
DOI: 10.1111/cgf.12735 COMPUTER GRAPHICS forum
Volume 35 (2016), number 6 pp. 120–132

Coordinated Crowd Simulation With Topological Scene Analysis

Adam Barnett1, Hubert P. H. Shum2,∗ and Taku Komura1

1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
A.Barnett-1@sms.ed.ac.uk, tkomura@inf.ed.ac.uk

2Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
hubert.shum@northumbria.ac.uk

Abstract
This paper proposes a new algorithm to produce globally coordinated crowds in an environment with multiple paths and
obstacles. Simple greedy crowd control methods easily lead to congestion at bottlenecks within scenes, as the characters do not
cooperate with one another. In computer animation, this problem degrades crowd quality especially when ordered behaviour
is needed, such as soldiers marching towards a castle. Similarly, in applications such as real-time strategy games, this often
causes player frustration, as the crowd will not move as efficiently as it should. Also, planning of building would usually require
visualization of ordered evacuation to maximize the flow. Planning such globally coordinated crowd movement is usually labour
intensive. Here, we propose a simple solution that is easy to use and efficient in computation. First, we compute the harmonic
field of the environment, taking into account the starting points, goals and obstacles. Based on the field, we represent the topology
of the environment using a Reeb Graph, and calculate the maximum capacity for each path in the graph. With the harmonic
field and the Reeb Graph, path planning of crowd can be performed using a lightweight algorithm, such that any blocking of
one another’s paths is minimized. Comparing to previous methods, our system can synthesize globally coordinated crowd with
smooth and efficient movement. It also enables control of the crowd with high-level parameters such as the degree of cooperation
and congestion. Finally, the method is scalable to thousands of characters with minimal impact to computation time. It is best
applied in interactive crowd synthesis systems such as animation designs and real-time strategy games.

Keywords: motion planning

ACM CCS: I.3.7[Computer Graphics]: Three-Dimensional Graphics and Realism–Animation

1. Introduction

Synthesizing globally coordinated crowd behaviour is a challeng-
ing but highly demanded problem in computer animation, computer
games and evacuation planning. It is popular nowadays in movies to
include scenes of large crowd such as soldiers marching towards a
castle. However, creating characters that move cooperatively is dif-
ficult due to congestion and crossing groups of characters. Similarly,
it is a regular complaint from players of real-time strategy games
that characters cannot move as quickly as they want due to blocking
in the bottlenecks of the terrain. Finally, when designing buildings,
it is beneficial to simulate and visualize how walls and doors affect
the evacuation process. With existing methods, users often have to

∗Corresponding author: Hubert P. H. Shum (hubert.shum@
northumbria.ac.uk)

divide a crowd into smaller units and manually allocate them into
different pathways to achieve the desired effect [KLLT08], which
is inefficient even for skilled people. Ideally, one would wish to
have an easy-to-use yet effective system to generate coordinated
crowd.

Previous work in crowd simulation cannot efficiently create flu-
ent crowd movement in complex environments. On one hand, while
traditional agent-based path planning algorithms such as [PAB07]
can implement individual character intelligence to avoid conges-
tion, they are computational costly for large crowds since the cost
depends on the total number of characters. On the other hand, field-
based approaches such as [TCP06] are scalable to large crowd since
the majority part of the computational cost depends only on the
complexity of the environment. However, simply using a field can-
not easily avoid character congestion in the bottlenecks of the scene.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited. 120

http://www.eg.org
http://diglib.eg.org


A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 121

Once congestion forms, movement behaviours such as stopping and
backtracking to find alternative routes will occur, which are not
desirable in systems that require smooth crowd movement.

In this paper, we propose a field-based crowd control method that
coordinates characters globally such that congestion, queueing and
slowly moving characters are kept at a minimum. Based on the har-
monic field [FS97] calculated from the environment, we represent
the topology of the scene using a Reeb Graph [Ree46], which is
a graph structure that defines possible pathways in the scene. In
contrast to previous approaches, our method focuses on finding the
capacity of the scene, that is, the maximum number of characters
that can move through each path without causing congestion at any
bottlenecks. With such information, the trajectories of the characters
can be easily synthesized using a lightweight algorithm. As a result,
our method can produce coordinated crowds with smooth crowd
movement. It is scalable and can be applied to a crowd of large size.

Due to the use of Reeb Graphs to represent the capacity of the
scene, our method can efficiently synthesize different crowd be-
haviours based on the degree of crowd cooperation and congestion.
We define the cooperation in terms of how selflessly the crowd uses
the paths found through the scene, and the congestion in terms of
the targeted capacity of the scene. For example, a crowd of less
intelligent characters like orcs in computer games might be less co-
operative. Using the cooperation parameter, we can create a crowd
that prefers shorter pathways to crowd efficiency, thereby causing
blocking effects at bottlenecks. In addition, pathways in a city would
usually have higher targeted capacity comparing to those of the same
size in a village, which can be adjusted through the congestion pa-
rameter. These high-level control parameters provide an efficient
interface for animators to alter the behaviour of the crowd radically
with minimal manual overhead.

With our proposed method, it becomes possible to synthesize
coordinated crowd behaviour under a field-based framework. We
demonstrate coordinated crowd movements such as an army invad-
ing a castle and people evacuating in a complex environment with
multiple start and goal points. We also show how we can adjust the
degree of cooperation and congestion to synthesize different crowd
behaviours. Being a field-based approach, our system is computa-
tionally efficient and is scalable to large crowds. It can simulate the
movement of thousands of characters with minimal computational
cost.

Preliminary results of this research can be found in [BCK13], in
which we presented a basic system to calculate the Reeb Graph and
evaluate the maximum flow of a scene. In this paper, we complete
the algorithm with a detailed system design, a new character path
planning mechanism, as well as high-level control parameters to
synthesize different crowd behaviour. There are three major contri-
butions in this research:

1. We propose a new algorithm to produce globally coordinated
crowds based on a given environment, such that crowd conges-
tion is minimized. We represent the topology of the scene using
a Reeb Graph with estimated path capacity, and plan the char-
acters movement using a lightweight algorithm. The method is
scalable to large crowds in complex environments.

2. We propose a new path planning mechanism for characters on
top of the framework in [BCK13]. In particular, we introduce
the concept of logical route to avoid path crossing and enhance
path quality, which is important especially when synthesizing
crowd in a complicated scene with a large number of obstacles.

3. We design a set of new control parameters in our algorithm
to synthesize a wide variety of crowd behaviours that cannot
be achieved in [BCK13]. The cooperation value determines
if characters will take longer paths to facilitate overall crowd
efficiency, while the congestion value defines the path capacity
that is acceptable to the characters.

2. Related Work

In this section, we review the related work in simulating large crowds
of characters. We first discuss the computational cost problem of
agent-based crowd synthesis. Then, we explain different type of
field-based methods and evaluate their performance in avoiding
congestion. We further review work related to topology analysis
and point out how they can be used to solve the problem.

