EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

Design Transformations for Rule-based Procedural Modeling —
Supplemental Material

Stefan Lienhard! Cheryl Lau®

'EPFL 2Esri R&D Center Zurich

Detailed Result Descriptions

In the supplemental material we provide detailed descriptions of
the grammars, the semantic matches, their parameters, and the en-
tire co-derivation process for two of our results. We first provide
some insights into the transformations between Semper’s Stern-
warte and the white modern building via two different interpolation
paths (Figs. 13 and 14 in the paper). Second, we explain how we
transformed the two tree L-systems in the teaser image (Fig. 1 in
the paper). The corresponding grammar files are included in the
grammars folder. We use the notation @t ag to annotate rules that
we consider for semantic matches (Sec. 4.1 in the paper). For each
possible pair of two rules (one from each grammar) with the same
tag, a semantic match is automatically established.

1. Sternwarte Chain Part 1

Mass Models The first co-derivation step derives the start shape
with the axiom rules of both grammars. It passes through some
intermediate (untagged) rules before it comes to a halt after all
mass model shapes have been instantiated. Their rules are tagged
with @mass_1v10, @mass_1v1l1, or @mass_1v12 for shapes
on the ground plane and shapes at two higher stacking levels. The
tags essentially define a synchronization barrier that allows to apply
a match & blend step (Sec. 4.3 in the paper) to the mass models
before the co-derivation continues. Fig. 1 shows the result of the
shape matching.

Afterwards, in the second co-derivation iteration, the rules split

Figure 1: Shape Matching The result of the Munkres matching for
the first part of the Sternwarte Chain. Only shapes with the same col-
ors can be matched. Gray shapes are tagged as @mass_1v10, blue
shapes as @mass_1vl11, and orange shapes as @mass_1vl1Z2.
The unmatched shapes Le ftWing and Tower will disappear during
the transformation while the other shapes are blended with their
matches.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Pascal Miiller?

Peter Wonka® Mark Paulyl

3KAUST

Figure 2: Sternwarte and White Modern Building Facades The
two facade styles for the upper mass models of both building designs.

the mass models into their faces for facades and roof tops, and
they also generate railings on the Sternwarte roofs and support
columns for the white modern building. The component splits of
both grammars always produce the same exact shapes. For them, the
interpolation parameters have no influence on the outcome of the
co-derivation steps since the matched and blended shapes are identi-
cal. But the railings and columns are only defined in one of the two
grammars, and if these elements are present or not depends on the
thresholds of the semantic matches that control the co-derivations
((Main2,Top) and (RightWing,Bottom)). The thresholds are visi-
ble in Figs. 3 and 4.

Facade Transformations The next co-derivation steps of interest
are the split transformations of the facades. We hierarchically apply
the technique presented in Sec. 4.4 of the paper. As example, we
describe the transformation of the facades shown in Fig. 2. They are
the facades of the long sides of the blue shapes in Fig. 1. The auto-
matically computed edit sequence for that (YellowFacade, Facade)
co-derivation is:

{ Floory, Ledge }
{ Floor; }
{ Floor, }

{ Floor,, Floor },

delete all Ledge
semantic switch Floor; — Floor,

insert Floor,

where we use the subscripts to distinguish symbols that occur in
both grammars. The edit sequence for the next lower level, con-
trolled by the semantic match (Floor, Floor), is given in the follow-
ing. The notation is: P for Pillar, Yt for YellowWinTile, and Wt for
WindowTile.

{P, P Yt P, Yt P Yt P, YtP, P}

{Yt, Yt, Y1, Yt}
{ Wt, Wt, Wt, Wt}
{Wt, Wt, Wt, Wt, Wt}
{Wt, Wt, Wt, Wt, Wt, Wt}

delete all P
semantic switch Y1 — Wt
insert Wt

insert Wt

Lienhard et al. / Design Transformations for Rule-based Procedural Modeling —Supplemental Material

Window tiles are transformed as vertical splits. Their strings only
consist of one single Window shape (after removing the Walls) and
the edit sequence is a single semantic switch. Even though the edit
sequence is very simple, the split transformation still provides a nice
effect because the size interpolation smoothly shrinks the window
over time.

