derivatives given by:

∂Ct

∂sa
=

∂Cm

∂sa
+

∂Co

∂sa
(10)

and
∂Ct

∂θa
=

∂Cm

∂θa
+

∂Co

∂θa
, (11)

where
∂Co

∂sa
=

1

n

n
∑

i=1

∂Coi,a

∂sa
(12)

and
∂Co

∂θa
=

1

n

n
∑

i=1

∂Coi,a

∂θa
. (13)

The value of the partial derivatives of Cm (see Eqs. (10) and (11)),
given by:

∂Cm

∂sa
=

∆s

2σ2
s

exp

(

−
1

2

(

∆s

σs

)

2
)

(14)

and

∂Cm

∂θa
= −

αg

2σ2
αg

exp

(

−
1

2

(

αg

σαg

)

2
)

. (15)

To determine the value the partial derivatives of Co (see Eqs. (12)
and (13)) the following quantities must to be computed:

∂Coi,a

∂sa
=− Coi,a

(

∂ttcaoi,a

∂sa

ttcaoi,a

σ2

ttca

)

− Coi,a

(

∂dcaoi,a

∂sa

dcaoi,a

σ2

dca

)

(16)

and

∂Coi,a

∂θa
=− Coi,a

(

∂ttcaoi,a

∂θa

ttcaoi,a

σ2

ttca

)

− Coi,a

(

∂dcaoi,a

∂θa

dcaoi,a

σ2

dca

)

. (17)

In the next two sections of this appendix, we show how to compute
the partial derivatives of ttcaoi,a and dcaoi,a required to evaluate
Eqs. (16) and (17).

C Partial derivatives of ttcaoi,a

Let us assume that voi|a 6= (0, 0) in which case the ttcaoi,a is
given by:

ttcaoi,a = −
f

g
(18)

where

f = poi|a · voi|a (19)

g = voi|a · voi|a . (20)



The partial derivative of ttca with respect to a hypothetical argu-
ment x is thus:

∂ttcaoi,a

∂x
= −

∂f
∂x

g
+

∂g
∂x

f

g2
. (21)

Let us recall that:

voi|a = (vxoi − sa cos θa, vyoi − sa sin θa) . (22)

Let us also notice the following equalities:

∂ voi|a

∂θa
= sa (sin θa,− cos θa) = (vya,−vxa) (23)

and
∂ voi|a

∂sa
= −(cos θa, sin θa) = −v̂a . (24)

To compute
∂ttcaoi,a

∂θa
and

∂ttcaoi,a

∂sa
, we need thus to derive ∂f

∂θa
,

∂f
∂sa

, ∂g
∂θa

and ∂g
∂sa

. Follow the two partial derivatives of f :

∂f

∂θa
=

∂
(

poi|a · voi|a

)

∂θa
= poi|a ·

∂ voi|a

∂θa

= poi|a · (vya,−vxa) (25)

and

∂f

∂sa
=

∂
(

poi|a · voi|a

)

∂sa
= poi|a ·

∂ voi|a

∂sa

= −poi|a · v̂a . (26)

The partial derivatives of g are given by:

∂g

∂θa
=

∂
(

voi|a · voi|a

)

∂θa

=
∂voi|a

∂θa
· voi|a + voi|a ·

∂voi|a

∂θa

= (vya,−vxa) · voi|a + voi|a · (vya,−vxa)

= 2 (vya,−vxa) · voi|a (27)

and

∂g

∂sa
=

∂
(

voi|a · voi|a

)

∂sa

=
∂voi|a

∂sa
· voi|a + voi|a ·

∂voi|a

∂sa

= −v̂a · voi|a − voi|a · v̂a

= −2 v̂a · voi|a . (28)

Using Eqs. (21), (25) and (27) we can compute:

∂ttcaoi,a

θa
= −

poi|a · (vya,−vxa)

voi|a · voi|a

+

(

2 (vya,−vxa) · voi|a

) (

poi|a · voi|a

)

(

voi|a · voi|a

)

2

= −
poi|a · (vya,−vxa)

voi|a · voi|a

+
2 ttcaoi,a voi|a · (vya,−vxa)

voi|a · voi|a

= −

(

poi|a + 2 ttcaoi,a voi|a

)

· (vya,−vxa)

voi|a · voi|a

. (29)

Using Eqs. (21), (26) and (28) we can compute:

∂ttcaoi,a

sa
=

poi|a · v̂a

voi|a · voi|a

−
2
(

v̂a · voi|a

) (

poi|a · voi|a

)

(

voi|a · voi|a

)

2

=

(

poi|a · v̂a

)

+
(

2 ttcaoi,a voi|a · v̂a

)

voi|a · voi|a

=

(

poi|a + 2 ttcaoi,a voi|a

)

· v̂a

voi|a · voi|a

. (30)

D Partial derivatives of dcaoi,a

Let us recall the expression of dcaoi,a:

dcaoi,a = ‖dcaoi,a‖= ‖poi|a + ttcaoi,avoi|a‖

= (dcaoi,a · dcaoi,a)
1/2

. (31)