2.1. Agent-based crowd synthesis

Agent-based crowd synthesis methods control the behaviour of indi-
vidual characters using pre-defined objective functions. Traditional
flocking algorithms can model the movement of the characters using
rules based on other characters in their immediate vicinity [Rey87a].
More dedicated simulation rules can be defined to simulate more
realistic behaviour involving perception and cognition [ST05].

In order to avoid character collision, each character can consider
the rest as dynamic objects and select a path that does not lead to
collision [LK06]. Velocity of the characters is considered to enhance
collision avoidance accuracy [PPD07]. The concept of composite
agents is also proposed to model collision avoidance behaviour in
bottleneck such as the doors of a train [YCP*08]. Coordinating
multiple characters can be done by inter-character communication,
such that the characters can exchange information and select a path
that is not blocked [KG14]. The general problem of agent-based
methods is the high computational cost for larger crowd, as the cost
is proportional to the number of characters in the scene. Tuning ob-
jective function of individual character to achieve an overall crowd
behaviour is also not trivial.

2.2. Field-based crowd synthesis

Field-based methods control the movement of characters using a
scalar field over the space of a scene. Geometric distance fields are
used to provide plans for crowds on arbitrary surfaces [TSO*10].
Although these plans are globally constructed, they do not take into
account the positions and plans of other characters, and hence are
still prone to congestion. Fluid dynamics is introduced for evac-
uation simulation, where the crowd is treated as a fluid [Hen74].
This approach is extended such that characters are given more in-
telligence to determine their movement based on their desired goal
[TCP06]. The characters follow the field with a view of avoiding
areas of high density, which allows them to plan around congestion.
However, it does not prevent congestion from occurring in the first

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



122 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

place, especially when many characters all decide to use a currently
empty bottleneck at once.

Harmonic fields are widely applied in robotics [FS97, RI05],
which define the desired flow of the characters in the scene. They
have also been used in computer graphics for deformation transfer
[ZRKS05], remeshing [DKG05] and morphing [KSK97]. For crowd
simulation, it is possible to provide simple global guidance for
characters by setting the potential at the edges of obstacles to be
1 and at the goal to be 0, such that the characters can descend the
gradient to reach the goal [SFF*10]. We also use harmonic field in
this research, but we integrate flow control information by analysing
the topology of the scene.

2.3. Crowd control interfaces

It is possible to implement user interfaces for controlling the crowd
manually and thereby avoid collisions. Field-based control ap-
proaches allow the user to manipulate the crowd around obstacles
using a control field [PvdBC*11, Par10]. By using a mesh to model
a crowd, the user can define the crowd movement and formation
with simple gestures [HSK12, HSK14]. Different editing tools and
interfaces are proposed to place and manipulate the path of a crowd
[KLLT08, KSKL14, JPCC14]. While these methods are capable
of producing scenes comparable to ours, the user has to bear the
responsibility to design the crowd movement such that congestion
is minimized. The manual labour becomes more intensive in scene
of complex topology and large number of characters. We prefer a
method that is automatic, scalable and easily controllable.

2.4. Topology analysis

Topology-based methods represent the scene using simpler structure
for more efficient planning. There are a number of topology repre-
sent suitable for scene representation. The navigation mesh breaks
the scene up into different navigable segments in a mesh [Sno00].
The probabilistic roadmap explores the scene through connecting a
series of randomly generated points [KSLO96]. The Voronoi dia-
gram constructs a graph that has the maximum clearance from all
obstacles [GO07]. The Reeb Graph provides a topology that origi-
nates and terminates at the start and goal points while defining the
valid topological routes between them [Ree46]. We use the Reeb
Graph as its representation suits our problem of crowd navigation,
and can easily be integrated with the harmonic field.

The density-based method in [vTCG12] and the capacity-based
method in [PCM*06] also represent the topology of the scene as
a series of edges and nodes. However, both approaches only take
the current congestion into account. Unlike our system, they do not
have the framework to avoid the occurrence of congestion and bot-
tlenecks as a pre-process. In [VDAGHP10, KGvdS13], medial axis
is used to represent the scene, and paths planning of the characters
is considered as a dynamic flow problem. Similar to our approach,
these methods aim at minimizing the travelling time of the charac-
ters. However, since they do not focus on continual motion within
the scene, they offer no solid solution to the problem of crossing
groups of characters. Under our framework, this problem is solved
using a lightweight path planner.

Figure 1: The overview of our framework.

3. Methodology Overview

The overview of our method is shown in Figure 1. (a) The input
data are a scene consisting of a number of obstacles, an available
space, as well as a set of start and end points. (b) We first compute
a harmonic field over the available space. Using the field, we com-
pute (c) a set of paths called guide lines through the space and (d)
the crowd-flow graph that defines the topology of the scene. With
the optional user controls, we then plan the path of the characters to
synthesize the coordinated crowd. (e) Finally, the characters follow
their assigned paths using a local controller for collision avoidance.

4. Topological Scene Analysis

In this section, we describe how the scene is analysed to provide a
topological representation of the paths. We first describe how the
harmonic fields are computed. Then, we explain how the field is
used to construct the topological representation of the scene.

4.1. Harmonic fields

The harmonic scalar field is central to our method. It is used to
compute the topology of the environment, the capacity of the open
area and the trajectories of the characters. Harmonic field is ideal
for our purpose because it provides a smooth gradient from the start
points to the end points without any local extrema.

We follow [DKG05] to compute the harmonic fields over the
environment. First, the available area is filled with a grid of htotal

vertices in the resolution of hrow by hcol , where htotal = hrow × hcol .
In our experiments, hrow and hcol are set to 120 and 200, respec-
tively. These values are chosen to provide a grid with a fine enough
resolution such that all of the obstacles are adequately represented.
The objective here is to compute a scalar field h that varies continu-
ously from the value 0 at the start points to 1 at the goal points. We
represent h by a column vector of the values at all htotal vertices in
the grid, and solve following linear equation:

Ah = b, (1)

where A is a htotal by htotal matrix of connections, in which the
value of the entry Ai,j is 1 when the vertex i and j are connected

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 123

Figure 2: (a) An example of the harmonic field generated for a
scene, (b) zoomed-in view showing the right-angled triangles sam-
pled in the space and (c) the guide lines computed over that har-
monic field. The value of the harmonic field varies from 0 to 1, which
is visualized by the varying colour from red to green.

in an open area, 0 when they are not connected, and 1 if i = j .
The column vector b has a size of htotal and is used to store the
constrained values of the vertices, with 0 for the start points and 1
for the goals. The equation is a sparse linear problems and can be
solved with sparse linear solvers to produce a smooth scalar field
that has no local extrema. We use the solver CSparse [Dav06] in our
implementation. An example of a harmonic field computed from an
environment is shown in Figure 2(a).

4.2. Guide lines

Once the harmonic field is created, a set of guide lines are built,
which is a series of paths following the gradient of the harmonic
field from a start point through to a goal point. They provide smooth
paths for the characters to follow through the space and can be used
by the system to determine which direction characters should move
at any given point within the space.