Parameters In Figs. 3 and 4 we list all semantic matches together
with their parameters for both interpolation paths of the transfor-
mation between the Sternwarte and the white modern building. For
some semantic matches, some of the parameters are unused or ig-
nored and we do not show them in the figures. Possible reasons for
that can be:

e [f a shape is not the result of a blending operation and if the shape
does not initiate a split transformation, #; and 7. are not used.

e If no discrete decisions need to be made, #;, is not needed.

e Split transformations do not need thresholds either.

e Parameters are irrelevant when both grammars generate identical
output in a co-derivation step.

e The parameters do not matter if a semantic match is never applied.

2. Tree L-Systems

The second example transforms between the two L-systems by
Honda and by Aono and Kunii. We ported the L-systems to our
rule-based modeling framework. While it is the example with the

(©.0)

mass models:
(Main0, Bottom) ¥
(Mainl,Middle)
(Main2,Top)
(RightWing, Bottom) T
(LeftWing, Bottom)

(Tower, Bottom)

materials:
(Roof,BlockRoof)
(RoofMaterial,RoofTerm.) —C—————

(Wall,Wall)

(WallFinish, WallBlend) ¥
splits:

(YellowFacade, Facade)
(YellowFloor, Floor)

(YellowWinTile, WinTile) —
(BrickFacade,GroundFacade) >
(B.Fac.W.Door, GroundFac.) >
(BrickFloor, GroundF loor)]

(B.FL.W.Door, GroundF loor)]

(B.WinTile, GroundWinTile)]

split elements:
(Window, Window)
(DoorTile,DoorTile)

Figure 3: Parameters for Sternwarte Chain Part 1 Above are the
settings that we use to transform the Sternwarte into the white
modern building. The threshold of the axiom semantic match decides
when the entire Le ftWing and the Tower disappear, which happens
early on. The last three semantic matches for splits perform their
transformations over infinitely small time spans. This effectively
results in discrete rule switches, which we represent as thresholds.

(0,) 2

mass models:
(Main0, Bottom)

(Mainl,Middle)

(Main2,Top)]
(RightWing, Bottom)]
(LeftWing, Bottom)

(Tower, Bottom)

materials:
(Roof,BlockRoof)
(RoofMaterial ,RoofTerm.)
(Wall,Wall)
(WallFinish,WallBlend) ¥
splits:

(YellowFacade, Facade)
(YellowFloor, Floor)
(YellowWinTile, WinTile)
(BrickFacade, GroundFacade)
(B.Fac.W.Door,GroundFac.)

(BrickFloor, GroundF100r) < G—
(

(

—

B.F1.W.Door, GroundF100r) —~———
B.WinTile, GroundWinTile)
split elements:
(Window, Window)
(DoorTile, DoorTile)

Figure 4: Alternative Parameters for Sternwarte Chain Part 1 In
this version all facade and roof shapes transform before any of
the mass models change. This is also evident from the above list
of parameters: all split and material transformations are executed
over the first half of the sequence, and everything else follows in
the second half. At the half-way mark, the resulting design is the
Semper Sternwarte completely covered by the facade style of the
white modern building. The two thresholds that are not within their
corresponding [ts,1.] range are responsible removing the railings on
top of Main2 and RightWing.

lowest number of rules and with only a few semantic matches,
understanding it is not trivial due to its recursive nature.

Grammar Descriptions Executing the first grammar yields a
monopodial tree (Fig. 5 top). It has three different branching rules,
A, B, and C. They each generate a straight and a lateral segment.
Rule A is responsible for the tree’s vertical growth towards the sky,
while rules B and C generate branches growing to the sides. The
only difference between B and C is that their lateral segments lie on
opposite sides of the straight segment. The second grammar grows a
sympodial tree (Fig. 5 bottom) that is based on only two branching
rules, A and B. Rule A is only applied once at the beginning for the
trunk, all remaining branchings are handled by B.

Both grammars also use a rule F that instantiates a cylinder mesh
to represent a segment’s geometry (F originally stood for forward,
telling the turtle that executes the L-system to advance). All re-
maining rules are responsible for gradually diminishing the tree’s
thickness or they implement the exit conditions for the recursive
execution of the L-systems.