The partial derivative of dcaoi,a with respect to a hypothetical ar-
gument x is given by:

∂dcaoi,a

∂x
=

1

2
(dcaoi,a · dcaoi,a)

−1/2 ∂ (dcaoi,a · dcaoi,a)

∂x

=
1

2 dcaoi,a

∂ (dcaoi,a · dcaoi,a)

∂x

=
1

2 dcaoi,a

∂
(

‖dcaoi,a‖
2
)

∂x
. (32)

The rightmost term of Eq. (32) can be developed as:

∂
(

‖dcaoi,a‖
2
)

∂x
=

∂dcaoi,a

∂x
· dcaoi,a

+
∂dcaoi,a

∂x
· dcaoi,a

= 2
∂dcaoi,a

∂x
· dcaoi,a

= 2
∂
(

poi|a + ttcaoi,avoi|a

)

∂x
· dcaoi,a (33)

given that poi|a is a constant, this equation can be simplified as:

∂
(

‖dcaoi,a‖
2
)

∂x
= 2

(

∂(ttcaoi,avoi|a)

∂x

)

· dcaoi,a (34)

where

∂(ttcaoi,avoi|a)

∂x
=

∂ttcaoi,a

∂x
voi|a + ttcaoi,a

∂voi|a

∂x
. (35)

To compute the partial derivative of dcaoi,a with respect to θa, we
can use the results from Eqs. (23), (29), (32) and (34), yielding:

∂dcaoi,a

∂θa
=

(

−

(

poi|a + 2 ttcaoi,a voi|a

)

· (vya,−vxa)

voi|a · voi|a

voi|a

+ ttcaoi,a(vya,−vxa)

)

· dcaoi,a
1

dcaoi,a
(36)

=
dcaoi,a ·

(

∂ttcaoi,a

∂θa
voi|a + ttcaoi,a (vya,−vxa)

)

dcaoi,a
.



Similarly, to compute the partial derivative of dcaoi,a with respect
to sa, we can use the results from Eqs. (24), (30), (32) and (34).

∂dcaoi,a

∂sa
=

(

(

poi|a + 2 ttcaoi,a voi|a

)

· (vya,−vxa)

voi|a · voi|a

voi|a

− ttcaoi,av̂a

)

· dcaoi,a
1

dcaoi,a

=
dcaoi,a ·

(

∂ttcaoi,a

∂s
voi|a − ttcaoi,av̂a

)

dcaoi,a
. (37)

E Dependence on Camera Resolution

Synthetic vision algorithms manipulate large amounts of data
(12288 pixels per agent for a 256 × 48 camera resolution, for ex-
ample). The main bottleneck is the texture download from GPU to
CPU. This can be alleviated by downsizing the camera’s resolution.
Fig. 1 shows the effect of resolution decrease on simulation results
for our model and for OSV. Results show that our new technique
is much less sensitive to the camera resolution parameter. Visual
differences in the trajectories can hardly be observed even when re-
ducing the original resolution by 93.75%. A special case of camera
resolution is 256 × 1, in which case the agent keeps a wide view
(rightmost column of Fig. 1). Finally, Fig. 2 shows the performance
of our model when varying the number of agents and the camera
resolution. As expected, the performance decreases as the number
of agents increases.

F Complete results

In this section we provide the complete set of results used for the
article, as well as some variations of the presented scenarios.
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Figure 3: Comparison of the results for the Opposite scenario with structured initial positions. The two groups of agents (red and blue)
have as goal to switch positions. Results are shown for our model, OSV, RVO2 and Power Law.
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Figure 4: Comparison of the results for the Opposite scenario with noisy initial positions. The two groups of agents (red and blue) have as
goal to switch positions. Results are shown for our model, OSV, RVO2 and Power Law.
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Figure 5: Comparison of the results for the Columns scenario. The two groups of agents (red and blue) have as goal to switch positions.
Results are shown for our model, OSV, RVO2 and Power Law.
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Figure 8: Comparison of the results for the S-Corridor scenario. The agents must traverse the corridor so as to reach their goal. No global
path planner is used. Results are shown for our model, OSV, RVO2 and Power Law.
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Figure 9: Comparison of the results for the Circle scenario with symmetric initial positions. The goal of the agents is to reach the diametri-
cally opposed position. The agents color encodes the speed: dark blue means the agent is stopped or moving slower than its comfort speed;
light green means the agent is moving at its comfort speed; and red means the agent is moving faster than its comfort speed. Results are
shown for our model, OSV, RVO2 and Power Law.
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Figure 10: Comparison of the results for the Circle scenario with noisy initial positions. The goal of the agents is to reach the diametrically
opposed position. The agents color encodes the speed: dark blue means the agent is stopped or moving slower than its comfort speed; light
green means the agent is moving at its comfort speed; and red means the agent is moving faster than its comfort speed. Results are shown for
our model, OSV, RVO2 and Power Law.