To calculate the guide lines, first, we first apply triangulation on
the vertices of the harmonic field, and create a set of right angled
triangles, which is illustrated in Figure 2(b) as a zoomed-in view.
Then, we solve the following equation for each of them:

[
vt1 − vt2

vt3 − vt1

] [
g0

g1

]
=

[
ht1 − ht2

ht3 − ht1

]
, (2)

where t1, t2 and t3 are the three vertices forming the triangle, vt1

is the vector position of the t1 vertex, ht1 is the harmonic field
value at the t1 vertex. vt2, vt3, ht2 and ht3 are defined accordingly.
The equation can then be solved analytically for g0 and g1, which
are the gradient of the harmonic field within the triangle in the
horizontal and vertical direction, respectively.

Once the gradient is found, the guide lines are generated by
sampling gtotal seed points that are spaced evenly throughout the
entire scene. From each seed point, we extend the guide line by
connecting the next vertex in the increasing gradient direction until
the goal is reached. The same process is performed in the decreasing
gradient direction to reach the starting point. As a result, a guide line
connecting a series of vertices is produced. In our implementation,
gtotal is set as either 100 or 1600, depending on the quality and
computational speed requirements. An example set of guide lines is
shown in Figure 2(c).

The guide lines and harmonic field have similarities to the stream-
lines and tensor fields commonly used for polygon meshing such

as [ACSD*03], respectively. The harmonic field is chosen as a rep-
resentation because it has the intrinsic property of containing no
local extrema, whereas tensor fields may do in the form of um-
bilical points. Having no local extrema in the field is important
in our problem, because it means that any path following its gra-
dient is guaranteed to terminate at one of the end points in the
scene.

4.3. Crowd-flow graph

The crowd-flow graph uses the harmonic field to provide a succinct
representation of the available space in the scene such that the
motion of the entire crowd can be planned and coordinated at once.
It defines the topology of the environment based on the Reeb Graph
structure. It also provides the maximal number of people who can
pass through each Reeb edge. With the information, we compute the
maximum flow of the scene, which indicates how many characters
should move to a location to fill the scene.

4.3.1. Creating the Reeb Graph

To build the base structure of the crowd-flow graph, we first compute
a Reeb Graph [Ree46] based on the given environment. Each node
of the Reeb Graph corresponds to an area in the environment, and
each edge corresponds to a connection between two adjacent areas.
The Reeb Graph suits our problem because it provides a topology
that originates and terminates at the start points and goal points
while defining the valid topological routes between them.

We follow the process of [HSKK01] to compute the Reeb Graph
with a newly proposed Morse function. Based on the concept of
Morse theory [SKK91], a Morse function is a smooth real-valued
function with no degenerate critical points, and is used to represent
a manifold so as to study its topology. Unlike [HSKK01] in which
geodesic distance is used as the Morse function, we use harmonic
scalar field instead. This is because the scalar values on the harmonic
field change smoothly depending on the start points, the goals and
the geometry of the environments. Even if there are multiple start
and goal points, smooth non-intersecting paths through the space
can be obtained.

More precisely, we first decide the number of levels of harmonic
value, Rtotal , which essentially represents the resolution of the Reeb
graph. We generate Rtotal + 1 boundary values for the harmonic
field, which are r

Rtotal
with integer values of r ∈ [0, Rtotal]. Vertices

of the harmonic field are then grouped using the boundary values
as the dividers. The connectivity of the vertices within each group
are examined, as vertices in the same group may not be connected
spatially due to obstacles. The average position of each disconnected
part of vertices is calculated as a Reeb node. Two Reeb nodes are
connected and form a Reeb edge if (1) the two corresponding sets
of vertices are connected and (2) the corresponding harmonic field
values are in adjacent groups. In our experiments, we set Rtotal to
either 32 or 64 depending on the required simulation quality and
the complexity of the obstacles. Figure 3 shows two examples of
Reeb Graphs, with different colours representing the different vertex
groups.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



124 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

Figure 3: Examples of the Reeb Graph generated (a) on a simple
scene with a Reeb resolution of 16 and (b) on a more complex scene
with a Reeb resolution of 32.

Figure 4: Examples of the iso-flowlines (shown as dotted lines) in
two scenes.

4.3.2. Computing the capacity of the graph

In order to compute the max-flow on the Reeb Graph, we need to
know the number of characters that can fit through the open space
associated with each Reeb edge. With the capacity of each edge,
we can evaluate the number of characters that can fit through the
entire scene, as well as the way to fill it.

We compute the capacity of a Reeb edge by finding the shortest
iso-flowline, which is a width-line running perpendicular to the
natural gradient of the harmonic field, within the area covered by
the Reeb edge. Figure 4 shows two examples of the iso-flowlines in
the environment. Assuming hmin and hmax are the centre harmonic
values of the two Reeb nodes connected to a Reeb edge, we can
compute iso-flowlines for sampled harmonic values between them:

hα = (1 − α)hmin + αhmax, (3)

where 0 ≤ α ≤ 1 and α is a series of itotal evenly quantized values
sampled across the range. For each hα , we connect the vertices that
have the harmonic value just above hα (i.e. at least one neighbour
vertex has a harmonic value below hα) and form one iso-flowline.
In our system, itotal is set as either 1 or 8 depending on the quality
and computational speed requirements.

The capacity of each Reeb edge is determined by the length of
the shortest associated iso-flowline. This is because it represents the
width of the space perpendicular to the gradient of the harmonic
field, which is the expected direction of flow of the characters. This
process is then repeated for each edge of the Reeb Graph.

4.3.3. Computing max-flow of the graph

Once the crowd-flow graph of the environment is obtained, we
can evaluate how to maximize the flow from start to goal with
the capacity of the Reeb edges. While the max-flow concept has
been widely used for the purposes of evaluating buildings through

Figure 5: The problem of Max-flow solutions. Both images repre-
sent valid solutions to fill this graph to the Max-flow, but the right
one uses more efficient routes.

evacuation simulation [CFS82, KF85, CJ03], it is less investigated in
the area of congestion minimization. Here, we explain the problem
of applying max-flow in computer graphics, and explain our strategy
to solve it.

Although max-flow algorithms can maximize the number of peo-
ple moving from the start to the goal, we have found that some
of the solutions produced may contain inefficient routes that are
unnecessary long. This is because max-flow is an under-constrained
problem. While there are many correct solutions, some of them in-
volve convoluted and awkward routes. To illustrate, consider the
example in Figure 5. In the left image, the graph has been filled
to capacity. However, in some max-flow systems, the longer, less
efficient upper route may been filled, instead of the shorter route
below, as shown in the right image.

To solve this problem, we define a customized two-step strategy
when computing the max-flow of the crowd-flow graph. Here, we de-
fine a route as a series of Reeb edges from the start point to the goal,
and filling a route means assigning the capacity of the route as part
of the max-flow solution. The maximum capacity of a route is con-
strained by the Reeb edge with the minimum capacity in the series.
The objective here is to fill all the routes favouring the shorter ones.