We only use two different tags for the symbols: @branching
for A, B, C in the first grammar and for A, B in the second grammar,
and @segment for F in both grammars. Putting the @branch-
ing tag on all branching rules means that we consider them all as

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Lienhard et al. / Design Transformations for Rule-based Procedural Modeling —Supplemental Material

n=2 n=3

J [\J

t=0 IA J\:

R AN | Yok
derive with é;JAE G Ngw ¢ ,{ /
grammar 1| v - \ k/ | []

Fi B,§>_4~B>/ ot (c,ng ’ AN >

=i blend v =H 7 R

%: -------- > R 2 =H P A G (el > L memmmeee >

t=05 Ev. \ <V
AA -é\f F,F I SO
@ derive with | W1 (RE) (S S \ \/
grammar2 | [Fi \/ Y N/
t=1 IA

Figure 5: Tree L-Systems Transformation The first four co-derivation iterations of both L-systems are shown for timest =0 (top), t = 0.5
(middle), and t = 1.0 (bottom). The top and bottom rows correspond to the output of the original grammars. We color code the different shapes
according to their symbols: As are green, Bs are red, Cs are blue, and F's are orange. Shapes generated in previous iterations are colored
gray. Since blended shapes interpolate their colors we also see brown (for (A, B) blends) and purple (for (C,B) blends). Between the first and
second iterations, we show how the shape matching and blending step works for the semantic match (A,A) at t = 0.5. The same is shown for

semantic matches (A, B) and (B, B) between iterations two and three.

interchangeable. The tags results in the six semantic matches listed
in Fig. 6.

In the following, two simplified grammars show the overall struc-
tures of both L-systems. The ellipses stand for affine transformations
that are of no relevance for this explanation. Untagged in-between
rules have been removed.

ow—...A ow—...A
A—F..[..B.. A A—F..[..B]...B
B—F...[..(C]...C B—F...[...B]...B
C—F...[...B]...B

Co-Derivation Steps A few iterations of the growth structure en-
coded by these rules are shown in the top and bottom rows of
Fig. 5. The interesting parts of the entire co-derivation happen in the
co-derivation steps of our interchangeable branching rules and we
explain it by means of the semantic match (A,A). The three parts of
that co-derivation step are:

1. The given shape is derived with the A rules of both grammars.
Both generate three successor shapes each, one F' shape at the
attachment point that leads to two new branching shapes.

The subtree collapsing step can be skipped since the simplified
grammars do not generate any shapes without semantic matches.
For the shape matching and blending, we choose the Munkres
strategy. In this case it works on two sets of three shapes each.
The F shape from the first grammar can only be matched with the
F shape from the second grammar. The remaining shapes are all
compatible for matching. All shapes are matched and therefore
all of them are blended, resulting in three shapes labeled (F,F),
(B,B), and (A, B). The blending interpolates branching angles,

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

segment lengths and radii, and color. This exact matching and
blending is visualized between the first two iterations in the
middle row of Fig. 5.

Co-derivation steps for the other three semantic matches for branch-
ings ((A,B), (B,B), and (C,B)) are analogous since all branching
rules always generate three similar successor shapes. Examples for
these are present in columns three and four of the figure.

Parameters Note that the semantic matches (B,A) and (C,A) do
not appear in the user interface (Fig. 6) even though the tags auto-
matically establish these correspondences. This is because such a
situation can never occur. Rule A in the second grammar is only
used in a co-derivation step once. That one occurrence is controlled
by the (A,A) semantic match. The user interface further shows that
all parameters are set to their default values for this tree L-system
transformation.

o, 0 1

£

)

)

SIS

~—_—

A
A
B
C

)

F,F

o~~~ o~ o~

Figure 6: Transformation Parameters for Tree L-Systems All the
parameters of all semantic matches are set to their default values.
Start times are set to 0 and end times to 1. No thresholds are shown
since no discrete choices have to be made for this transformation:
both designs do not use textures, the branch meshes are identical in
both grammars, and the co-derivation steps never end up with any
unmatched shapes.