In the first step, we fill the crowd-flow graph using the guide lines
computed in Section 4.2 as a heuristic. The guide lines represent
a subset of routes in the crowd-flow graph, and each guide line
corresponds to a route represented by a series of Reeb edges. Starting
from the shortest guide line, we fill the corresponding route to its
maximum capacity. We then repeat the process for the next shortest
guide line until every guide line is examined. By this stage, the
crowd-flow graph is partly filled, as only those routes corresponding
with guide lines are filled.

In the second step, we apply traditional max-flow algorithm on
the remaining capacity of the crowd-flow graph. We use the method
proposed in [BK04] as it is computationally efficient. It involves
growing two search trees from both the starting point and the goal
until they meet and form a route. Such a route is considered to be the
shortest route and is filled. The tree is further grown until another
route is formed. This process is repeated until all routes are filled.
In our system, since all routes pass through the same number of
Reeb nodes, they have the same length. As a result, expanding the
tree is computationally efficient because we only need to build it
once. Even for a scene with over 100 obstacles, it takes less than
5 ms to complete the calculation. By this stage, we have a complete
max-flow solution for the crowd-flow graph.

Since in our customized strategy we fill the graph using the guide
lines first, we essentially force the algorithm to use the set of more

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 125

Figure 6: (a) The Reeb graph of a two-obstacle scene, with one start
point a and two end points e and f. (b) A sub-optimal solution of
logical route that results in route crossing. (c) A preferable solution
that can prevent congestion.

elegant routes given by the guide lines. As a result, the computed
max-flow of the crowd-flow graph may not be the optimal one. In
practice, however, this does not heavily effect the max-flow value
discovered. The reason is that the flow in the crowd-flow graph
follows the same direction as the guide lines in general, since they
are both created from the same harmonic field. In the experiments
we have conducted, the customized strategy can maintain more than
99% of the original flow values, while shorting 2% of the paths that
are of poor quality to avoid visual artifacts.

5. Character Path Planning

In this section, we describe how the topological information com-
puted is converted into paths through the space. First, we explained
how logical routes are created to avoid characters obstructing each
other. Then, we explain how they are converted into geometric paths
for characters to follow.

5.1. Logical route creation

The maximum flow computed in Section 4.3.3 determines how
many characters can move along each Reeb edge, but it contains
no information about what routes they should take. In this section,
we describe our solution for creating these routes. Here, a logical
route is defined as an ordered list of Reeb nodes from the start to
the end of the Reeb Graph. Each logical route also has an associated
capacity value describing the number of characters that can fit along
it.

The problem of creating logical routes is that without a strategy,
characters may end up crossing one another’s routes. This can cause
character collision and crowd congestion, which defeats our purpose
of synthesizing fluid crowd movement. An example demonstrating
this problem is shown in Figure 6. Image (a) shows the maximum
flow in which the characters enter node d from nodes b and c, and
they leave at nodes e and f. While we know that the number of
characters entering and leaving node d is the same, we do not know
the paths the characters take. Image (b) demonstrates one solution
of logical routes, in which two groups of character cross paths
and would potentially obstruct each other. Image (c) demonstrates
a preferable solution of logical routes that fills the scene while
avoiding route crossing.

To obtain a smoothly flowing solution for the crowd that min-
imizes route crossing, we propose a lightweight algorithm that is
based on the logical classifications of the Reeb nodes. As shown in

Figure 7: The three logical classes of path connection for Reeb
nodes.

Figure 8: The process of logical route creation.

Figure 7, we consider three logical classes, including merge (more
than one edge joining at a node), split (more than one edge emerg-
ing from a node) and merge-split (more than one edge joining and
emerging). The nodes having exactly one incoming and one outgo-
ing Reeb edge do not cause the mentioned route-crossing problem,
and are not considered.

The first step of our algorithm is to identify the logical class for
all the Reeb nodes in the scene. We take advantage on our harmonic
field generated Reeb Graph, within which the gradient of every Reeb
node is well defined. For each node, we examine the gradient of the
neighbour nodes and evaluate if the corresponding Reeb edges are
incoming or outgoing. Then, based on the number of incoming and
outgoing edges, we can identify the merge, split and merge-split
nodes.

The second step is to create logical routes with no path-crossing.
Again, due to the use of harmonic field in the Reeb Graph, this
can be easily achieved by stepping through all the Reeb edges from
the starting points to the goals with increasing level of gradient.
Without the path connection nodes as shown in Figure 7, the process
is as simple as repeating the stepping and recording the Reeb nodes
visited until the goal nodes are reached. The capacity of each logical
route is constrained by the Reeb edge with the minimum capacity in
the route. Figure 8(a) shows an example of the initial stage to create
two logical routes, with the capital characters identifying the routes
and the numerical values indicating the step number.

The tricky part of the algorithm is to deal with path connection
nodes to minimize route crossing. During stepping, whenever a
merge node is encountered, we order the routes based on their
polar coordinates, and step all logical routes together thereafter.
Figure 8(b) shows an example route ordering and stepping at a
merge node. When a spilt node is encountered, the route of the
incoming edge is cloned with its capacity split, such that there are
multiple routes for future stepping each outgoing edge. Figure 8(c)
shows how route A1 is cloned as A1 and B1, such that stepping can
be continued at A2 and B2 separately. In the situation where the
incoming edge contains multiple routes that are grouped at merge

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



126 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

nodes encountered before, we assign the routes to the outgoing
edges based on their polar ordering, as shown in Figure 8(d). If the
capacities of the multiple incoming routes does not map exactly to
that of the outgoing edges, we clone the incoming routes and split
their capacities. Finally, for the merge-split node, we perform the
processes for both merge node and split node.

The result of the process is a set of logical routes. Each of them
consists of a set of Reeb node to be visited from the start node to
the goal node, as well as a capacity value indicating the number of
characters that can fit into the route. Route crossing is minimized as
we assign incoming and outgoing logical route based on a specific
order. This allows us to eliminate obstruction between different
groups of character in the scene during crowd synthesis.

5.2. Geometric paths creation

Here, we describe how the logical routes created are converted into
geometric paths in the environment. We define a geometric path as
the path taken by a set of characters during the synthesis.

The logical path only indicates the set of Reeb nodes to be visited
but not the geometric position of the trajectories. In order to create
a geometric path, we combine the information given by the guide
lines, as they provide smooth paths from the start points to the goal
points. For each logical route, the geometric paths are created as
the set of guide lines that follows the route. In the case that no
single guide line follows the entire logical route, we use segmented
parts that follow different sections of the route and stitched their
ends together. Since both guide lines and logical paths are created
fundamentally from the same harmonic field, a solution of geometric
paths can always be found.

Once we find the solution of all geometric paths, we assign char-
acters to each of them based on the capacity of the paths. We assign
characters to the shortest paths first, fill its capacity, and repeat with
the next shortest path until all characters are assigned.

5.3. Run-time character control

Here, we explain how to synthesize the character movement dur-
ing run-time, as well as the offline process for full body character
rendering.

A naive approach to synthesize character movement is to control
the kinematics of each of them individually, as well as apply collision
detection and reaction. However, to reduce computational cost, in-
stead of controlling individual characters, we use flocking [Rey87b]
to control each group of characters that follows the same geometric
path. Flocking is efficient at keeping the characters spreading out,
avoiding collisions and adding randomness. Obviously, depending
on system requirement, more advanced local controllers can be used.
We selected flocking as we wish to provide an unvarnished insight
into the quality of geometric paths we created.

Rendering of full body characters is performed as an offline pro-
cess. Based on the synthesized locations of the characters, we plan
their full body motion using the method from [SKY08] with a cap-
tured running motion database. While the system can plan collision
free trajectories for each character, partial collisions of body parts

Figure 9: The same scene with different θcooperation values.

such as arms and legs among characters may occur. We use the
physical simulation system proposed in [SH12] to model the move-
ment of the characters with joint torque and joint force. Under such
a physical environment, body parts penetration among characters
can be minimized.

6. User Controls

Here, we explain how user controls are used to alter the level of
cooperation and congestion in the crowd. By allowing such high-
level controls, we provide users with the ability to alter the crowd
behaviour efficiently without tweaking a large set of parameters or
adjusting the trajectories of individual character.

6.1. Cooperation control

The cooperation value defines how characters cooperate with each
other to maximize the flow of the overall crowd. When the system
runs normally, the crowd is the most cooperative. As the value
decreases, characters tend to take shorter paths even if that means
creating congestion and reducing the efficiency of the crowd.

In the normal run state of our system, the cooperation value is set
as θcooperation = 1.0, which represents that the characters are fully
cooperating. For θcooperation values of less than 1.0, some characters
would not follow the assigned geodesic path:

θcooperation = Character Following Assigned Path

T otal Number of Character
. (4)

In our implementation, based on the given θcooperation, we select the
required number of characters assigned with the longest geodesic
paths, remove their originally assigned path and assign them with a
randomly selected, shorter geodesic path. As a result, some of the
routes may not be used.

An example of adjusting θcooperation is shown in Figure 9. Here,
it is clear how reducing the value of θcooperation affects the degree
of overall crowd coordination. It shows how lower values divert
characters from the longer paths to shorter ones, which are more
immediately beneficial to them, but detrimental to the crowd as a
whole with significant congestion appearing at the shortest paths.
One example of applying the cooperation is to simulate less intel-

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 127

Figure 10: The same scene with different θcongestion values.

ligent characters, such as orcs in a real-time strategy game, which
do not consider the efficiency of the whole crowd but individual
benefit.

6.2. Congestion control

The congestion value adjusts the capacity values for each geodesic
path. As the physical capacity of the path is fixed according to the
available space, adjusting the congestion value would result in the
system assigning characters to a path above or below the origi-
nal capacity. This creates an overall crowd behaviour of preferring
under-utilized or over-congested pathways.

The scene congestion is adjusted by:

RCNew = θcongestion ∗ RC, (5)

where RC and RCNew are the capacities of the geodesic paths in the
scene before and after the change. In our implementation, the value
for θcongestion can be altered down to a minimum of 0.0 and up to a
maximum of 2.0. Mathematically, a value of θcongestion = 2.0 means
that the scene is filled to two times its capacity, that is two times
more than the maximum flow found for the scene. Once the value
is changed, the system will assign the geodesic paths to the charac-
ters with the new capacity.

The result of this process is shown in Figure 10. Here, it is
clear how lower values of θcongestion lead to an emptier scene while
values above 1.0 lead to extreme crowding and even congestion
at the bottlenecks. The congestion value can be used to simulate
characters’ perception of the path capacity. For example, in a city,
character can tolerate more congested paths. Whereas in a village,
characters may prefer sparser paths.

7. Experimental Results

In this section, we present experimental results of our system. We
first demonstrate crowd synthesis in different scenarios. Then, we
compare our system with the other methods [TCP06] and point
out our strengths. Finally, we discuss how to trade-off quality and
computational cost in our system, such that the system becomes
fast enough to be used in computer games. All experiments were
performed on a laptop computer using one core of an Intel Core

i7-3840QM CPU and 16 GB of RAM. Synthesis frame rate was set
at 30 frames per second.

7.1. Scenarios simulation

We synthesized four scenarios to demonstrate our system as shown
in Figure 11. We set θcooperation = 1.0, θcongestion = 1.0, hrow = 120,
hcol = 200, gtotal = 1600 and itotal = 8 to synthesize the crowd. The
number of characters, number of obstacles, Reeb resolution Rtotal ,
computation time in milliseconds for our simulated scenario are
shown in Table 1. The computation time given here accounts for the
process from analysing the scene to generating and assigning full
paths for all characters. The cost for run-time simulation of character
movement depends only on the flocking algorithm described in
Section 5.3, which is always real-time even for the largest scene we
simulated with thousands of characters.

The monster escape scenario portrays a popular movie and ani-
mation scene, where characters run away from disaster in an envi-
ronment filled with obstacles. With our method, we ensure the high
dynamic flow of the crowd as congestion is minimized.

The castle invade scenario is another popular scene in both ani-
mation and games, where an army moves towards a destination in
a coordinated manner. Notice that the computational cost depends
on the complexity of the environment rather than the number of
characters. Therefore, even for simulating thousands of characters,
the one-off scene analysis cost is only 2.5 s.

The ;evacuation scenario is built based on the floor plan of the
Informatics Forum in the University of Edinburgh. We use a larger
Reeb resolution to cover the fine details of the building. The green
tents indicate starting points such as the door of a seminar room or a
stair, while the red tents indicate exits. Notice that some characters
take longer paths to facilitate the overall efficiency of the crowd,
portraying a well-organized evacuation. If we need a less organized
evacuation, where selfish characters seek for shorter path and form
congestion, θcooperation can be adjusted.

The typical gaming environment is built to reproduce a common
environment in real-time strategy games, in which the player has to
move a crowd from one location to another in a complex terrain.
As mentioned before, console games using traditional field-based
crowd control would result in congestion under such a complex
environment, which is frustrating for players and degrades the game
quality. Using our method, we can obtain a high level of crowd
coordination such that the crowd can move as quickly as possible.

Regarding the complexity of the method, the cost of computing
the harmonic field and the guide lines are O(htotal) and O(gtotal),
respectively [DKG05]. Notice that differently from [DKG05], we do
not perform remeshing but create guide lines at the same resolution
of the input mesh. The complexity for calculating the maximum flow
is O(ev2) [BK04], where e and v are the number of edges and nodes
of the Reeb Graph, respectively, which are determined based on the
number of obstacles and the resolution of the scene. Table 2 shows
the percentage of computation time for different steps of topological
scene analysis, which is obtained as the average values of the four
scenarios in this section. Figure 12 shows how the computational
cost changes by varying the number of obstacle, which modifies e

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



128 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

Figure 11: Simulated scenarios: monster escape, castle invade, evacuation and typical gaming environment.

Table 1: Details of scenario simulation.

Scenario # char. #obst. Res. Time (ms)

Monster 297 9 32 983
Castle 3348 23 32 2559
Evacuation 701 46 64 2356
Gaming 1144 26 32 2371

Table 2: Computation time for each processing step.

Processing step % Computation time

Harmonic field creation 20.386%
Guide lines creation 10.653%
Reeb graph creation 11.543%
Capacities computing 13.442%
Maximum flow computing 0.009%
Logical route creation 23.145%
Geometric paths creation 19.911%

Figure 12: The computation time against the number of obstacles.
Standard deviations are shown as black line ranges.

and v required in a scene and hence defines the complexity of the
scene. The run-time computational complexity is purely dependent
on the local planner. In our case, it is O(n2), where n is the number
of character. This is because the flocking library we used calculates
the influence from all characters in the scene for each character. For
simulating large number of characters in real-time, a local influence
approach can be implemented.

7.2. Comparison with other methods

In order to demonstrate the fluidity of the motion produced by
our system, we compared it to the Continuum crowds method

Figure 13: The average velocity (left) the average velocity in goal
direction (right) of our method (blue) versus the continuum crowd
(red).

[TCP06], which is one of the most popular field-based crowd con-
trol algorithms. It was chosen as a suitable candidate since it also
provides characters with global knowledge of the scene without
requiring detailed user input. The comparisons were made across
10 test cases, including environments containing bottlenecks and
those where the crowd splits and flows require little prediction.
Inspired by [WGO*14], we perform evaluation of the system to
analyse the dynamism of the scene using the characters velocity.

The average magnitude (solid lines) and standard deviation (pale
lines) of character velocity across all the scenes are shown in
Figure 13, left-hand side, with the X-axis indicating simulation
frame number. In our implementation, the maximum velocity of
a character is 2.0. The result shows that our system achieves a near-
optimal character speed with a significantly smaller variance across
all test cases. The character speed of the Continuum crowd method
drops to around 1.9 once the simulation starts, mostly because of
congestion.

A high velocity character may not necessary moves towards the
goal due to congestion. The average (solid lines) and the standard
deviation (pale lines) of average velocity in the goal direction across
all test cases are as shown in Figure 13, right-hand side. The result
shows that the characters in our system move quicker towards the
goal with an average velocity of 1.7, compare to the average ve-
locity of 1.2 in the Continuum crowd system. Notice that in the
first 50 frames, our system has a relatively lower average velocity
towards goal. This is because the characters usually spread out in
the beginning to efficiently navigate around obstacles in the scene.

We render one of the test cases to visualize the scene. As shown
in Figure 14(a), with our system, the coordinated characters finish
moving to the goal 300 frames faster than those from the Continuum
crowds on average. Figure 14(b) shows that in the Continuum crowd
system, all the characters rush towards the shortest route to the goal,
which explains their high initial velocity towards goal. However,

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 129

Figure 14: Snapshots of (a) our system, (b) continuum crowds and
(c) [vdBGLM11] in a bottleneck test case.

due to congestion, the characters have to either stop or backtrack
and find alternate paths, resulting in a significant drop in velocity
towards goal.

We also compare our system with [vdBGLM11], which is an
enhanced version of the reciprocal velocity obstacles algorithm
[vdBPS*08]. Since [vdBGLM11] is an agent-based approach, char-
acters do not have the information for global coordination. As a
result, while characters can avoid collision with their neighbours
locally, they cannot avoid congestion at bottlenecks. Figure 14(c)
shows the snapshot of the result.

7.3. Simulation quality and computation time trade-off

It is easy to trade off the simulation quality and the computation
time in our system. This is of particular importance in interactive
applications such as real-time strategy games. Here, we define the
simulation quality as simulation precision and the naturalness of
crowd movement.

The trade-off can be adjusted in the following ways:

� Reducing the number of guide lines gtotal in Section 4.2: This
results in reducing the number of geodesic paths provided by
each logical route. Crowd movement within the same logical
route is then less spread out and natural.

� Reducing the Reeb graph resolution Rtotal in Section 4.3.1:
This results in fewer Reeb nodes and small obstacles may not be
registered in the topology of the scene.

� Reducing the number of iso-flowlines itotal in Section 4.3.2:
This results in a less accurate estimation on the capacity of a
Reeb edge, and hence a less accurate capacity for the logical
routes. Minor congestion or under-filled paths may appear.

To evaluate the quality impact when adjusting the above param-
eters, an experiment is conducted as shown in Figure 15. Image
(a) shows the simulation of our normal system, with gtotal = 1600,

Figure 15: Quality comparison between (a) normal speed simula-
tion and (b) fast simulation.

Rtotal = 64 and itotal = 8. Image (b) shows the result of a fast sim-
ulation, with gtotal = 100, Rtotal = 32 and itotal = 1. The red rect-
angles in the images highlight the impacts in synthesis quality, in
which the crowd is less spread out and more artificial in the fast
simulation.

As for the computation time, the test scenes with 1, 2 and 15
obstacles require 812 ms, 1825 ms and 2714 ms, respectively using
normal synthesis parameters. With the faster synthesis parameters,
the computation time drops to 249 ms, 437 ms and 1138 ms, respec-
tively.

By adjusting the trade-off, our system is fast enough to run in in-
teractive applications where performance is of higher priority than
simulation quality. For example, in computer games, we can dra-
matically tune down the mentioned parameters to achieve better per-
formance. Artifacts such as less spread out crowd, paths of coarser
resolution and slightly over-/under-filled paths may occur, but they
will not heavily affect the gameplay.

8. Discussions

As an improvement from previous method, the geodesic paths gen-
erated by our system can prevent characters from crossing one an-
other’s paths. They are compatible with many local character control
algorithms. We use flocking as our local planner to provide an un-
varnished insight into the path quality, but more dedicated planner
can be used.

The algorithm is capable of handling characters of different sizes
or speeds by adjusting the equation to calculate the max-flow values
of the routes, in which the parameters can be obtained from real-
world statistics. For instance, slower and bigger characters occupy
the more space for longer duration, and hence the flow values of the
routes are decreased. We can also simulate characters of different
intelligences and behaviour using cooperative and congestion con-
trols. Finally, specific agent-based behaviour can be simulated by
designing the local agent controller.

Although methods such as [KLLT08, HSK14] can potentially
simulate scenes similar to those we created, they would require
significant manual tuning and control by the animator. Specifically,
all characters would need some form of pre-assigned paths to avoid
causing congestion in any bottlenecks. This process is performed
automatically in our system.

In the current implementation of our system, we minimize the
crossing of logical routes and hence do not produce scenes that
involve crossing groups of characters, such as two crowds meeting

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



130 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

Figure 16: A potential limitation of the Max-flow framework.

at a crossroads. If such a kind of scene is needed, we can update the
logical route creation algorithm in Section 5.1, as well as change the
way we deal with split nodes and merge-split nodes, to synthesize
crowd crossing behaviour.

The grid resolution in Section 4 affects the quality of harmonic
field gradient, guide lines, Reeb Graph and iso-flowlines. When
tuning the resolution, we make sure that both the Reeb Graph and
the grid of the scene have enough detail to capture the smallest
object in the scene. In a large scene that contains small objects, a
hierarchical grid resolution can be used such that we assign coarser
resolution to open area and finer resolution around the objects.
This can maintain a high quality of simulation with a reasonable
computational cost.

8.1. Limitations

Our system aims at maximizing the flows of the crowd in order to
avoid congestion, instead of minimizing the time for all characters
to arrive the destination. The main reason of the design is that
once congestion occurs, local controllers would not be able to carry
out the solution from the high-level planner, which would deficit
the purpose of the planner. Furthermore, accurately estimating the
timing information requires the high-level planner to communicate
with the local controller and perform path replanning during run-
time, which would increase the run-time computational cost. In most
situations, maximizing flows means minimizing time. However, in
extreme situations such as the one show in Figure 16, our system
would maximize the flow of the shorter solid route, and then start to
fill the longer dotted route as well to avoid congestion, as described
in Section 4.3.3. It can be expected that characters following the
shorter route would arrive the goal much earlier than those taking
the longer one. If overly long routes should be avoided in the cost
of congestion, a simple solution is to design a route filtering pre-
process before computing the flows. Another possible solution is to
reduce the flows of the paths based on the approximated distance to
the goal, such that longer paths are less preferred.

Another limitation of our system is that we assume characters
to have homogenous characteristics. If different characters exist
in the crowd, such as some moving slower than the others, conges-
tion may occur. To minimize the impact of this problem, one solution
is to estimate the mean value of the characters’ parameters when
evaluating the flows. Hybrid approaches that combine field-based
and agent-based algorithms can also be explored.

9. Conclusion and Future Work

In this paper, we propose a new method for producing coordinated
crowds moving through a given scene. This is done by global field-
based planning such that congestion is minimized and the dynamism
of the crowd is preserved. We also present high-level user controls to

alter the crowd behaviour using the degree of cooperation and con-
gestion. Through our experiments, we demonstrate how our system
can efficiently synthesize smooth crowd movement with minimal
congestion in different scenarios up to thousands of characters.

In the future, we will investigate network flow models so
that the system can deal with dynamic obstacles and re-plan
the distribution of characters in the background. Since our
topological scene analysis framework requires a lot of geo-
metric operations, we are also interested in applying graph-
ics processor unit (GPU) computation to further speed up
the system, such that it can be applied in limited devices such as
game consoles.

Acknowledgment

This project was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC) Ref: EP/M002632/1.

References

[ACSD*03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O., LÉVY B.,
DESBRUN M.: Anisotropic polygonal remeshing. ACM Transac-
tions on Graphics 22, 3 (2003), 485–493.

[BCK13] BARNETT A., CHOI M., KOMURA T.: Topology-based global
crowd control. In The 26th International Conference on Com-
puter Animation and Social Agents (Istanbul, 2013), John Wiley
& Sons Ltd.

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision.
IEEE Transactions on Pattern Analysis and Machine Intelligence
26, 9 (2004), 1124–1137.

[CFS82] CHALMET L., FRANCIS R., SAUNDERS P.: Network models for
building evacuation. Management Science 28, 1 (1982), 86–105.

[CJ03] COVA T., JOHNSON J.: A network flow model for lane-based
evacuation routing. Transportation Research Part A: Policy and
Practice 37, (2003), 579–604.

[Dav06] DAVIS T. A.: Direct Methods for Sparse Linear Systems.
SIAM, 2006. http://dx.doi.org/10.1137/1.9780898718881.

[DKG05] DONG S., KIRCHER S., GARLAND M.: Harmonic functions
for quadrilateral remeshing of arbitrary manifolds. Computer
Aided Geometric Design 22, 5 (2005), 392–423.

[FS97] FEDER H., SLOTINE J.-J.: Real-time path planning using har-
monic potentials in dynamic environments. In Proceedings of
1997 IEEE International Conference on Robotics and Automa-
tion (Albuquerque, New Mexico, 1997), IEEE, vol. 1, pp. 874–
881.

[GO07] GERAERTS R., OVERMARS M.: The corridor map method:
A general framework for real-time high-quality path planning.
Computer Animation and Virtual Worlds 18, (2007), 107–119.

[Hen74] HENDERSON L.: On the fluid mechanics of human crowd
motion. Transportation Research 8, 6 (1974), 509–515.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis 131

[HSK12] HENRY J., SHUM H. P. H., KOMURA T.: Environment-
aware real-time crowd control. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2012), SCA ’12, Euro-
graphics Association, pp. 193–200.

[HSK14] HENRY J., SHUM H. P. H., KOMURA T.: Interactive formation
control in complex environments. IEEE Transactions on Visual-
ization and Computer Graphics 20, 2 (2014), 211–222.

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII T.: Topol-
ogy matching for fully automatic similarity estimation of 3d
shapes. SIGGRAPH ’01, ACM, pp. 203–212.

[JPCC14] JORDAO K., PETTRÉ J., CHRISTIE M., CANI M.-P.: Crowd
Sculpting: A space-time sculpting method for populating virtual
environments. Computer Graphics Forum 33, 2 (2014), 351–360.

[KF85] KISKO T., FRANCIS R.: Evacnet+: A computer program to
determine optimal building evacuation plans. Fire Safety Journal
9, 2 (1985), 211–220.

[KG14] KÜLLÜ K., GÜDÜKBAY U.: A layered communication model
for agents in virtual crowds. In Proceedings of 27th International
Conference on Computer Animation and Social Agents (Houston,
USA, May 2014).

[KGvdS13] KARAMOUZAS, I., GERAERTS, R., VAN DER STAPPEN, A.
F.: Space-time group motion planning. In Algorithmic Foun-
dations of Robotics X, Frazzoli, E., Lozano-Perez, T., Roy,
N., Rus, D., (Eds.), vol. 86 of Springer Tracts in Advanced
Robotics. Springer, Berlin Heidelberg, 2013, pp. 227–243
http://dx.doi.org/10.1007/978-3-642-36279-8_14.

[KLLT08] KWON T., LEE K. H., LEE J., TAKAHASHI S.: Group motion
editing. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers (New
York, NY, USA, 2008), ACM, pp. 1–8.

[KSK97] KANAI, T., SUZUKI, H., KIMURA, F.: 3d geometric meta-
morphosis based on harmonic map. In Computer Graphics and
Applications, 1997. Proceedings., The Fifth Pacific Conference
on (Oct 1997), pp. 97–104, doi: 10.1109/PCCGA.1997.626179.

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipulation
of large-scale crowd animation. ACM Transactions on Graphics
33, 4 (2014), 83:1–83:10.

[KSLO96] KAVRAKI L., SVESTKA P., LATOMBE J.-C., OVERMARS M.:
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Au-
tomation 12, 4 (1996), 566–580.

[LK06] LAU M., KUFFNER J. J.: Precomputed search trees: Planning
for interactive goal-driven animation. In SCA ’06: Proceedings
of the 2006 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (Aire-la-Ville, Switzerland, Switzerland, 2006),
Eurographics Association, pp. 299–308.

[PAB07] PELECHANO N., ALLBECK J. M., BADLER N. I.: Control-
ling individual agents in high-density crowd simulation. In
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation (Aire-la-Ville, Switzerland,
Switzerland, 2007), SCA ’07, Eurographics Association, pp. 99–
108.

[Par10] PARK M.: Guiding flows for controlling crowds. Visual Com-
puter 26, 11 (2010), 1383–1391.

[PCM*06] PETTRÉ J., CIECHOMSKI P. d. H., MAÏM J., YERSIN B., LAU-
MOND J.-P., THALMANN D.: Real-time navigating crowds: Scal-
able simulation and rendering. Computer Animation and Virtual
Worlds 17, 3–4 (2006), 445–455.

[PPD07] PARIS S., PETTRÉ J., DONIKIAN S., : Pedestrian reactive nav-
igation for crowd simulation: A predictive approach. Computer
Graphics Forum 26 (2007), 665–674.

[PvdBC*11] PATIL S., VAN DEN BERG J., CURTIS S., LIN M., MANOCHA

D.: Directing crowd simulations using navigation fields. IEEE
Transactions on Visualization and Computer Graphics 17, 2
(2011), 244–254.

[Ree46] REEB G.: On the singular points of a completely integrable
pfaff form or of a numerical function. Comptes Randus Académie
des Sciences Paris 222, (1946), 847–849.

[Rey87a] REYNOLDS C.: Flocks, herds and schools: A distributed
behavioral model. SIGGRAPH 21, 4 (1987), 25–34.

[Rey87b] REYNOLDS C. W.: Flocks, herds and schools: A distributed
behavioral model. SIGGRAPH Computers & Graphics 21, 4
(1987), 25–34.

[RI05] ROSELL J., INIGUEZ P.: Path planning using harmonic func-
tions and probabilistic cell decomposition. In Proceedings of the
2005 IEEE International Conference on Robotics and Automa-
tion, 2005. ICRA 2005. (2005), IEEE, pp. 1803–1808.

[SFF*10] SILVEIRA R., FISCHER L., FERREIRA J., PRESTES E., NEDEL

L.: Path-planning for rts games based on potential fields. In
Motion in Games, Boulic R., Chrysanthou Y., Komura T.,
(Eds.), vol. 6459 of Lecture Notes in Computer Science (Zeist,
Netherlands). Springer, Berlin Heidelberg, 2010, pp. 410–421.
http://dx.doi.org/10.1007/978-3-642-16958-8_38.

[SH12] SHUM H., HO E. S.: Real-time physical modelling of char-
acter movements with microsoft kinect. In Proceedings of the
18th ACM Symposium on Virtual reality software and technology
(New York, NY, USA, 2012), VRST ’12, ACM, pp. 17–24.

[SKK91] SHINAGAWA Y., KUNII T., KERGOSIEN Y.: Surface coding
based on morse theory. IEEE Computer Graphics and Applica-
tions 11, 5 (1991), 66–78.

[SKY08] SHUM H. P. H., KOMURA T., YAMAZAKI S.: Simulating in-
teractions of avatars in high dimensional state space. In I3D ’08:
Proceedings of the 2008 symposium on Interactive 3D graphics
and games (New York, NY, USA, 2008), ACM, pp. 131–138.

[Sno00] SNOOK G.: Simplified 3d movement and pathfinding using
navigation meshes. Game Programming Gems 1, (2000), 288–
304.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



132 A. Barnett et al. / Coordinated Crowd Simulation With Topological Scene Analysis

[ST05] SHAO W., TERZOPOULOS D.: Autonomous pedestrians. In Eu-
rographics (2005), SCA ’05, ACM, pp. 19–28.

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum crowds.
ACM Transactions on Graphics 25, 3 (2006), 1160–1168.

[TSO*10] TORCHELSEN R. P., SCHEIDEGGER L. F., OLIVEIRA G. N.,
BASTOS R., COMBA J. a. L. D.: Real-time multi-agent path plan-
ning on arbitrary surfaces. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2010), I3D ’10, ACM, pp. 47–54.
http://doi.acm.org/10.1145/1730804.1730813.

[VDAGHP10] VAN DEN AKKER M., GERAERTS R., HOOGEVEEN H.,
PRINS C.: Path planning for groups using column generation.
In Motion in Games, Boulic R., Chrysanthou Y., Komura T.,
(Eds.), vol. 6459 of Lecture Notes in Computer Science (Zeist,
Netherlands). Springer, Berlin Heidelberg, 2010, pp. 94–105.
http://dx.doi.org/10.1007/978-3-642-16958-8_10.

[vdBGLM11] VAN DEN BERG J., GUY S., LIN M., MANOCHA D.:
Reciprocal n-body collision avoidance. In Robotics Research,
Springer Tracts in Advanced Robotics. C. Pradalier, R. Siegwart,
G. Hirzinger, (Eds.), Springer, Berlin, Heidelberg (2011), Vol.
70, pp. 3–19.

[vdBPS*08] VAN DEN BERG J., PATIL S., SEWALL J., MANOCHA D., LIN

M.: Interactive navigation of multiple agents in crowded envi-
ronments. In Proceedings of the 2008 Symposium on Interactive
3D Graphics and Games (New York, NY, USA, 2008), I3D ’08,
ACM, pp. 139–147.

[vTCG12] VAN TOLL W. G., COOK IV A. F., GERAERTS R.: Real-
time density-based crowd simulation. Computer Animation and
Virtual Worlds 23, 1 (2012), 59–69.

[WGO*14] WOLINSKI D., GUY S., OLIVIER A., LIN M., MANOCHA D.,
PETTRÉ J.: Parameter estimation and comparative evaluation of
crowd simulations. Computer Graphics Forum (2014), 33, 303–
312, doi: 10.1111/cgf.12328.

[YCP*08] YEH H., CURTIS S., PATIL S., VAN DEN BERG J., MANOCHA

D., LIN M.: Composite agents. In SCA ’08: Proceedings of the
2008 ACM SIGGRAPH/Eurographics symposium on Computer
Animation (2008), ACM, pp. 39–47.

[ZRKS05] ZAYER R., R SSL C., KARNI Z., SEIDEL H.: Harmonic guid-
ance for surface deformation. In Eurographics 05, (2005), 601–
609.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.


